feature: add Motor Control PWM(mcpwm) driver

1. Name change from chopper to carrier, block diagram update, minor changes to example codes
2. mcpwm_reg.h changed, brought uniformity in comments, worked on suggestions, duty to accept float. Some name changes!
3. Minor readme changes and Indetation
4. Minor change:  move mcpwm_reg.h and mcpwm_struct.h to new path
5. Minor change: addition of BLDC example code and Readme
6. Name changed from epwm to mcpwm
7. Improve the reg name in mcpwm_struct.h
8. Name change chopper>carrier, deadband>deadtime
This commit is contained in:
Kewal M Shah 2017-03-29 16:39:35 +08:00 committed by Kewal Shah
parent 9a64744850
commit 2008f4d88c
22 changed files with 6008 additions and 0 deletions

View File

@ -0,0 +1,709 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _DRIVER_MCPWM_H_
#define _DRIVER_MCPWM_H_
#include "esp_err.h"
#include "soc/soc.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "esp_intr.h"
#include "esp_intr_alloc.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief IO signals for MCPWM
* 6 MCPWM output pins that generate PWM signals
* 3 MCPWM fault input pins to detect faults like overcurrent, overvoltage, etc
* 3 MCPWM sync input pins to synchronize MCPWM outputs signals
* 3 MCPWM capture input pin to capture hall sell signal to measure time
*/
typedef enum {
MCPWM0A = 0, /*!<PWM0A output pin*/
MCPWM0B, /*!<PWM0B output pin*/
MCPWM1A, /*!<PWM1A output pin*/
MCPWM1B, /*!<PWM1B output pin*/
MCPWM2A, /*!<PWM2A output pin*/
MCPWM2B, /*!<PWM2B output pin*/
MCPWM_SYNC_0, /*!<SYNC0 input pin*/
MCPWM_SYNC_1, /*!<SYNC1 input pin*/
MCPWM_SYNC_2, /*!<SYNC2 input pin*/
MCPWM_FAULT_0, /*!<FAULT0 input pin*/
MCPWM_FAULT_1, /*!<FAULT1 input pin*/
MCPWM_FAULT_2, /*!<FAULT2 input pin*/
MCPWM_CAP_0 = 84, /*!<CAP0 input pin*/
MCPWM_CAP_1, /*!<CAP1 input pin*/
MCPWM_CAP_2, /*!<CAP2 input pin*/
} mcpwm_io_signals_t;
/**
* @brief MCPWM pin number for
*
*/
typedef struct {
int mcpwm0a_out_num; /*!<MCPWM0A out pin*/
int mcpwm0b_out_num; /*!<MCPWM0A out pin*/
int mcpwm1a_out_num; /*!<MCPWM0A out pin*/
int mcpwm1b_out_num; /*!<MCPWM0A out pin*/
int mcpwm2a_out_num; /*!<MCPWM0A out pin*/
int mcpwm2b_out_num; /*!<MCPWM0A out pin*/
int mcpwm_sync0_in_num; /*!<SYNC0 in pin*/
int mcpwm_sync1_in_num; /*!<SYNC1 in pin*/
int mcpwm_sync2_in_num; /*!<SYNC2 in pin*/
int mcpwm_fault0_in_num; /*!<FAULT0 in pin*/
int mcpwm_fault1_in_num; /*!<FAULT1 in pin*/
int mcpwm_fault2_in_num; /*!<FAULT2 in pin*/
int mcpwm_cap0_in_num; /*!<CAP0 in pin*/
int mcpwm_cap1_in_num; /*!<CAP1 in pin*/
int mcpwm_cap2_in_num; /*!<CAP2 in pin*/
} mcpwm_pin_config_t;
/**
* @brief Select MCPWM unit
*/
typedef enum {
MCPWM_UNIT_0 = 0, /*!<MCPWM unit0 selected*/
MCPWM_UNIT_1, /*!<MCPWM unit1 selected*/
MCPWM_UNIT_MAX, /*!<Num of MCPWM units on ESP32*/
} mcpwm_unit_t;
/**
* @brief Select MCPWM timer
*/
typedef enum {
MCPWM_TIMER_0 = 0, /*!<Select MCPWM timer0*/
MCPWM_TIMER_1, /*!<Select MCPWM timer1*/
MCPWM_TIMER_2, /*!<Select MCPWM timer2*/
MCPWM_TIMER_MAX, /*!<Num of MCPWM timers on ESP32*/
} mcpwm_timer_t;
/**
* @brief Select MCPWM operator
*/
typedef enum {
MCPWM_OPR_A = 0, /*!<Select MCPWMXA, where 'X' is timer number*/
MCPWM_OPR_B, /*!<Select MCPWMXB, where 'X' is timer number*/
MCPWM_OPR_MAX, /*!<Num of operators to each timer of MCPWM*/
} mcpwm_operator_t;
/**
* @brief Select type of MCPWM counter
*/
typedef enum {
MCPWM_UP_COUNTER = 1, /*!<For asymmetric MCPWM*/
MCPWM_DOWN_COUNTER, /*!<For asymmetric MCPWM*/
MCPWM_UP_DOWN_COUNTER, /*!<For symmetric MCPWM, frequency is half of MCPWM frequency set*/
MCPWM_COUNTER_MAX, /*!<Maximum counter mode*/
} mcpwm_counter_type_t;
/**
* @brief Select type of MCPWM duty cycle mode
*/
typedef enum {
MCPWM_DUTY_MODE_0 = 0, /*!<Active high duty, i.e. duty cycle proportional to high time for asymmetric MCPWM*/
MCPWM_DUTY_MODE_1, /*!<Active low duty, i.e. duty cycle proportional to low time for asymmetric MCPWM, out of phase(inverted) MCPWM*/
MCPWM_DUTY_MODE_MAX, /*!<Num of duty cycle modes*/
} mcpwm_duty_type_t;
/**
* @brief MCPWM carrier oneshot mode, in this mode the width of the first pulse of carrier can be programmed
*/
typedef enum {
MCPWM_ONESHOT_MODE_DIS = 0, /*!<Enable oneshot mode*/
MCPWM_ONESHOT_MODE_EN, /*!<Disable oneshot mode*/
} mcpwm_carrier_os_t;
/**
* @brief MCPWM carrier output inversion, high frequency carrier signal active with MCPWM signal is high
*/
typedef enum {
MCPWM_CARRIER_OUT_IVT_DIS = 0, /*!<Enable carrier output inversion*/
MCPWM_CARRIER_OUT_IVT_EN, /*!<Disable carrier output inversion*/
} mcpwm_carrier_out_ivt_t;
/**
* @brief MCPWM select sync signal input
*/
typedef enum {
MCPWM_SELECT_SYNC0 = 4, /*!<Select SYNC0 as input*/
MCPWM_SELECT_SYNC1, /*!<Select SYNC1 as input*/
MCPWM_SELECT_SYNC2, /*!<Select SYNC2 as input*/
} mcpwm_sync_signal_t;
/**
* @brief MCPWM select fault signal input
*/
typedef enum {
MCPWM_SELECT_F0 = 0, /*!<Select F0 as input*/
MCPWM_SELECT_F1, /*!<Select F1 as input*/
MCPWM_SELECT_F2, /*!<Select F2 as input*/
} mcpwm_fault_signal_t;
/**
* @brief MCPWM select triggering level of fault signal
*/
typedef enum {
MCPWM_LOW_LEVEL_TGR = 0, /*!<Fault condition occurs when fault input signal goes from high to low, currently not supported*/
MCPWM_HIGH_LEVEL_TGR, /*!<Fault condition occurs when fault input signal goes low to high*/
} mcpwm_fault_input_level_t;
/**
* @brief MCPWM select action to be taken on MCPWMXA when fault occurs
*/
typedef enum {
MCPWM_NO_CHANGE_IN_MCPWMXA = 0, /*!<No change in MCPWMXA output*/
MCPWM_FORCE_MCPWMXA_LOW, /*!<Make MCPWMXA output low*/
MCPWM_FORCE_MCPWMXA_HIGH, /*!<Make MCPWMXA output high*/
MCPWM_TOG_MCPWMXA, /*!<Make MCPWMXA output toggle*/
} mcpwm_action_on_pwmxa_t;
/**
* @brief MCPWM select action to be taken on MCPWMxB when fault occurs
*/
typedef enum {
MCPWM_NO_CHANGE_IN_MCPWMXB = 0, /*!<No change in MCPWMXB output*/
MCPWM_FORCE_MCPWMXB_LOW, /*!<Make MCPWMXB output low*/
MCPWM_FORCE_MCPWMXB_HIGH, /*!<Make MCPWMXB output high*/
MCPWM_TOG_MCPWMXB, /*!<Make MCPWMXB output toggle*/
} mcpwm_action_on_pwmxb_t;
/**
* @brief MCPWM select capture signal input
*/
typedef enum {
MCPWM_SELECT_CAP0 = 0, /*!<Select CAP0 as input*/
MCPWM_SELECT_CAP1, /*!<Select CAP1 as input*/
MCPWM_SELECT_CAP2, /*!<Select CAP2 as input*/
} mcpwm_capture_signal_t;
/**
* @brief MCPWM select capture starts from which edge
*/
typedef enum {
MCPWM_NEG_EDGE = 0, /*!<Capture starts from negative edge*/
MCPWM_POS_EDGE, /*!<Capture starts from positive edge*/
} mcpwm_capture_on_edge_t;
/**
* @brief MCPWM deadtime types, used to generate deadtime, RED refers to rising edge delay and FED refers to falling edge delay
*/
typedef enum {
MCPWM_BYPASS_RED = 0, /*!<MCPWMXA = no change, MCPWMXB = falling edge delay*/
MCPWM_BYPASS_FED, /*!<MCPWMXA = rising edge delay, MCPWMXB = no change*/
MCPWM_ACTIVE_HIGH_MODE, /*!<MCPWMXA = rising edge delay, MCPWMXB = falling edge delay*/
MCPWM_ACTIVE_LOW_MODE, /*!<MCPWMXA = compliment of rising edge delay, MCPWMXB = compliment of falling edge delay*/
MCPWM_ACTIVE_HIGH_COMPLIMENT_MODE, /*!<MCPWMXA = rising edge delay, MCPWMXB = compliment of falling edge delay*/
MCPWM_ACTIVE_LOW_COMPLIMENT_MODE, /*!<MCPWMXA = compliment of rising edge delay, MCPWMXB = falling edge delay*/
MCPWM_ACTIVE_RED_FED_FROM_PWMXA, /*!<MCPWMXA = MCPWMXB = rising edge delay as well as falling edge delay, generated from MCPWMXA*/
MCPWM_ACTIVE_RED_FED_FROM_PWMXB, /*!<MCPWMXA = MCPWMXB = rising edge delay as well as falling edge delay, generated from MCPWMXB*/
MCPWM_DEADTIME_TYPE_MAX,
} mcpwm_deadtime_type_t;
/**
* @brief MCPWM config structure
*/
typedef struct {
uint32_t frequency; /*!<Set frequency of MCPWM in Hz*/
float cmpr_a; /*!<Set % duty cycle for operator a(MCPWMXA), i.e for 62.3% duty cycle, duty_a = 62.3*/
float cmpr_b; /*!<Set % duty cycle for operator b(MCPWMXB), i.e for 48% duty cycle, duty_b = 48.0*/
mcpwm_duty_type_t duty_mode; /*!<Set type of duty cycle*/
mcpwm_counter_type_t counter_mode; /*!<Set type of MCPWM counter*/
} mcpwm_config_t;
/**
* @brief MCPWM config carrier structure
*/
typedef struct {
uint8_t carrier_period; /*!<Set carrier period = (carrier_period + 1)*800ns, carrier_period should be < 16*/
uint8_t carrier_duty; /*!<Set carrier duty cycle, carrier_duty should be less then 8(increment every 12.5%)*/
uint8_t pulse_width_in_os; /*!<Set pulse width of first pulse in one shot mode = (carrier period)*(pulse_width_in_os + 1), should be less then 16*/
mcpwm_carrier_os_t carrier_os_mode; /*!<Enable or disable carrier oneshot mode*/
mcpwm_carrier_out_ivt_t carrier_ivt_mode; /*!<Invert output of carrier*/
} mcpwm_carrier_config_t;
/**
* @brief This function initializes each gpio signal for MCPWM
* @note
* This function initializes one gpio at a time.
