1. move settings of WIFI_CLK_EN_REG for bluetooth into controller init/deinit APIs
2. modify the bit mask used in phy_rf init/deinit to use WIFI-BT shared bits
Previously esp_restart would stall the other CPU before enabling RTC_WDT.
If the other CPU was executing an s32c1i instruction, the lock signal
from CPU to the arbiter would still be held after CPU was stalled. If
the CPU running esp_restart would then try to access the same locked
memory pool, it would be stuck, because lock signal would never be
released.
With this change, esp_restart resets the other CPU before stalling it.
Ideally, we would want to reset the CPU and keep it in reset, but the
hardware doesn't have such feature for PRO_CPU (it is possible to hold
APP_CPU in reset using DPORT register). Given that ROM code will not use
s32c1i in the first few hundred cycles, doing reset and then stall seems
to be safe.
In addition to than, RTC_WDT initialization is moved to the beginning of
the function, to prevent possible lock-up if CPU stalling still has any
issue.
Some RTC features are synchronized to RTC_SLOW_CLK, so sometimes
software needs to wait for the next slow clock cycle.
This function implements waiting using Timer Group clock calibration
feature.
append adc support and api
- esp_err_t adc2_config_width(adc_bits_width_t width_bit);
- esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten);
- int adc2_get_voltage(adc2_channel_t channel);
Internal byte accessible memory starts with Internal ROM 1 at 0x3FF90000.
Region of RTC fast memory starting at 0x3FF80000 is not used in IDF as
it is mapped to PRO CPU only.
1. Support built-in ADC for I2S.
2. Modify code of ADC, made no change to the original APIs.
3. Add APIs in I2S:
esp_err_t i2s_set_adc_mode(adc_unit_t adc_unit, adc1_channel_t adc_channel);
4. Add I2S ADC/DAC example code.
5. add old-fashion definition to make it more compatible
6. replase spi_flash_ APIs with esp_partition_ APIs
7. add example of generating audio table from wav
8. change example sound
All peripheral clocks are default enabled after chip is powered on.
When CPU starts, if reset reason is CPU reset, disable those clocks
that are not enabled before reset. Otherwise, disable all those
useless clocks.
These peripheral clocks must be enabled when the peripherals are
initialized and disabled when they are deinitialized.
1. BIT(8) of CTRL is actually read-only bit indicating interrupt status
2. BIT(0) or CTRL had inverted meaning: 1 is “level”, 0 is “edge”
3. Add definitions of prescaler values
1. add sens_struct.h
2. add definition of RTCCNTL and RTCIO
3. modify touch pad examples
4. update example code.
5. add comments add option in menuconfig
6. fix issue that pad index 8 and 9 are mismatched
7. add touch_pad_read_filtered() api to get value filtered by iir filter
8. modify touch pad isr func
9. Make the items in perihperal.ld in the sequence of address
10. delete Kconfig for touch pad
11. add touchpad filter APIs to adjust the filter
12. add touch_pad into index.rst
13. add touch_pad in Doxyfile
14. add touch_pad.rst
The address field should be placed at the highest bits of address and slv_wr_status registers. Instead of breaking the address into two parts and fill in each register, move the address to the highest bits and write to the registers respectively.
Breaking change: if you fill-in the SPI address filed in a previous version in some way and it works correctly, you still have to rewrite the address, in a more intuitive way.
Makes app image booting more reliable (256-bit rather than 8-bit verification.)
Some measurements, time to boot a 655KB app.bin file and run to app_main() execution.
(All for rev 1 silicon, ie no 340ms spurious WDT delay.)
80MHz QIO mode:
before = 300ms
after = 140ms
40MHz DIO mode:
before = 712ms
after = 577ms
40MHz DIO mode, secure boot enabled
before = 1380ms
after = 934ms
(Secure boot involves two ECC signature verifications (partition table, app) that take approx 300ms each with 80MHz CPU.)
RTC watchdog didn’t have any actions configured for any of the stages.
This change configures it to use SW_SYSTEM_RESET at stage 0 and a
full reset at stage 1. The timeout is now calculated based on
RTC_SLOW_CLK frequency.
