For RISC-V and Xtensa targets, in case a panic needs to happen when
Task WDT is triggered (ESP_TASK_WDT_PANIC), the interruptee's stack
is now used for printing the backtrace.
Abort after Task Watchdog is triggered can happen on APP CPU (second core).
Functions used for burning this efuse would log, but at this point
esp_log is not initialized. Moved to a later point in the startup process.
Closes https://github.com/espressif/esp-idf/issues/9457
Blocking read from cdcacm VFS could return less bytes than requested.
This didn’t match the behaviour of other VFS drivers, and higher level
code could misbehave.
Previously, reset over USB CDC was done by calling esp_restart from
an interrupt handler. This works only until some restart hook function
is registered using esp_register_shutdown_handler, and the hook
function tries to do something that isn’t allowed in an interrupt
handler. One such case is with Wi-Fi. When Wi-Fi driver is installed,
it registers esp_wifi_stop as a shutdown handler function. However
esp_wifi_stop cannot be called from an ISR, and hence we shouldn’t
call esp_restart from an ISR either.
This commit modifies USB CDC driver to call esp_restart by posting it
to esp_timer task.
Closes https://github.com/espressif/esp-idf/issues/7404
Spinlocks themselves do not constitute critical sections as after a spinlock is acquired, interrupts
can remain enabled. However, there are some places where spinlocks are used direclty instead of using
the portMUX_TYPE and portENTER_CRITICAL_...() APIs. This commit fixes those calls.
- Remove esp_cpu_in_ocd_mode() from esp_cpu.h. Users should call esp_cpu_dbgr_is_attached() instead.
- Remove esp_cpu_get_ccount() from esp_cpu.h. Users should call esp_cpu_get_cycle_count() instead.
- Remove esp_cpu_set_ccount() from esp_cpu.h. Users should call esp_cpu_set_cycle_count() instead.
- Other IDF components updated to call esp_cpu_dbgr_is_attached(), esp_cpu_get_cycle_count() and esp_cpu_set_cycle_count() as well.
This commit marks all functions in interrupt_controller_hal.h, cpu_ll.h and cpu_hal.h as deprecated.
Users should use functions from esp_cpu.h instead.
The following two functions in bootloader_support are private now:
* esp_secure_boot_verify_sbv2_signature_block()
* esp_secure_boot_verify_rsa_signature_block()
They have been moved into private header files
inside bootloader_private/
* Removed bootloader_reset_reason.h and
bootloader_common_get_reset_reason() completely.
Alternative in ROM component is available.
* made esp_efuse.h independent of target-specific rom header
1. Rename MACROs SYSTEM_WIFI_RST_EN register bit fields to be more recognizable
2. reset Bluetooth baseband and clock bits to fix the issue of task watchdog triggered during controller initialization due to invalid hardware state
SMP FreeRTOS uses a single kernel lock for all critical sections. There is a known
issue with esp_ipc_isr_stall_other_cpu() that can cause dead if the other CPU is
already in a critical section.
This commit adds a temporary workaround to reduce the chance of deadlock by taking
the SMP FreeRTOS kernel lock first before stalling the other CPU.
See IDF-5257 for more details.
This commit makes changes to cpu_ll.h, cpu_hal.h, and interrupt_controller_hal.h:
- Moved to esp_hw_support in order to be deprecated in the future
- HAL/LL API now route their calls to esp_cpu.h functions instead
Also updated soc_hal.h as follows:
- Removed __SOC_HAL_..._OTHER_CORES() macros as they dependend on cpu_hal.h
- Made soc_hal.h and soc_ll.h interfaces always inline, and removed soc_hal.c.
This commit also updates the XCHAL_ERRATUM_572 workaround by
- Removing it's HAL function and invoking the workaround it directly the bootloader
- Added missing workaround for the ESP32-S3
Was: Backtrace: N:M N:M N:M ...
Now: Backtrace:N:MN:M N:M ...
The problem with the new format is that it is hard to parse and
breaks the parser that is used by PlatformIO. The old format
is much more reasonable. I do not see how the pattern in IDFDUT.py
can work with the new format, due to the missing space after the :
The behavior of portSET_INTERRUPT_MASK_FROM_ISR() has changed in SMP FreeRTOS. It's
previous behavior is now implemented in portDISABLE_INTERRUPTS() and portRESTORE_INTERRUPTS().