*
* @param mcpwm_num set MCPWM Channel(0-1)
* @param io_signal set MCPWM signals, each MCPWM unit has 6 output(MCPWMXA, MCPWMXB) and 9 input(SYNC_X, FAULT_X, CAP_X)
* 'X' is timer_num(0-2)
* @param gpio_num set this to configure gpio for MCPWM, if you want to use gpio16, gpio_num = 16
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_gpio_init(mcpwm_unit_t mcpwm_num, mcpwm_io_signals_t io_signal, int gpio_num);
/**
* @brief Initialize MCPWM gpio structure
* @note
* This function can be used to initialize more then one gpio at a time.
*
* @param mcpwm_num set MCPWM Channel(0-1)
* @param mcpwm_pin MCPWM pin structure
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_set_pin(mcpwm_unit_t mcpwm_num, const mcpwm_pin_config_t *mcpwm_pin);
/**
* @brief Initialize MCPWM parameters
*
* @param mcpwm_num set MCPWM Channel(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param mcpwm_conf configure structure mcpwm_config_t
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_init( mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_config_t *mcpwm_conf);
/**
* @brief Set frequency(in Hz) of MCPWM timer
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param frequency set the frequency in Hz of each timer
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_set_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint32_t frequency);
/**
* @brief Set duty cycle of each operator(MCPWMXA/MCPWMXB)
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param op_num set the operator(MCPWMXA/MCPWMXB), 'X' is timer number selected
* @param duty set duty cycle in %(i.e for 62.3% duty cycle, duty = 62.3) of each operator
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_set_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num, float duty);
/**
* @brief Set duty cycle of each operator(MCPWMXA/MCPWMXB) in us
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param op_num set the operator(MCPWMXA/MCPWMXB), 'x' is timer number selected
* @param duty set duty value in microseconds of each operator
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_set_duty_in_us(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num, uint32_t duty);
/**
* @brief Set duty either active high or active low(out of phase/inverted)
* @note
* Call this function every time after mcpwm_set_signal_high or mcpwm_set_signal_low to resume with previously set duty cycle
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param op_num set the operator(MCPWMXA/MCPWMXB), 'x' is timer number selected
* @param duty_num set active low or active high duty type
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_set_duty_type(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num, mcpwm_duty_type_t duty_num);
/**
* @brief Get frequency of timer
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
*
* @return
* - frequency of timer
*/
uint32_t mcpwm_get_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num);
/**
* @brief Get duty cycle of each operator
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param op_num set the operator(MCPWMXA/MCPWMXB), 'x' is timer number selected
*
* @return
* - duty cycle in % of each operator(56.7 means duty is 56.7%)
*/
float mcpwm_get_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num);
/**
* @brief Use this function to set MCPWM signal high
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param op_num set the operator(MCPWMXA/MCPWMXB), 'x' is timer number selected
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_set_signal_high(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num);
/**
* @brief Use this function to set MCPWM signal low
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param op_num set the operator(MCPWMXA/MCPWMXB), 'x' is timer number selected
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_set_signal_low(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num);
/**
* @brief Start MCPWM signal on timer 'x'
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_start(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num);
/**
* @brief Start MCPWM signal on timer 'x'
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_stop(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num);
/**
* @brief Initialize carrier configuration
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param carrier_conf configure structure mcpwm_carrier_config_t
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_carrier_init(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_carrier_config_t *carrier_conf);
/**
* @brief Enable MCPWM carrier submodule, for respective timer
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_carrier_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num);
/**
* @brief Disable MCPWM carrier submodule, for respective timer
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_carrier_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num);
/**
* @brief Set period of carrier
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param carrier_period set the carrier period of each timer, carrier period = (carrier_period + 1)*800ns
* (carrier_period <= 15)
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_carrier_set_period(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_period);
/**
* @brief Set duty_cycle of carrier
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param carrier_duty set duty_cycle of carrier , carrier duty cycle = carrier_duty*12.5%
* (chop_duty <= 7)
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_carrier_set_duty_cycle(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_duty);
/**
* @brief Enable and set width of first pulse in carrier oneshot mode
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param pulse_width set pulse width of first pulse in oneshot mode, width = (carrier period)*(pulse_width +1)
* (pulse_width <= 15)
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_carrier_oneshot_mode_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t pulse_width);
/**
* @brief Disable oneshot mode, width of first pulse = carrier period
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_carrier_oneshot_mode_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num);
/**
* @brief Enable or disable carrier output inversion
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param carrier_ivt_mode enable or disable carrier output inversion
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_carrier_output_invert(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num,
mcpwm_carrier_out_ivt_t carrier_ivt_mode);
/**
* @brief Enable and initialize deadtime for each MCPWM timer
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param dt_mode set deadtime mode
* @param red set rising edge delay = red*100ns
* @param fed set rising edge delay = fed*100ns
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_deadtime_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_deadtime_type_t dt_mode,
uint32_t red, uint32_t fed);
/**
* @brief Disable deadtime on MCPWM timer
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_deadtime_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num);
/**
* @brief Initialize fault submodule, currently low level triggering not supported
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param intput_level set fault signal level, which will cause fault to occur
* @param fault_sig set the fault Pin, which needs to be enabled
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_fault_init(mcpwm_unit_t mcpwm_num, mcpwm_fault_input_level_t intput_level, mcpwm_fault_signal_t fault_sig);
/**
* @brief Set oneshot mode on fault detection, once fault occur in oneshot mode reset is required to resume MCPWM signals
* @note
* currently low level triggering not supported
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param fault_sig set the fault Pin, which needs to be enabled for oneshot mode
* @param action_on_pwmxa action to be taken on MCPWMXA when fault occurs, either no change or high or low or toggle
* @param action_on_pwmxb action to be taken on MCPWMXB when fault occurs, either no change or high or low or toggle
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_fault_set_oneshot_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig,
mcpwm_action_on_pwmxa_t action_on_pwmxa, mcpwm_action_on_pwmxb_t action_on_pwmxb);
/**
* @brief Set cycle-by-cycle mode on fault detection, once fault occur in cyc mode MCPWM signal resumes as soon as fault signal becomes inactive
* @note
* currently low level triggering not supported
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param fault_sig set the fault Pin, which needs to be enabled for cyc mode
* @param action_on_pwmxa action to be taken on MCPWMXA when fault occurs, either no change or high or low or toggle
* @param action_on_pwmxb action to be taken on MCPWMXB when fault occurs, either no change or high or low or toggle
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_fault_set_cyc_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig,
mcpwm_action_on_pwmxa_t action_on_pwmxa, mcpwm_action_on_pwmxb_t action_on_pwmxb);
/**
* @brief Disable fault signal
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param fault_sig fault pin, which needs to be disabled
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_fault_deinit(mcpwm_unit_t mcpwm_num, mcpwm_fault_signal_t fault_sig);
/**
* @brief Initialize capture submodule
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param cap_edge set capture edge, BIT(0) - negative edge, BIT(1) - positive edge
* @param cap_sig capture Pin, which needs to be enabled
* @param num_of_pulse count time between rising/falling edge between 2 *(pulses mentioned), counter uses APB_CLK
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_capture_enable(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig, mcpwm_capture_on_edge_t cap_edge,
uint32_t num_of_pulse);
/**
* @brief Disable capture signal
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param cap_sig capture Pin, which needs to be disabled
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_capture_disable(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig);
/**
* @brief Get capture value
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param cap_sig capture pin on which value is to be measured
*
* @return
* Captured value
*/
uint32_t mcpwm_capture_signal_get_value(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig);
/**
* @brief Get edge of capture signal
*
* @param mcpwm_num set MCPWM Channel(0-1)
* @param cap_sig capture pin of whose edge is to be determined
*
* @return
* Capture signal edge: 1 - positive edge, 2 - negtive edge
*/
uint32_t mcpwm_capture_signal_get_edge(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig);
/**
* @brief Initialize sync submodule
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
* @param sync_sig set the fault Pin, which needs to be enabled
* @param phase_val phase value in 1/1000(for 86.7%, phase_val = 867) which timer moves to on sync signal
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_sync_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_sync_signal_t sync_sig,
uint32_t phase_val);
/**
* @brief Disable sync submodule on given timer
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param timer_num set timer number(0-2) of MCPWM, each MCPWM unit has 3 timers
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t mcpwm_sync_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num);
/**
* @brief Register MCPWM interrupt handler, the handler is an ISR.
* the handler will be attached to the same CPU core that this function is running on.
*
* @param mcpwm_num set MCPWM unit(0-1)
* @param fn interrupt handler function.
* @param arg user-supplied argument passed to the handler function.
* @param intr_alloc_flags flags used to allocate the interrupt. One or multiple (ORred)
* ESP_INTR_FLAG_* values. see esp_intr_alloc.h for more info.