1. Name change from chopper to carrier, block diagram update, minor changes to example codes
2. mcpwm_reg.h changed, brought uniformity in comments, worked on suggestions, duty to accept float. Some name changes!
3. Minor readme changes and Indetation
4. Minor change: move mcpwm_reg.h and mcpwm_struct.h to new path
5. Minor change: addition of BLDC example code and Readme
6. Name changed from epwm to mcpwm
7. Improve the reg name in mcpwm_struct.h
8. Name change chopper>carrier, deadband>deadtime
add API to get chip info
This change adds an API to get chip info, such as chip model, enabled capabilities, size of embedded flash, silicon revision.
Hello_world example is modified to print out the information about the chip. The example is also simplified by moving all code into the main task.
Ref TW12031.
See merge request !549
1. When dual core cpu run access DPORT register, must do protection.
2. If access DPORT register, must use DPORT_REG_READ/DPORT_REG_WRITE and DPORT_XXX register operation macro.
Split common SPI stuff out of master driver; add slave driver; add workaround for DMA issue.
This merge req mainly adds a slave device. In order to do this, the original master driver is refactored into common code shared by master and slave modes, and a slave driver is added.
The other things added are:
- Added a workaround for a 'feature' of the ESP32 silicon that can lock up the receive DMA channel in some situations. This can only be fixed by resetting *both* DMA channels. The workaround implemented makes sure that the reset only happens when both channels are idle
- Got rid of the automatic choice between register- and DMA-based transfers. The master (and slave) code will now always go for a DMA transfer if a DMA channel is given, and always go for register-based transfers if no DMA channel is given.
- Add in a bunch of fixes for outstanding Github issues.
See merge request !659
add support for 32k XTAL as RTC_SLOW_CLK source
- RTC_CNTL_SLOWCLK_FREQ define is removed; rtc_clk_slow_freq_get_hz
function can be used instead to get an approximate RTC_SLOW_CLK
frequency
- Clock calibration is performed at startup. The value is saved and used
for timekeeping and when entering deep sleep.
- When using the 32k XTAL, startup code will wait for the oscillator to
start up. This can be possibly optimized by starting a separate task
to wait for oscillator startup, and performing clock switch in that
task.
- Fix a bug that 32k XTAL would be disabled in rtc_clk_init.
- Fix a rounding error in rtc_clk_cal, which caused systematic frequency
error.
- Fix an overflow bug which caused rtc_clk_cal to timeout early if the
slow_clk_cycles argument would exceed certain value
- Improve 32k XTAL oscillator startup time by introducing bootstrapping
code, which uses internal pullup/pulldown resistors on 32K_N/32K_P
pins to set better initial conditions for the oscillator.
Ref TW11683.
Ref https://esp32.com/viewtopic.php?f=13&t=1570
Fixes https://github.com/espressif/esp-idf/issues/337.
See merge request !696
- RTC_CNTL_SLOWCLK_FREQ define is removed; rtc_clk_slow_freq_get_hz
function can be used instead to get an approximate RTC_SLOW_CLK
frequency
- Clock calibration is performed at startup. The value is saved and used
for timekeeping and when entering deep sleep.
- When using the 32k XTAL, startup code will wait for the oscillator to
start up. This can be possibly optimized by starting a separate task
to wait for oscillator startup, and performing clock switch in that
task.
- Fix a bug that 32k XTAL would be disabled in rtc_clk_init.
- Fix a rounding error in rtc_clk_cal, which caused systematic frequency
error.
- Fix an overflow bug which caused rtc_clk_cal to timeout early if the
slow_clk_cycles argument would exceed certain value
- Improve 32k XTAL oscillator startup time by introducing bootstrapping
code, which uses internal pullup/pulldown resistors on 32K_N/32K_P
pins to set better initial conditions for the oscillator.
ROM code already implements XTAL frequency detection, but it uses the 8M
clock before the clock tuning parameters are initialized. With the
zero clock tuning parameter, 8M clock has significant frequency deviation
at high temperatures, which can lead to erroneous detection of 40 MHz
crystal as a 26 MHz one.
This change adds XTAL frequency detection code to rtc_clk_init routine,
and detection is performed after the 8M clock tuning parameter as been
initialized.