This commit replaces all portSET_INTERRUPT_MASK_FROM_ISR() and portCLEAR_INTERRUPT_MASK_FROM_ISR()
calls with portDISABLE_INTERRUPTS() and portRESTORE_INTERRUPTS() respectively
Moved the following kconfig options out of the target component:
* CONFIG_ESP*_DEFAULT_CPU_FREQ* -> esp_system
* ESP*_REV_MIN -> esp_hw_support
* ESP*_TIME_SYSCALL -> newlib
* ESP*_RTC_* -> esp_hw_support
Where applicable these target specific konfig names were merged into
a single common config, e.g;
CONFIG_ESP*_DEFAULT_CPU_FREQ -> CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ
1. Clean up clk usage in IDF, replace rtc_clk_xtal/apb_freq_get with
upper level API esp_clk_xtal/apb_freq
2. Fix small errors and wrong comments related to clock
3. Add clk_tree_defs.h to provide an unified clock id for each chip
Modify the NGed drivers to adopt new clock ids
This commit updates the visibility of various header files and cleans up
some unnecessary inclusions. Also, this commit removes certain header
include paths which were maintained for backward compatibility.
If a windowoverflow8 happened after changing the SP, the exception handler would look for
the extra save area by looking at the previous frame's SP. This SP would be a garbage value
and could cause the windowoverflow exception to write to invalid memory ares.
Moved the following kconfig options out of the target component:
* ESP32_X_BROWNOUT_* -> esp_system
* ESP32_X_DEBUG_OCDAWARE -> esp_system
* APP_NO_BLOBS -> build type (main kconfig)
This commit removes the usage of all legacy FreeRTOS data types that
are exposed via configENABLE_BACKWARD_COMPATIBILITY. Legacy types can
still be used by enabling CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY.
Upstream xtensa exception handling will save PS, PC, and a0 registers
together when saving a minimal context. This commit ppdates the xtensa
exception handling to match upstream behavior.
The following files were deleted:
- components/esp_hw_support/include/soc/cpu.h
- components/soc/esp32s3/include/soc/cpu.h
The following functions are deprecated:
- get_sp()
The following functions declared in soc/cpu.h are now moved to esp_cpu.h:
- esp_cpu_configure_region_protection()
The following functions declared in soc/cpu.h are now moved to components/xtensa/include/esp_cpu_utils.h:
- esp_cpu_process_stack_pc()
All files with soc/cpu.h inclusion are updated to include esp_cpu.h instead.
Signed-off-by: Sudeep Mohanty <sudeep.mohanty@espressif.com>
peripheral enable/disable usually should be managed by driver itself,
so make it as espressif private APIs, not recommended for user to use it
in application code.
However, if user want to re-write the driver or ports to other platform,
this is still possible by including the header in this way:
"esp_private/peripheral_ctrl.h"
esp_restart()/panic_restart() never resets the Digital system (so far required only by the Memprot feature) as there's a typo in the corresponding #define:
it checks CONFIG_ESP_SYSTEM_CONFIG_MEMPROT_FEATURE instead of CONFIG_ESP_SYSTEM_MEMPROT_FEATURE.
Issue fixed.
IDF-4094
There was race condition where interrupt entries set by APP cpu core
could have been cleared during PRO cpu startup.
This was observed while setting up "cache access error" interrupt in
SMP mode for ESP32-S3.
This fix allows to NOT modify or clear any entries set by other core
(APP or PRO) and thus avoiding any race conditions during startup code.
As branches/jumps on Xtensa have a maximum range for the destination, it is
unsafe to refer to a label to another compilation unit in a branch/jump instruction.
The labels have been replaced by absolute addresses.
components/os: Move ETS_T1_WDT_INUM, ETS_CACHEERR_INUM and ETS_DPORT_INUM to l5 interrupt
components/os: high level interrupt(5)
components/os: hli_api: meta queue: fix out of bounds access, check for overflow
components/os: hli: don't spill registers, instead save them to a separate region
Level 4 interrupt has a chance of preempting a window overflow or underflow exception.
Therefore it is not possible to use standard context save functions,
as the SP on entry to Level 4 interrupt may be invalid (e.g. in WindowUnderflow4).
Instead, mask window overflows and save the entire general purpose register file,
plus some of the special registers.
Then clear WindowStart, allowing the C handler to execute without spilling the old windows.
On exit from the interrupt handler, do everything in reverse.
components/bt: using high level interrupt in lc
components/os: Add DRAM_ATTR to avoid feature `Allow .bss segment placed in external memory`
components/bt: optimize code structure
components/os: Modify the BT assert process to adapt to coredump and HLI
components/os: Disable exception mode after saving special registers
To store some registers first, avoid stuck due to live lock after disabling exception mode
components/os: using dport instead of AHB in BT to fix live lock
components/bt: Fix hli queue send error
components/bt: Fix CI fail
# Conflicts:
# components/bt/CMakeLists.txt
# components/bt/component.mk
# components/bt/controller/bt.c
# components/bt/controller/lib
# components/esp_common/src/int_wdt.c
# components/esp_system/port/soc/esp32/dport_panic_highint_hdl.S
# components/soc/esp32/include/soc/soc.h
eh_frame_parser is architecture independent, thus the files have
been rearchitectured. Some bugs have been fixed in the test.