* @param arg parameter for handler function
* @param handle pointer to return handle. If non-NULL, a handle for the interrupt will
* be returned here.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Function pointer error.
*/
esp_err_t mcpwm_isr_register(mcpwm_unit_t mcpwm_num, void (*fn)(void *), void *arg, int intr_alloc_flags, intr_handle_t *handle);
#ifdef __cplusplus
}
#endif
#endif /*_DRIVER_MCPWM_H_*/

733
components/driver/mcpwm.c Normal file
View File

@ -0,0 +1,733 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include "esp_log.h"
#include "esp_err.h"
#include "esp_intr.h"
#include "esp_intr_alloc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "soc/mcpwm_reg.h"
#include "soc/mcpwm_struct.h"
#include "soc/io_mux_reg.h"
#include "soc/gpio_sig_map.h"
#include "driver/mcpwm.h"
#include "driver/periph_ctrl.h"
static mcpwm_dev_t *MCPWM[2] = {&MCPWM0, &MCPWM1};
static const char *MCPWM_TAG = "MCPWM";
static portMUX_TYPE mcpwm_spinlock = portMUX_INITIALIZER_UNLOCKED;
#define MCPWM_CHECK(a, str, ret_val) if (!(a)) { \
ESP_LOGE(MCPWM_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret_val); \
}
#define MCPWM_UNIT_NUM_ERROR "MCPWM UNIT NUM ERROR"
#define MCPWM_TIMER_ERROR "MCPWM TIMER NUM ERROR"
#define MCPWM_PARAM_ADDR_ERROR "MCPWM PARAM ADDR ERROR"
#define MCPWM_DUTY_TYPE_ERROR "MCPWM DUTY TYPE ERROR"
#define MCPWM_GPIO_ERROR "MCPWM GPIO NUM ERROR"
#define MCPWM_OP_ERROR "MCPWM OPERATOR ERROR"
#define MCPWM_DB_ERROR "MCPWM DEADTIME TYPE ERROR"
#define MCPWM_BASE_CLK (2 * APB_CLK_FREQ) //2*APB_CLK_FREQ 160Mhz
#define MCPWM_CLK_PRESCL 15 //MCPWM clock prescale
#define TIMER_CLK_PRESCALE 9 //MCPWM timer prescales
#define MCPWM_CLK (MCPWM_BASE_CLK/(MCPWM_CLK_PRESCL +1))
#define MCPWM_PIN_IGNORE (-1)
#define OFFSET_FOR_GPIO_IDX_1 6
#define OFFSET_FOR_GPIO_IDX_2 75
esp_err_t mcpwm_gpio_init(mcpwm_unit_t mcpwm_num, mcpwm_io_signals_t io_signal, int gpio_num)
{
if (gpio_num == MCPWM_PIN_IGNORE) {
//IGNORE
return ESP_OK;
}
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK((GPIO_IS_VALID_GPIO(gpio_num)), MCPWM_GPIO_ERROR, ESP_ERR_INVALID_ARG);
periph_module_enable(PERIPH_PWM0_MODULE + mcpwm_num);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
bool mcpwm_gpio_sig = (io_signal <= MCPWM2B);
if (mcpwm_num == MCPWM_UNIT_0) {
if (mcpwm_gpio_sig) {
MCPWM_CHECK((GPIO_IS_VALID_OUTPUT_GPIO(gpio_num)), MCPWM_GPIO_ERROR, ESP_ERR_INVALID_ARG);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpio_num, PWM0_OUT0A_IDX + io_signal, 0, 0);
} else {
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
gpio_matrix_in(gpio_num, PWM0_SYNC0_IN_IDX + io_signal - OFFSET_FOR_GPIO_IDX_1, 0);
}
} else { //MCPWM_UNIT_1
if (mcpwm_gpio_sig) {
MCPWM_CHECK((GPIO_IS_VALID_OUTPUT_GPIO(gpio_num)), MCPWM_GPIO_ERROR, ESP_ERR_INVALID_ARG);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpio_num, PWM1_OUT0A_IDX + io_signal, 0, 0);
} else if (io_signal >= MCPWM_SYNC_0 && io_signal < MCPWM_FAULT_2) {
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
gpio_matrix_in(gpio_num, PWM1_SYNC0_IN_IDX + io_signal - OFFSET_FOR_GPIO_IDX_1, 0);
} else {
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
gpio_matrix_in(gpio_num, PWM1_SYNC0_IN_IDX + io_signal - OFFSET_FOR_GPIO_IDX_2, 0);
}
}
return ESP_OK;
}
esp_err_t mcpwm_set_pin(mcpwm_unit_t mcpwm_num, const mcpwm_pin_config_t *mcpwm_pin)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
mcpwm_gpio_init(mcpwm_num, MCPWM0A, mcpwm_pin->mcpwm0a_out_num); //MCPWM0A
mcpwm_gpio_init(mcpwm_num, MCPWM0B, mcpwm_pin->mcpwm0b_out_num); //MCPWM0B
mcpwm_gpio_init(mcpwm_num, MCPWM1A, mcpwm_pin->mcpwm1a_out_num); //MCPWM1A
mcpwm_gpio_init(mcpwm_num, MCPWM1B, mcpwm_pin->mcpwm1b_out_num); //MCPWM1B
mcpwm_gpio_init(mcpwm_num, MCPWM2A, mcpwm_pin->mcpwm2a_out_num); //MCPWM2A
mcpwm_gpio_init(mcpwm_num, MCPWM2B, mcpwm_pin->mcpwm2b_out_num); //MCPWM2B
mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_0, mcpwm_pin->mcpwm_sync0_in_num); //SYNC0
mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_1, mcpwm_pin->mcpwm_sync1_in_num); //SYNC1
mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_2, mcpwm_pin->mcpwm_sync2_in_num); //SYNC2
mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_0, mcpwm_pin->mcpwm_fault0_in_num); //FAULT0
mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_0, mcpwm_pin->mcpwm_fault1_in_num); //FAULT1
mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_0, mcpwm_pin->mcpwm_fault2_in_num); //FAULT2
mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_0, mcpwm_pin->mcpwm_cap0_in_num); //CAP0
mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_1, mcpwm_pin->mcpwm_cap1_in_num); //CAP1
mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_2, mcpwm_pin->mcpwm_cap2_in_num); //CAP2
return ESP_OK;
}
esp_err_t mcpwm_start(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->timer[timer_num].mode.start = 2;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_stop(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->timer[timer_num].mode.start = 0;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_set_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint32_t frequency)
{
uint32_t mcpwm_num_of_pulse;
uint32_t previous_period;
uint32_t set_duty_a, set_duty_b;
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
mcpwm_num_of_pulse = MCPWM_CLK / (frequency * (TIMER_CLK_PRESCALE + 1));
previous_period = MCPWM[mcpwm_num]->timer[timer_num].period.period;
MCPWM[mcpwm_num]->timer[timer_num].period.prescale = TIMER_CLK_PRESCALE;
MCPWM[mcpwm_num]->timer[timer_num].period.period = mcpwm_num_of_pulse;
MCPWM[mcpwm_num]->timer[timer_num].period.upmethod = 0;
set_duty_a = (((MCPWM[mcpwm_num]->channel[timer_num].cmpr_value[0].cmpr_val) * mcpwm_num_of_pulse) / previous_period);
set_duty_b = (((MCPWM[mcpwm_num]->channel[timer_num].cmpr_value[1].cmpr_val) * mcpwm_num_of_pulse) / previous_period);
MCPWM[mcpwm_num]->channel[timer_num].cmpr_value[0].cmpr_val = set_duty_a;
MCPWM[mcpwm_num]->channel[timer_num].cmpr_value[1].cmpr_val = set_duty_b;
MCPWM[mcpwm_num]->channel[timer_num].cmpr_cfg.a_upmethod = 0;
MCPWM[mcpwm_num]->channel[timer_num].cmpr_cfg.b_upmethod = 0;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_set_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num, float duty)
{
uint32_t set_duty;
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(op_num < MCPWM_OPR_MAX, MCPWM_OP_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
set_duty = (MCPWM[mcpwm_num]->timer[timer_num].period.period) * (duty) / 100;
MCPWM[mcpwm_num]->channel[timer_num].cmpr_value[op_num].cmpr_val = set_duty;
MCPWM[mcpwm_num]->channel[timer_num].cmpr_cfg.a_upmethod = BIT(0);
MCPWM[mcpwm_num]->channel[timer_num].cmpr_cfg.b_upmethod = BIT(0);
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_set_duty_in_us(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num, uint32_t duty)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(op_num < MCPWM_OPR_MAX, MCPWM_OP_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].cmpr_value[op_num].cmpr_val = duty;
MCPWM[mcpwm_num]->channel[timer_num].cmpr_cfg.a_upmethod = BIT(0);
MCPWM[mcpwm_num]->channel[timer_num].cmpr_cfg.b_upmethod = BIT(0);
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_set_duty_type(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num,
mcpwm_duty_type_t duty_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(op_num < MCPWM_OPR_MAX, MCPWM_OP_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(duty_num < MCPWM_DUTY_MODE_MAX, MCPWM_DUTY_TYPE_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
if (op_num == MCPWM_OPR_A) {
if (MCPWM[mcpwm_num]->timer[timer_num].mode.mode == MCPWM_UP_COUNTER) {
if (duty_num == MCPWM_DUTY_MODE_1) {
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utea = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utep = 0;
} else { //MCPWM_DUTY_MODE_0
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utea = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utep = 0;
}
} else if (MCPWM[mcpwm_num]->timer[timer_num].mode.mode == MCPWM_DOWN_COUNTER) {
if (duty_num == MCPWM_DUTY_MODE_1) {
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtep = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtea = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtez = 0;
} else { //MCPWM_DUTY_MODE_0
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtep = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtea = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtez = 0;
}
} else { //Timer count up-down
if (duty_num == MCPWM_DUTY_MODE_1) {
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utea = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtea = 1;
} else { //MCPWM_DUTY_MODE_0
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utea = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtea = 2;
}
}
}
if (op_num == MCPWM_OPR_B) {
if (MCPWM[mcpwm_num]->timer[timer_num].mode.mode == MCPWM_UP_COUNTER) {
if (duty_num == MCPWM_DUTY_MODE_1) {
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].uteb = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utep = 0;
} else { //MCPWM_DUTY_MODE_0
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].uteb = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utep = 0;
}
} else if (MCPWM[mcpwm_num]->timer[timer_num].mode.mode == MCPWM_DOWN_COUNTER) {
if (duty_num == MCPWM_DUTY_MODE_1) {
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtep = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dteb = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtez = 0;
} else { //MCPWM_DUTY_MODE_0
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtep = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dteb = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtez = 0;
}
} else { //Timer count up-down
if (duty_num == MCPWM_DUTY_MODE_1) {
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].uteb = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dteb = 1;
} else { //MCPWM_DUTY_MODE_0
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].uteb = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dteb = 2;
}
}
}
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_init(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_config_t *mcpwm_conf)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
periph_module_enable(PERIPH_PWM0_MODULE + mcpwm_num);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->clk_cfg.prescale = MCPWM_CLK_PRESCL;
mcpwm_set_frequency(mcpwm_num, timer_num, mcpwm_conf->frequency);
MCPWM[mcpwm_num]->timer[timer_num].mode.mode = mcpwm_conf ->counter_mode;
mcpwm_set_duty(mcpwm_num, timer_num, 0, mcpwm_conf->cmpr_a);
mcpwm_set_duty(mcpwm_num, timer_num, 1, mcpwm_conf->cmpr_b);
mcpwm_set_duty_type(mcpwm_num, timer_num, 0, mcpwm_conf->duty_mode);
mcpwm_set_duty_type(mcpwm_num, timer_num, 1, mcpwm_conf->duty_mode);
mcpwm_start(mcpwm_num, timer_num);
MCPWM[mcpwm_num]->timer_sel.operator0_sel = 0;
MCPWM[mcpwm_num]->timer_sel.operator1_sel = 1;
MCPWM[mcpwm_num]->timer_sel.operator2_sel = 2;
MCPWM[mcpwm_num]->update_cfg.global_up_en = 1;
MCPWM[mcpwm_num]->update_cfg.global_force_up = 1;
MCPWM[mcpwm_num]->update_cfg.global_force_up = 0;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
uint32_t mcpwm_get_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
uint32_t frequency;
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
frequency = MCPWM_CLK / ((MCPWM[mcpwm_num]->timer[timer_num].period.period) * (TIMER_CLK_PRESCALE + 1));
return frequency;
}
float mcpwm_get_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num)
{
float duty;
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(op_num < MCPWM_OPR_MAX, MCPWM_OP_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
duty = (MCPWM[mcpwm_num]->channel[timer_num].cmpr_value[op_num].cmpr_val) * 100 / (MCPWM[mcpwm_num]->timer[timer_num].period.period);
portEXIT_CRITICAL(&mcpwm_spinlock);
return duty;
}
esp_err_t mcpwm_set_signal_high(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(op_num < MCPWM_OPR_MAX, MCPWM_OP_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
if (op_num == MCPWM_OPR_A) {
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utea = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utep = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtez = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtea = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtep = 2;
} else { //MCPWM_OPR_B
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].uteb = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utep = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtez = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dteb = 2;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtep = 2;
}
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_set_signal_low(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t op_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(op_num < MCPWM_OPR_MAX, MCPWM_OP_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
if (op_num == 0) {
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utea = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utep = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtez = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtea = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtep = 1;
} if (op_num == 1) {
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utez = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].uteb = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].utep = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtez = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dteb = 1;
MCPWM[mcpwm_num]->channel[timer_num].generator[op_num].dtep = 1;
}
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_carrier_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].carrier_cfg.en = 1;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_carrier_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].carrier_cfg.en = 0;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_carrier_set_period(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_period)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].carrier_cfg.prescale = carrier_period;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_carrier_set_duty_cycle(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_duty)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].carrier_cfg.duty = carrier_duty;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_carrier_enable_oneshot_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t pulse_width)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].carrier_cfg.oshtwth = pulse_width;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_carrier_disable_oneshot_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].carrier_cfg.oshtwth = 0;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_carrier_output_invert(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num,
mcpwm_carrier_out_ivt_t carrier_ivt_mode)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].carrier_cfg.out_invert = carrier_ivt_mode;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_carrier_init(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_carrier_config_t *carrier_conf)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
mcpwm_carrier_enable(mcpwm_num, timer_num);
mcpwm_carrier_set_period(mcpwm_num, timer_num, carrier_conf->carrier_period);
mcpwm_carrier_set_duty_cycle(mcpwm_num, timer_num, carrier_conf->carrier_duty);
if (carrier_conf->carrier_os_mode == MCPWM_ONESHOT_MODE_EN) {
mcpwm_carrier_enable_oneshot_mode(mcpwm_num, timer_num, carrier_conf->pulse_width_in_os);
} else {
mcpwm_carrier_disable_oneshot_mode(mcpwm_num, timer_num);
}
mcpwm_carrier_output_invert(mcpwm_num, timer_num, carrier_conf->carrier_ivt_mode);
MCPWM[mcpwm_num]->channel[timer_num].carrier_cfg.in_invert = 0;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_deadtime_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_deadtime_type_t dt_mode,
uint32_t red, uint32_t fed)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(dt_mode < MCPWM_DEADTIME_TYPE_MAX, MCPWM_DB_ERROR, ESP_ERR_INVALID_ARG );
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_upmethod = BIT(0);
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_upmethod = BIT(0);
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.clk_sel = 0;
MCPWM[mcpwm_num]->channel[timer_num].db_red_cfg.red = red;
MCPWM[mcpwm_num]->channel[timer_num].db_fed_cfg.fed = fed;
switch (dt_mode) {
case MCPWM_BYPASS_RED:
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outbypass = 0; //S0
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outbypass = 1; //S1
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_outinvert = 0; //S2
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_outinvert = 0; //S3
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_insel = 0; //S4
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_insel = 1; //S5
break;
case MCPWM_BYPASS_FED:
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outbypass = 1; //S0
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outbypass = 0; //S1
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_outinvert = 0; //S2
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_outinvert = 0; //S3
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_insel = 0; //S4
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_insel = 0; //S5
break;
case MCPWM_ACTIVE_HIGH_MODE:
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outbypass = 0; //S0
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outbypass = 0; //S1
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_outinvert = 0; //S2
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_outinvert = 0; //S3
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_insel = 0; //S4
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_insel = 1; //S5
break;
case MCPWM_ACTIVE_LOW_MODE:
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outbypass = 0; //S0
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outbypass = 0; //S1
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_outinvert = 1; //S2
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_outinvert = 1; //S3
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_insel = 0; //S4
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_insel = 1; //S5
break;
case MCPWM_ACTIVE_HIGH_COMPLIMENT_MODE:
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outbypass = 0; //S0
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outbypass = 0; //S1
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_outinvert = 0; //S2
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_outinvert = 1; //S3
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_insel = 0; //S4
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_insel = 1; //S5
break;
case MCPWM_ACTIVE_LOW_COMPLIMENT_MODE:
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outbypass = 0; //S0
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outbypass = 0; //S1
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_outinvert = 1; //S2
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_outinvert = 0; //S3
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_insel = 1; //S4
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_insel = 0; //S5
break;