A README file has also been added to eh_frame_parser host test
directory.
eh_frame_parser is now able to detect empty gaps in .eh_frame_hdr
table (missing DWARF information).
Fix a bug occuring when parsing backtraces originated from abort().
Fix build missing dependencies issue.
Add .eh_frame and .eh_frame_hdr sections to the binary (can be
enabled/disabled within menuconfig). These sections are parsed
when a panic occurs. Their DWARF instructions are decoded and
executed at runtime, to retrieve the whole backtrace. This
parser has been tested on both RISC-V and x86 architectures.
This feature needs esptool's merge adjacent ELF sections feature.
Copy the esp32c3 code without any change:
* components/esp_hw_support/include/soc/esp32h2
* components/esp_hw_support/port/esp32h2
* components/esp_system/port/soc/esp32h2
This is mostly important on ESP32 ECO3 with the
ESP32_ECO3_CACHE_LOCK_FIX, because when we stall the other CPU core
before we disable the TG1 WDT then the first CPU can get stuck
in WDT ISR handle_livelock_int routine waiting for the other CPU.
Check Memprot lock bit(s) during the system startup, abort/reset on any Memprot parts found locked during this phase.
There is no legal reason to disallow the Memprot configuration by the system, so it's either a critical bug in the
application or an malicious attempt to bypass the system security.
Error message is printed before digital system reset.
Closes IDF-2700
By unchecking "Place panic handler code in IRAM" in the menuconfig,
the panic handlers will be placed in flash. Of course, flash cache must
be activated when entering panic handlers.
Software support for PMS module.
Allows controlled memory access to IRAM (R/W/X) and DRAM0 (R/W)
On/locked by default, configurable in Kconfig (esp_system)
Closes https://jira.espressif.com:8443/browse/IDF-2092
SoC level exceptions such as watchdog timer and cache errors are now supported.
Such exceptions now triggers a panic, giving more information about how
and when it happened.
* Target components pull in xtensa component directly
* Use CPU HAL where applicable
* Remove unnecessary xtensa headers
* Compilation changes necessary to support non-xtensa gcc types (ie int32_t/uint32_t is no
longer signed/unsigned int).
Changes come from internal branch commit a6723fc
Sometimes the flash size read from bootloader is not correct. This may
forbid SPI Flash driver from reading the the area larger than the size
in bootloader header.
When the new config option is enabled, the latest configured
ESPTOOLPY_FLAHSIZE in the app header will be used to override the value
read from bootloader header.
- Introduce system time function and concept of system time provider.
esp_timer is system time provider when present.
- Set the reference point for system time, g_startup_time.
- Use the system time functions in newlib instead of calling esp_timer
functions directly
InstrFetchProhibited usually occurs because of a jump to an invalid
pointer. In this case, PC in the exception frame is the address of
the jump destination. 'esp_ptr_executable' check in print_backtrace
function recognizes the first frame as invalid, and the backtrace is
interrupted. This prevents the user from finding the location where
the invalid pointer is dereferenced.
Bypass the 'esp_ptr_executable' check if the exception cause is
InstrFetchProhibited. Update the test case to no longer ignore this
issue.
This commit adds TWAI driver support for the
ESP32-S2. The following features were added:
- Expanded BRP support
- Expanded CLKOUT Divider Support
- Updated example READMEs
Changes the startup flow to the ff:
hardware -> core libraries init -> other libraries init -> os
init (optional) -> app_main
- hardware init resides in the port layer, and is the entry point
- core libraries init executes init functions of core components
- other libraries init executes init functions of other components (weak
references)
- after other lib is init, the app_main function is called, however,
an OS can wrap the real call to app_main to init its own stuff, and
*then* call the real app_main
This commit updates the watchdog timers (MWDT and RWDT)
in the following ways:
- Add seprate LL for MWDT and RWDT.
- Add a combined WDT HAL for all Watchdog Timers
- Update int_wdt.c and task_wdt.c to use WDT HAL
- Remove most dependencies on LL or direct register access
in other components. They will now use the WDT HAL
- Update use of watchdogs (including RTC WDT) in bootloader and
startup code to use the HAL layer.