case MCPWM_ACTIVE_RED_FED_FROM_PWMXA:
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outbypass = 0; //S0
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_outinvert = 0; //S3
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_insel = 1; //S4
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outswap = 1; //S6
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outswap = 0; //S7
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.deb_mode = 1; //S8
break;
case MCPWM_ACTIVE_RED_FED_FROM_PWMXB:
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outbypass = 0; //S0
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_outinvert = 0; //S3
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_insel = 0; //S4
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outswap = 1; //S6
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outswap = 0; //S7
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.deb_mode = 1; //S8
break;
default :
break;
}
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_deadtime_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outbypass = 1; //S0
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outbypass = 1; //S1
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_outinvert = 0; //S2
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_outinvert = 0; //S3
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.red_insel = 0; //S4
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.fed_insel = 0; //S5
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.a_outswap = 0; //S6
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.b_outswap = 0; //S7
MCPWM[mcpwm_num]->channel[timer_num].db_cfg.deb_mode = 0; //S8
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_fault_init(mcpwm_unit_t mcpwm_num, mcpwm_fault_input_level_t intput_level, mcpwm_fault_signal_t fault_sig)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
switch (fault_sig) {
case MCPWM_SELECT_F0:
MCPWM[mcpwm_num]->fault_detect.f0_en = 1;
MCPWM[mcpwm_num]->fault_detect.f0_pole = intput_level;
break;
case MCPWM_SELECT_F1:
MCPWM[mcpwm_num]->fault_detect.f1_en = 1;
MCPWM[mcpwm_num]->fault_detect.f1_pole = intput_level;
break;
case MCPWM_SELECT_F2:
MCPWM[mcpwm_num]->fault_detect.f2_en = 1;
MCPWM[mcpwm_num]->fault_detect.f2_pole = intput_level;
break;
default :
break;
}
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_fault_deinit(mcpwm_unit_t mcpwm_num, mcpwm_fault_signal_t fault_sig)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
if (fault_sig == MCPWM_SELECT_F0) {
MCPWM[mcpwm_num]->fault_detect.f0_en = 0;
} else if (fault_sig == MCPWM_SELECT_F1) {
MCPWM[mcpwm_num]->fault_detect.f1_en = 0;
} else { //MCPWM_SELECT_F2
MCPWM[mcpwm_num]->fault_detect.f2_en = 0;
}
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_fault_set_cyc_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig,
mcpwm_action_on_pwmxa_t action_on_pwmxa, mcpwm_action_on_pwmxb_t action_on_pwmxb)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg1.cbcpulse = BIT(0);
if (fault_sig == MCPWM_SELECT_F0) {
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f0_cbc = 1;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f0_ost = 0;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_cbc_d = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_cbc_u = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_cbc_d = action_on_pwmxb;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_cbc_u = action_on_pwmxb;
} else if (fault_sig == MCPWM_SELECT_F1) {
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f1_cbc = 1;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f1_ost = 0;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_cbc_d = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_cbc_u = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_cbc_d = action_on_pwmxb;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_cbc_u = action_on_pwmxb;
} else { //MCPWM_SELECT_F2
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f2_cbc = 1;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f2_ost = 0;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_cbc_d = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_cbc_u = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_cbc_d = action_on_pwmxb;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_cbc_u = action_on_pwmxb;
}
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_fault_set_oneshot_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig,
mcpwm_action_on_pwmxa_t action_on_pwmxa, mcpwm_action_on_pwmxb_t action_on_pwmxb)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
if (fault_sig == MCPWM_SELECT_F0) {
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f0_ost = 1;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f0_cbc = 0;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_ost_d = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_ost_u = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_ost_d = action_on_pwmxb;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_ost_u = action_on_pwmxb;
} else if (fault_sig == MCPWM_SELECT_F1) {
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f1_ost = 1;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f1_cbc = 0;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_ost_d = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_ost_u = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_ost_d = action_on_pwmxb;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_ost_u = action_on_pwmxb;
} else { //MCPWM_SELECT_F2
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f2_ost = 1;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.f2_cbc = 0;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_ost_d = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.a_ost_u = action_on_pwmxa;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_ost_d = action_on_pwmxb;
MCPWM[mcpwm_num]->channel[timer_num].tz_cfg0.b_ost_u = action_on_pwmxb;
}
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_capture_enable(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig, mcpwm_capture_on_edge_t cap_edge,
uint32_t num_of_pulse)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->cap_timer_cfg.timer_en = 1;
MCPWM[mcpwm_num]->cap_cfg_ch[cap_sig].en = 1;
MCPWM[mcpwm_num]->cap_cfg_ch[cap_sig].mode = (1 << cap_edge);
MCPWM[mcpwm_num]->cap_cfg_ch[cap_sig].prescale = num_of_pulse;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_capture_disable(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->cap_cfg_ch[cap_sig].en = 0;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
uint32_t mcpwm_capture_signal_get_value(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
return MCPWM[mcpwm_num]->cap_val_ch[cap_sig];
}
uint32_t mcpwm_capture_signal_get_edge(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
if (cap_sig == MCPWM_SELECT_CAP0) {
return ( MCPWM[mcpwm_num]->cap_status.cap0_edge + 1);
} else if (cap_sig == MCPWM_SELECT_CAP1) {
return (MCPWM[mcpwm_num]->cap_status.cap1_edge + 1);
} else { //MCPWM_SELECT_CAP2
return (MCPWM[mcpwm_num]->cap_status.cap2_edge + 1);
}
return 0;
}
esp_err_t mcpwm_sync_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_sync_signal_t sync_sig,
uint32_t phase_val)
{
uint32_t set_phase;
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
set_phase = (MCPWM[mcpwm_num]->timer[timer_num].period.period) * (phase_val) / 1000;
MCPWM[mcpwm_num]->timer[timer_num].sync.timer_phase = set_phase;
if (timer_num == MCPWM_TIMER_0) {
MCPWM[mcpwm_num]->timer_synci_cfg.t0_in_sel = sync_sig;
} else if (timer_num == MCPWM_TIMER_1) {
MCPWM[mcpwm_num]->timer_synci_cfg.t1_in_sel = sync_sig;
} else { //MCPWM_TIMER_2
MCPWM[mcpwm_num]->timer_synci_cfg.t2_in_sel = sync_sig;
}
MCPWM[mcpwm_num]->timer[timer_num].sync.out_sel = 0;
MCPWM[mcpwm_num]->timer[timer_num].sync.in_en = 1;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_sync_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(timer_num < MCPWM_TIMER_MAX, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&mcpwm_spinlock);
MCPWM[mcpwm_num]->timer[timer_num].sync.in_en = 0;
portEXIT_CRITICAL(&mcpwm_spinlock);
return ESP_OK;
}
esp_err_t mcpwm_isr_register(mcpwm_unit_t mcpwm_num, void (*fn)(void *), void *arg, int intr_alloc_flags, intr_handle_t *handle)
{
esp_err_t ret;
MCPWM_CHECK(mcpwm_num < MCPWM_UNIT_MAX, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(fn != NULL, MCPWM_PARAM_ADDR_ERROR, ESP_ERR_INVALID_ARG);
ret = esp_intr_alloc((ETS_PWM0_INTR_SOURCE + mcpwm_num), intr_alloc_flags, fn, arg, handle);
return ret;
}

View File

@ -12,11 +12,13 @@ PROVIDE ( RMT = 0x3ff56000 );
PROVIDE ( RMTMEM = 0x3ff56800 );
PROVIDE ( PCNT = 0x3ff57000 );
PROVIDE ( LEDC = 0x3ff59000 );
PROVIDE ( MCPWM0 = 0x3ff5E000 );
PROVIDE ( TIMERG0 = 0x3ff5F000 );
PROVIDE ( TIMERG1 = 0x3ff60000 );
PROVIDE ( SPI2 = 0x3ff64000 );
PROVIDE ( SPI3 = 0x3ff65000 );
PROVIDE ( I2C1 = 0x3ff67000 );
PROVIDE ( MCPWM1 = 0x3ff6C000 );
PROVIDE ( I2S1 = 0x3ff6D000 );
PROVIDE ( UART2 = 0x3ff6E000 );
PROVIDE ( SDMMC = 0x3ff68000 );

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,452 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_MCPWM_STRUCT_H__
#define _SOC_MCPWM_STRUCT_H__
typedef volatile struct {
union {
struct {
uint32_t prescale: 8; /*Period of PWM_clk = 6.25ns * (PWM_CLK_PRESCALE + 1)*/
uint32_t reserved8: 24;
};
uint32_t val;
}clk_cfg;
struct {
union {
struct {
uint32_t prescale: 8; /*period of PT0_clk = Period of PWM_clk * (PWM_TIMER0_PRESCALE + 1)*/
uint32_t period: 16; /*period shadow reg of PWM timer0*/
uint32_t upmethod: 2; /*Update method for active reg of PWM timer0 period 0: immediate 1: TEZ 2: sync 3: TEZ | sync. TEZ here and below means timer equal zero event*/
uint32_t reserved26: 6;
};
uint32_t val;
}period;
union {
struct {
uint32_t start: 3; /*PWM timer0 start and stop control. 0: stop @ TEZ 1: stop @ TEP 2: free run 3: start and stop @ next TEZ 4: start and stop @ next TEP. TEP here and below means timer equal period event*/
uint32_t mode: 2; /*PWM timer0 working mode 0: freeze 1: increase mod 2: decrease mod 3: up-down mod*/
uint32_t reserved5: 27;
};
uint32_t val;
}mode;
union {
struct {
uint32_t in_en: 1; /*when set timer reload with phase on sync input event is enabled*/
uint32_t sync_sw: 1; /*write the negate value will trigger a software sync*/
uint32_t out_sel: 2; /*PWM timer0 synco selection 0: synci 1: TEZ 2: TEP else 0*/
uint32_t timer_phase: 17; /*phase for timer reload on sync event*/
uint32_t reserved21: 11;
};
uint32_t val;
}sync;
union {
struct {
uint32_t value: 16; /*current PWM timer0 counter value*/
uint32_t direction: 1; /*current PWM timer0 counter direction 0: increment 1: decrement*/
uint32_t reserved17: 15;
};
uint32_t val;
}status;
}timer[3];
union {
struct {
uint32_t t0_in_sel: 3; /*select sync input for PWM timer0 1: PWM timer0 synco 2: PWM timer1 synco 3: PWM timer2 synco 4: SYNC0 from GPIO matrix 5: SYNC1 from GPIO matrix 6: SYNC2 from GPIO matrix else: none*/
uint32_t t1_in_sel: 3; /*select sync input for PWM timer1 1: PWM timer0 synco 2: PWM timer1 synco 3: PWM timer2 synco 4: SYNC0 from GPIO matrix 5: SYNC1 from GPIO matrix 6: SYNC2 from GPIO matrix else: none*/
uint32_t t2_in_sel: 3; /*select sync input for PWM timer2 1: PWM timer0 synco 2: PWM timer1 synco 3: PWM timer2 synco 4: SYNC0 from GPIO matrix 5: SYNC1 from GPIO matrix 6: SYNC2 from GPIO matrix else: none*/
uint32_t ext_in0_inv: 1; /*invert SYNC0 from GPIO matrix*/
uint32_t ext_in1_inv: 1; /*invert SYNC1 from GPIO matrix*/
uint32_t ext_in2_inv: 1; /*invert SYNC2 from GPIO matrix*/
uint32_t reserved12: 20;
};
uint32_t val;
}timer_synci_cfg;
union {
struct {
uint32_t operator0_sel: 2; /*Select which PWM timer's is the timing reference for PWM operator0 0: timer0 1: timer1 2: timer2*/
uint32_t operator1_sel: 2; /*Select which PWM timer's is the timing reference for PWM operator1 0: timer0 1: timer1 2: timer2*/
uint32_t operator2_sel: 2; /*Select which PWM timer's is the timing reference for PWM operator2 0: timer0 1: timer1 2: timer2*/
uint32_t reserved6: 26;
};
uint32_t val;
}timer_sel;
struct {
union {
struct {
uint32_t a_upmethod: 4; /*Update method for PWM compare0 A's active reg. 0: immediate bit0: TEZ bit1: TEP bit2: sync bit3: freeze*/
uint32_t b_upmethod: 4; /*Update method for PWM compare0 B's active reg. 0: immediate bit0: TEZ bit1: TEP bit2: sync bit3: freeze*/
uint32_t a_shdw_full: 1; /*Set and reset by hardware. If set PWM compare0 A's shadow reg is filled and waiting to be transferred to A's active reg. If cleared A's active reg has been updated with shadow reg latest value*/
uint32_t b_shdw_full: 1; /*Set and reset by hardware. If set PWM compare0 B's shadow reg is filled and waiting to be transferred to B's active reg. If cleared B's active reg has been updated with shadow reg latest value*/
uint32_t reserved10: 22;
};
uint32_t val;
}cmpr_cfg;
union {
struct {
uint32_t cmpr_val: 16; /*PWM compare0 A's shadow reg*/
uint32_t reserved16:16;
};
uint32_t val;
}cmpr_value[2];
union {
struct {
uint32_t upmethod: 4; /*Update method for PWM generate0's active reg of configuration. 0: immediate bit0: TEZ bit1: TEP bit2: sync. bit3: freeze*/
uint32_t t0_sel: 3; /*Source selection for PWM generate0 event_t0 take effect immediately 0: fault_event0 1: fault_event1 2: fault_event2 3: sync_taken 4: none*/
uint32_t t1_sel: 3; /*Source selection for PWM generate0 event_t1 take effect immediately 0: fault_event0 1: fault_event1 2: fault_event2 3: sync_taken 4: none*/
uint32_t reserved10: 22;
};
uint32_t val;
}gen_cfg0;
union {
struct {
uint32_t cntu_force_upmethod: 6; /*Update method for continuous software force of PWM generate0. 0: immediate bit0: TEZ bit1: TEP bit2: TEA bit3: TEB bit4: sync bit5: freeze. (TEA/B here and below means timer equals A/B event)*/
uint32_t a_cntuforce_mode: 2; /*Continuous software force mode for PWM0A. 0: disabled 1: low 2: high 3: disabled*/
uint32_t b_cntuforce_mode: 2; /*Continuous software force mode for PWM0B. 0: disabled 1: low 2: high 3: disabled*/
uint32_t a_nciforce: 1; /*non-continuous immediate software force trigger for PWM0A a toggle will trigger a force event*/
uint32_t a_nciforce_mode: 2; /*non-continuous immediate software force mode for PWM0A 0: disabled 1: low 2: high 3: disabled*/
uint32_t b_nciforce: 1; /*non-continuous immediate software force trigger for PWM0B a toggle will trigger a force event*/
uint32_t b_nciforce_mode: 2; /*non-continuous immediate software force mode for PWM0B 0: disabled 1: low 2: high 3: disabled*/
uint32_t reserved16: 16;
};
uint32_t val;
}gen_force;
union {
struct {
uint32_t utez: 2; /*Action on PWM0A triggered by event TEZ when timer increasing*/
uint32_t utep: 2; /*Action on PWM0A triggered by event TEP when timer increasing*/
uint32_t utea: 2; /*Action on PWM0A triggered by event TEA when timer increasing*/
uint32_t uteb: 2; /*Action on PWM0A triggered by event TEB when timer increasing*/
uint32_t ut0: 2; /*Action on PWM0A triggered by event_t0 when timer increasing*/
uint32_t ut1: 2; /*Action on PWM0A triggered by event_t1 when timer increasing*/
uint32_t dtez: 2; /*Action on PWM0A triggered by event TEZ when timer decreasing*/
uint32_t dtep: 2; /*Action on PWM0A triggered by event TEP when timer decreasing*/
uint32_t dtea: 2; /*Action on PWM0A triggered by event TEA when timer decreasing*/
uint32_t dteb: 2; /*Action on PWM0A triggered by event TEB when timer decreasing*/
uint32_t dt0: 2; /*Action on PWM0A triggered by event_t0 when timer decreasing*/
uint32_t dt1: 2; /*Action on PWM0A triggered by event_t1 when timer decreasing. 0: no change 1: low 2: high 3: toggle*/
uint32_t reserved24: 8;
};
uint32_t val;
}generator[2];
union {
struct {
uint32_t fed_upmethod: 4; /*Update method for FED (falling edge delay) active reg. 0: immediate bit0: tez bit1: tep bit2: sync bit3: freeze*/
uint32_t red_upmethod: 4; /*Update method for RED (rising edge delay) active reg. 0: immediate bit0: tez bit1: tep bit2: sync bit3: freeze*/
uint32_t deb_mode: 1; /*S8 in documentation dual-edge B mode 0: fed/red take effect on different path separately 1: fed/red take effect on B path A out is in bypass or dulpB mode*/
uint32_t a_outswap: 1; /*S6 in documentation*/
uint32_t b_outswap: 1; /*S7 in documentation*/
uint32_t red_insel: 1; /*S4 in documentation*/
uint32_t fed_insel: 1; /*S5 in documentation*/
uint32_t red_outinvert: 1; /*S2 in documentation*/
uint32_t fed_outinvert: 1; /*S3 in documentation*/
uint32_t a_outbypass: 1; /*S1 in documentation*/
uint32_t b_outbypass: 1; /*S0 in documentation*/
uint32_t clk_sel: 1; /*Dead band0 clock selection. 0: PWM_clk 1: PT_clk*/
uint32_t reserved18: 14;
};
uint32_t val;
}db_cfg;
union {
struct {
uint32_t fed: 16; /*Shadow reg for FED*/
uint32_t reserved16:16;
};
uint32_t val;
}db_fed_cfg;
union {
struct {
uint32_t red: 16; /*Shadow reg for RED*/
uint32_t reserved16:16;
};
uint32_t val;
}db_red_cfg;
union {
struct {
uint32_t en: 1; /*When set carrier0 function is enabled. When reset carrier0 is bypassed*/
uint32_t prescale: 4; /*carrier0 clk (CP_clk) prescale value. Period of CP_clk = period of PWM_clk * (PWM_CARRIER0_PRESCALE + 1)*/
uint32_t duty: 3; /*carrier duty selection. Duty = PWM_CARRIER0_DUTY / 8*/
uint32_t oshtwth: 4; /*width of the fist pulse in number of periods of the carrier*/
uint32_t out_invert: 1; /*when set invert the output of PWM0A and PWM0B for this submodule*/
uint32_t in_invert: 1; /*when set invert the input of PWM0A and PWM0B for this submodule*/
uint32_t reserved14: 18;
};
uint32_t val;
}carrier_cfg;
union {
struct {
uint32_t sw_cbc: 1; /*Cycle-by-cycle tripping software force event will trigger cycle-by-cycle trip event. 0: disable 1: enable*/
uint32_t f2_cbc: 1; /*event_f2 will trigger cycle-by-cycle trip event. 0: disable 1: enable*/
uint32_t f1_cbc: 1; /*event_f1 will trigger cycle-by-cycle trip event. 0: disable 1: enable*/
uint32_t f0_cbc: 1; /*event_f0 will trigger cycle-by-cycle trip event. 0: disable 1: enable*/
uint32_t sw_ost: 1; /*one-shot tripping software force event will trigger one-shot trip event. 0: disable 1: enable*/
uint32_t f2_ost: 1; /*event_f2 will trigger one-shot trip event. 0: disable 1: enable*/
uint32_t f1_ost: 1; /*event_f1 will trigger one-shot trip event. 0: disable 1: enable*/
uint32_t f0_ost: 1; /*event_f0 will trigger one-shot trip event. 0: disable 1: enable*/
uint32_t a_cbc_d: 2; /*Action on PWM0A when cycle-by-cycle trip event occurs and timer is decreasing. 0: do nothing 1: force lo 2: force hi 3: toggle*/
uint32_t a_cbc_u: 2; /*Action on PWM0A when cycle-by-cycle trip event occurs and timer is increasing. 0: do nothing 1: force lo 2: force hi 3: toggle*/
uint32_t a_ost_d: 2; /*Action on PWM0A when one-shot trip event occurs and timer is decreasing. 0: do nothing 1: force lo 2: force hi 3: toggle*/
uint32_t a_ost_u: 2; /*Action on PWM0A when one-shot trip event occurs and timer is increasing. 0: do nothing 1: force lo 2: force hi 3: toggle*/
uint32_t b_cbc_d: 2; /*Action on PWM0B when cycle-by-cycle trip event occurs and timer is decreasing. 0: do nothing 1: force lo 2: force hi 3: toggle*/
uint32_t b_cbc_u: 2; /*Action on PWM0B when cycle-by-cycle trip event occurs and timer is increasing. 0: do nothing 1: force lo 2: force hi 3: toggle*/
uint32_t b_ost_d: 2; /*Action on PWM0B when one-shot trip event occurs and timer is decreasing. 0: do nothing 1: force lo 2: force hi 3: toggle*/
uint32_t b_ost_u: 2; /*Action on PWM0B when one-shot trip event occurs and timer is increasing. 0: do nothing 1: force lo 2: force hi 3: toggle*/
uint32_t reserved24: 8;
};
uint32_t val;
}tz_cfg0;
union {
struct {
uint32_t clr_ost: 1; /*a toggle will clear on going one-shot tripping*/
uint32_t cbcpulse: 2; /*cycle-by-cycle tripping refresh moment selection. Bit0: TEZ bit1:TEP*/
uint32_t force_cbc: 1; /*a toggle trigger a cycle-by-cycle tripping software force event*/
uint32_t force_ost: 1; /*a toggle (software negate its value) trigger a one-shot tripping software force event*/
uint32_t reserved5: 27;
};
uint32_t val;
}tz_cfg1;
union {
struct {
uint32_t cbc_on: 1; /*Set and reset by hardware. If set an cycle-by-cycle trip event is on going*/
uint32_t ost_on: 1; /*Set and reset by hardware. If set an one-shot trip event is on going*/
uint32_t reserved2: 30;
};
uint32_t val;
}tz_status;
}channel[3];
union {
struct {
uint32_t f0_en: 1; /*When set event_f0 generation is enabled*/
uint32_t f1_en: 1; /*When set event_f1 generation is enabled*/
uint32_t f2_en: 1; /*When set event_f2 generation is enabled*/
uint32_t f0_pole: 1; /*Set event_f0 trigger polarity on FAULT2 source from GPIO matrix. 0: level low 1: level high*/
uint32_t f1_pole: 1; /*Set event_f1 trigger polarity on FAULT2 source from GPIO matrix. 0: level low 1: level high*/
uint32_t f2_pole: 1; /*Set event_f2 trigger polarity on FAULT2 source from GPIO matrix. 0: level low 1: level high*/
uint32_t event_f0: 1; /*Set and reset by hardware. If set event_f0 is on going*/
uint32_t event_f1: 1; /*Set and reset by hardware. If set event_f1 is on going*/
uint32_t event_f2: 1; /*Set and reset by hardware. If set event_f2 is on going*/
uint32_t reserved9: 23;
};
uint32_t val;
}fault_detect;
union {
struct {
uint32_t timer_en: 1; /*When set capture timer incrementing under APB_clk is enabled.*/
uint32_t synci_en: 1; /*When set capture timer sync is enabled.*/
uint32_t synci_sel: 3; /*capture module sync input selection. 0: none 1: timer0 synco 2: timer1 synco 3: timer2 synco 4: SYNC0 from GPIO matrix 5: SYNC1 from GPIO matrix 6: SYNC2 from GPIO matrix*/
uint32_t sync_sw: 1; /*Write 1 will force a capture timer sync capture timer is loaded with value in phase register.*/
uint32_t reserved6: 26;
};
uint32_t val;
}cap_timer_cfg;
uint32_t cap_timer_phase; /*Phase value for capture timer sync operation.*/
union {
struct {
uint32_t en: 1; /*When set capture on channel 0 is enabled*/
uint32_t mode: 2; /*Edge of capture on channel 0 after prescale. bit0: negedge cap en bit1: posedge cap en*/
uint32_t prescale: 8; /*Value of prescale on possitive edge of CAP0. Prescale value = PWM_CAP0_PRESCALE + 1*/
uint32_t in_invert: 1; /*when set CAP0 form GPIO matrix is inverted before prescale*/
uint32_t sw: 1; /*Write 1 will trigger a software forced capture on channel 0*/
uint32_t reserved13: 19;
};
uint32_t val;
}cap_cfg_ch[3];
uint32_t cap_val_ch[3]; /*Value of last capture on channel 0*/
union {
struct {
uint32_t cap0_edge: 1; /*Edge of last capture trigger on channel 0 0: posedge 1: negedge*/
uint32_t cap1_edge: 1; /*Edge of last capture trigger on channel 1 0: posedge 1: negedge*/
uint32_t cap2_edge: 1; /*Edge of last capture trigger on channel 2 0: posedge 1: negedge*/
uint32_t reserved3: 29;
};
uint32_t val;
}cap_status;
union {
struct {
uint32_t global_up_en: 1; /*The global enable of update of all active registers in MCPWM module*/
uint32_t global_force_up: 1; /*a toggle (software invert its value) will trigger a forced update of all active registers in MCPWM module*/
uint32_t op0_up_en: 1; /*When set and PWM_GLOBAL_UP_EN is set update of active registers in PWM operator 0 are enabled*/
uint32_t op0_force_up: 1; /*a toggle (software invert its value) will trigger a forced update of active registers in PWM operator 0*/
uint32_t op1_up_en: 1; /*When set and PWM_GLOBAL_UP_EN is set update of active registers in PWM operator 1 are enabled*/
uint32_t op1_force_up: 1; /*a toggle (software invert its value) will trigger a forced update of active registers in PWM operator 1*/
uint32_t op2_up_en: 1; /*When set and PWM_GLOBAL_UP_EN is set update of active registers in PWM operator 2 are enabled*/
uint32_t op2_force_up: 1; /*a toggle (software invert its value) will trigger a forced update of active registers in PWM operator 2*/
uint32_t reserved8: 24;
};
uint32_t val;
}update_cfg;
union {
struct {
uint32_t timer0_stop_int_ena: 1; /*Interrupt when timer 0 stops*/
uint32_t timer1_stop_int_ena: 1; /*Interrupt when timer 1 stops*/
uint32_t timer2_stop_int_ena: 1; /*Interrupt when timer 2 stops*/
uint32_t timer0_tez_int_ena: 1; /*A PWM timer 0 TEZ event will trigger this interrupt*/
uint32_t timer1_tez_int_ena: 1; /*A PWM timer 1 TEZ event will trigger this interrupt*/
uint32_t timer2_tez_int_ena: 1; /*A PWM timer 2 TEZ event will trigger this interrupt*/
uint32_t timer0_tep_int_ena: 1; /*A PWM timer 0 TEP event will trigger this interrupt*/
uint32_t timer1_tep_int_ena: 1; /*A PWM timer 1 TEP event will trigger this interrupt*/
uint32_t timer2_tep_int_ena: 1; /*A PWM timer 2 TEP event will trigger this interrupt*/
uint32_t fault0_int_ena: 1; /*Interrupt when event_f0 starts*/
uint32_t fault1_int_ena: 1; /*Interrupt when event_f1 starts*/
uint32_t fault2_int_ena: 1; /*Interrupt when event_f2 starts*/
uint32_t fault0_clr_int_ena: 1; /*Interrupt when event_f0 ends*/
uint32_t fault1_clr_int_ena: 1; /*Interrupt when event_f1 ends*/
uint32_t fault2_clr_int_ena: 1; /*Interrupt when event_f2 ends*/
uint32_t cmpr0_tea_int_ena: 1; /*A PWM operator 0 TEA event will trigger this interrupt*/
uint32_t cmpr1_tea_int_ena: 1; /*A PWM operator 1 TEA event will trigger this interrupt*/
uint32_t cmpr2_tea_int_ena: 1; /*A PWM operator 2 TEA event will trigger this interrupt*/
uint32_t cmpr0_teb_int_ena: 1; /*A PWM operator 0 TEB event will trigger this interrupt*/
uint32_t cmpr1_teb_int_ena: 1; /*A PWM operator 1 TEB event will trigger this interrupt*/
uint32_t cmpr2_teb_int_ena: 1; /*A PWM operator 2 TEB event will trigger this interrupt*/
uint32_t tz0_cbc_int_ena: 1; /*An cycle-by-cycle trip event on PWM0 will trigger this interrupt*/
uint32_t tz1_cbc_int_ena: 1; /*An cycle-by-cycle trip event on PWM1 will trigger this interrupt*/
uint32_t tz2_cbc_int_ena: 1; /*An cycle-by-cycle trip event on PWM2 will trigger this interrupt*/
uint32_t tz0_ost_int_ena: 1; /*An one-shot trip event on PWM0 will trigger this interrupt*/
uint32_t tz1_ost_int_ena: 1; /*An one-shot trip event on PWM1 will trigger this interrupt*/
uint32_t tz2_ost_int_ena: 1; /*An one-shot trip event on PWM2 will trigger this interrupt*/
uint32_t cap0_int_ena: 1; /*A capture on channel 0 will trigger this interrupt*/
uint32_t cap1_int_ena: 1; /*A capture on channel 1 will trigger this interrupt*/
uint32_t cap2_int_ena: 1; /*A capture on channel 2 will trigger this interrupt*/
uint32_t reserved30: 2;
};
uint32_t val;
}int_ena;
union {
struct {
uint32_t timer0_stop_int_raw: 1; /*Interrupt when timer 0 stops*/
uint32_t timer1_stop_int_raw: 1; /*Interrupt when timer 1 stops*/
uint32_t timer2_stop_int_raw: 1; /*Interrupt when timer 2 stops*/
uint32_t timer0_tez_int_raw: 1; /*A PWM timer 0 TEZ event will trigger this interrupt*/
uint32_t timer1_tez_int_raw: 1; /*A PWM timer 1 TEZ event will trigger this interrupt*/
uint32_t timer2_tez_int_raw: 1; /*A PWM timer 2 TEZ event will trigger this interrupt*/
uint32_t timer0_tep_int_raw: 1; /*A PWM timer 0 TEP event will trigger this interrupt*/
uint32_t timer1_tep_int_raw: 1; /*A PWM timer 1 TEP event will trigger this interrupt*/
uint32_t timer2_tep_int_raw: 1; /*A PWM timer 2 TEP event will trigger this interrupt*/
uint32_t fault0_int_raw: 1; /*Interrupt when event_f0 starts*/
uint32_t fault1_int_raw: 1; /*Interrupt when event_f1 starts*/
uint32_t fault2_int_raw: 1; /*Interrupt when event_f2 starts*/
uint32_t fault0_clr_int_raw: 1; /*Interrupt when event_f0 ends*/
uint32_t fault1_clr_int_raw: 1; /*Interrupt when event_f1 ends*/
uint32_t fault2_clr_int_raw: 1; /*Interrupt when event_f2 ends*/
uint32_t cmpr0_tea_int_raw: 1; /*A PWM operator 0 TEA event will trigger this interrupt*/
uint32_t cmpr1_tea_int_raw: 1; /*A PWM operator 1 TEA event will trigger this interrupt*/
uint32_t cmpr2_tea_int_raw: 1; /*A PWM operator 2 TEA event will trigger this interrupt*/
uint32_t cmpr0_teb_int_raw: 1; /*A PWM operator 0 TEB event will trigger this interrupt*/
uint32_t cmpr1_teb_int_raw: 1; /*A PWM operator 1 TEB event will trigger this interrupt*/
uint32_t cmpr2_teb_int_raw: 1; /*A PWM operator 2 TEB event will trigger this interrupt*/
uint32_t tz0_cbc_int_raw: 1; /*An cycle-by-cycle trip event on PWM0 will trigger this interrupt*/
uint32_t tz1_cbc_int_raw: 1; /*An cycle-by-cycle trip event on PWM1 will trigger this interrupt*/
uint32_t tz2_cbc_int_raw: 1; /*An cycle-by-cycle trip event on PWM2 will trigger this interrupt*/
uint32_t tz0_ost_int_raw: 1; /*An one-shot trip event on PWM0 will trigger this interrupt*/
uint32_t tz1_ost_int_raw: 1; /*An one-shot trip event on PWM1 will trigger this interrupt*/
uint32_t tz2_ost_int_raw: 1; /*An one-shot trip event on PWM2 will trigger this interrupt*/
uint32_t cap0_int_raw: 1; /*A capture on channel 0 will trigger this interrupt*/
uint32_t cap1_int_raw: 1; /*A capture on channel 1 will trigger this interrupt*/
uint32_t cap2_int_raw: 1; /*A capture on channel 2 will trigger this interrupt*/
uint32_t reserved30: 2;
};
uint32_t val;
}int_raw;
union {
struct {
uint32_t timer0_stop_int_st: 1; /*Interrupt when timer 0 stops*/
uint32_t timer1_stop_int_st: 1; /*Interrupt when timer 1 stops*/
uint32_t timer2_stop_int_st: 1; /*Interrupt when timer 2 stops*/
uint32_t timer0_tez_int_st: 1; /*A PWM timer 0 TEZ event will trigger this interrupt*/
uint32_t timer1_tez_int_st: 1; /*A PWM timer 1 TEZ event will trigger this interrupt*/
uint32_t timer2_tez_int_st: 1; /*A PWM timer 2 TEZ event will trigger this interrupt*/
uint32_t timer0_tep_int_st: 1; /*A PWM timer 0 TEP event will trigger this interrupt*/
uint32_t timer1_tep_int_st: 1; /*A PWM timer 1 TEP event will trigger this interrupt*/
uint32_t timer2_tep_int_st: 1; /*A PWM timer 2 TEP event will trigger this interrupt*/
uint32_t fault0_int_st: 1; /*Interrupt when event_f0 starts*/
uint32_t fault1_int_st: 1; /*Interrupt when event_f1 starts*/
uint32_t fault2_int_st: 1; /*Interrupt when event_f2 starts*/
uint32_t fault0_clr_int_st: 1; /*Interrupt when event_f0 ends*/
uint32_t fault1_clr_int_st: 1; /*Interrupt when event_f1 ends*/
uint32_t fault2_clr_int_st: 1; /*Interrupt when event_f2 ends*/
uint32_t cmpr0_tea_int_st: 1; /*A PWM operator 0 TEA event will trigger this interrupt*/
uint32_t cmpr1_tea_int_st: 1; /*A PWM operator 1 TEA event will trigger this interrupt*/
uint32_t cmpr2_tea_int_st: 1; /*A PWM operator 2 TEA event will trigger this interrupt*/
uint32_t cmpr0_teb_int_st: 1; /*A PWM operator 0 TEB event will trigger this interrupt*/
uint32_t cmpr1_teb_int_st: 1; /*A PWM operator 1 TEB event will trigger this interrupt*/
uint32_t cmpr2_teb_int_st: 1; /*A PWM operator 2 TEB event will trigger this interrupt*/
uint32_t tz0_cbc_int_st: 1; /*An cycle-by-cycle trip event on PWM0 will trigger this interrupt*/
uint32_t tz1_cbc_int_st: 1; /*An cycle-by-cycle trip event on PWM1 will trigger this interrupt*/
uint32_t tz2_cbc_int_st: 1; /*An cycle-by-cycle trip event on PWM2 will trigger this interrupt*/
uint32_t tz0_ost_int_st: 1; /*An one-shot trip event on PWM0 will trigger this interrupt*/
uint32_t tz1_ost_int_st: 1; /*An one-shot trip event on PWM1 will trigger this interrupt*/
uint32_t tz2_ost_int_st: 1; /*An one-shot trip event on PWM2 will trigger this interrupt*/
uint32_t cap0_int_st: 1; /*A capture on channel 0 will trigger this interrupt*/
uint32_t cap1_int_st: 1; /*A capture on channel 1 will trigger this interrupt*/
uint32_t cap2_int_st: 1; /*A capture on channel 2 will trigger this interrupt*/
uint32_t reserved30: 2;
};
uint32_t val;
}int_st;
union {
struct {
uint32_t timer0_stop_int_clr: 1; /*Interrupt when timer 0 stops*/
uint32_t timer1_stop_int_clr: 1; /*Interrupt when timer 1 stops*/
uint32_t timer2_stop_int_clr: 1; /*Interrupt when timer 2 stops*/
uint32_t timer0_tez_int_clr: 1; /*A PWM timer 0 TEZ event will trigger this interrupt*/
uint32_t timer1_tez_int_clr: 1; /*A PWM timer 1 TEZ event will trigger this interrupt*/
uint32_t timer2_tez_int_clr: 1; /*A PWM timer 2 TEZ event will trigger this interrupt*/
uint32_t timer0_tep_int_clr: 1; /*A PWM timer 0 TEP event will trigger this interrupt*/
uint32_t timer1_tep_int_clr: 1; /*A PWM timer 1 TEP event will trigger this interrupt*/
uint32_t timer2_tep_int_clr: 1; /*A PWM timer 2 TEP event will trigger this interrupt*/
uint32_t fault0_int_clr: 1; /*Interrupt when event_f0 starts*/
uint32_t fault1_int_clr: 1; /*Interrupt when event_f1 starts*/
uint32_t fault2_int_clr: 1; /*Interrupt when event_f2 starts*/
uint32_t fault0_clr_int_clr: 1; /*Interrupt when event_f0 ends*/
uint32_t fault1_clr_int_clr: 1; /*Interrupt when event_f1 ends*/
uint32_t fault2_clr_int_clr: 1; /*Interrupt when event_f2 ends*/
uint32_t cmpr0_tea_int_clr: 1; /*A PWM operator 0 TEA event will trigger this interrupt*/
uint32_t cmpr1_tea_int_clr: 1; /*A PWM operator 1 TEA event will trigger this interrupt*/
uint32_t cmpr2_tea_int_clr: 1; /*A PWM operator 2 TEA event will trigger this interrupt*/
uint32_t cmpr0_teb_int_clr: 1; /*A PWM operator 0 TEB event will trigger this interrupt*/
uint32_t cmpr1_teb_int_clr: 1; /*A PWM operator 1 TEB event will trigger this interrupt*/
uint32_t cmpr2_teb_int_clr: 1; /*A PWM operator 2 TEB event will trigger this interrupt*/
uint32_t tz0_cbc_int_clr: 1; /*An cycle-by-cycle trip event on PWM0 will trigger this interrupt*/
uint32_t tz1_cbc_int_clr: 1; /*An cycle-by-cycle trip event on PWM1 will trigger this interrupt*/
uint32_t tz2_cbc_int_clr: 1; /*An cycle-by-cycle trip event on PWM2 will trigger this interrupt*/
uint32_t tz0_ost_int_clr: 1; /*An one-shot trip event on PWM0 will trigger this interrupt*/
uint32_t tz1_ost_int_clr: 1; /*An one-shot trip event on PWM1 will trigger this interrupt*/
uint32_t tz2_ost_int_clr: 1; /*An one-shot trip event on PWM2 will trigger this interrupt*/
uint32_t cap0_int_clr: 1; /*A capture on channel 0 will trigger this interrupt*/
uint32_t cap1_int_clr: 1; /*A capture on channel 1 will trigger this interrupt*/
uint32_t cap2_int_clr: 1; /*A capture on channel 2 will trigger this interrupt*/
uint32_t reserved30: 2;
};
uint32_t val;
}int_clr;
union {
struct {
uint32_t clk_en: 1; /*Force clock on for this reg file*/
uint32_t reserved1: 31;
};
uint32_t val;
}reg_clk;
union {
struct {
uint32_t date: 28; /*Version of this reg file*/
uint32_t reserved28: 4;
};
uint32_t val;
}version;
} mcpwm_dev_t;
extern mcpwm_dev_t MCPWM0;
extern mcpwm_dev_t MCPWM1;
#endif /* _SOC_MCPWM_STRUCT_H__ */

View File

@ -0,0 +1,133 @@
MCPWM
=====
Overview
--------
ESP32 has two MCPWM units which can be used to control different motors.
Block Diagram
-------------
The block diagram of MCPWM unit is as shown.
::
__________________________________________________________________________
| SYNCSIG FAULT SIG CAPTURE SIG |
| 0 1 2 0 1 2 0 1 2 |
|___________________________________________________________________ G |
INTERRUPTS<-----+ | | | | | | | | | | P |
| | | | | | | | | | | I |
________|_|___|___|_____________|___|___|_________|___|___|_________ | O |
| | | | | | | | | | | | |
| | | | | | | | | | | | M |
| | | | __v___v___v__ __v___v___v__ | | A |
| | | | | | | | | | T |
| | | | | FAULT | | CAPTURE | | | R |
| | | | | HANDLER | | | | | I |
| | | | | | |___________| | | X |
| | | | |___________| | | |
| | | | | | |
| ____v___v___v____ ____________________ | | |
| | +---------+ | | +------------+ |--------->|PWM0A|
| | | Timer 0 | | | | Operator 0 | | | | |
| | +---------+ | | +------------+ |--------->|PWM0B|
| | | | | | | |
| | +---------+ | | +------------+ |--------->|PWM1A|
| | | Timer 1 | |------------------->| | Operator 1 | | | | |
| | +---------+ | | +------------+ |--------->|PWM1B|
| | | | | | | |
| | +---------+ | | +------------+ |--------->|PWM2A|
| | | Timer 2 | | | | Operator 2 | | | | |
| | +---------+ | | +------------+ |--------->|PWM2B|
| |_______________| |__________________| | |_____|
| |
| MCPWM-UNIT 0/1 |
|___________________________________________________________________|
Application Example
-------------------
MCPWM different motor example: :example:`peripherals/mcpwm`.
API Reference
-------------
Header Files
^^^^^^^^^^^^
* :component_file:`driver/include/driver/mcpwm.h`
Type Definitions
^^^^^^^^^^^^^^^^
Enumerations
^^^^^^^^^^^^
.. doxygenenum:: mcpwm_io_signals_t
.. doxygenenum:: mcpwm_unit_t
.. doxygenenum:: mcpwm_timer_t
.. doxygenenum:: mcpwm_operator_t
.. doxygenenum:: mcpwm_counter_type_t
.. doxygenenum:: mcpwm_duty_type_t
.. doxygenenum:: mcpwm_carrier_os_t
.. doxygenenum:: mcpwm_carrier_out_ivt_t
.. doxygenenum:: mcpwm_sync_signal_t
.. doxygenenum:: mcpwm_fault_signal_t
.. doxygenenum:: mcpwm_fault_input_level_t
.. doxygenenum:: mcpwm_action_on_pwmxa_t
.. doxygenenum:: mcpwm_action_on_pwmxb_t
.. doxygenenum:: mcpwm_capture_signal_t
.. doxygenenum:: mcpwm_capture_on_edge_t
.. doxygenenum:: mcpwm_deadtime_type_t
Structures
^^^^^^^^^^
.. doxygenstruct:: mcpwm_config_t
:members:
.. doxygenstruct:: mcpwm_carrier_config_t
:members:
Functions
^^^^^^^^^
.. doxygenfunction:: mcpwm_gpio_init
.. doxygenfunction:: mcpwm_init
.. doxygenfunction:: mcpwm_set_frequency
.. doxygenfunction:: mcpwm_set_duty
.. doxygenfunction:: mcpwm_set_duty_in_us
.. doxygenfunction:: mcpwm_set_duty_type
.. doxygenfunction:: mcpwm_get_frequency
.. doxygenfunction:: mcpwm_get_duty
.. doxygenfunction:: mcpwm_set_signal_high
.. doxygenfunction:: mcpwm_set_signal_low
.. doxygenfunction:: mcpwm_start
.. doxygenfunction:: mcpwm_stop
.. doxygenfunction:: mcpwm_carrier_init
.. doxygenfunction:: mcpwm_carrier_enable
.. doxygenfunction:: mcpwm_carrier_disable
.. doxygenfunction:: mcpwm_carrier_set_period
.. doxygenfunction:: mcpwm_carrier_set_duty_cycle
.. doxygenfunction:: mcpwm_carrier_oneshot_mode_enable
.. doxygenfunction:: mcpwm_carrier_oneshot_mode_disable
.. doxygenfunction:: mcpwm_carrier_output_invert
.. doxygenfunction:: mcpwm_deadtime_enable
.. doxygenfunction:: mcpwm_deadtime_disable
.. doxygenfunction:: mcpwm_fault_init
.. doxygenfunction:: mcpwm_fault_set_oneshot_mode
.. doxygenfunction:: mcpwm_fault_set_cyc_mode
.. doxygenfunction:: mcpwm_fault_deinit
.. doxygenfunction:: mcpwm_capture_enable
.. doxygenfunction:: mcpwm_capture_disable
.. doxygenfunction:: mcpwm_capture_signal_get_value
.. doxygenfunction:: mcpwm_capture_signal_get_edge
.. doxygenfunction:: mcpwm_sync_enable
.. doxygenfunction:: mcpwm_sync_disable
.. doxygenfunction:: mcpwm_isr_register

View File

@ -0,0 +1,9 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := mcpwm_basic_config
include $(IDF_PATH)/make/project.mk

View File

@ -0,0 +1,32 @@
# MCPWM basic config Example
This example will show you how to use each submodule of MCPWM unit
The example can't be used without modifying the code first
Edit the macros at the top of mcpwm_example_basic_config.c to enable/disable the submodules which are used in the example
## Step 1: Pin assignment
* The gpio init function initializes:
* six MCPWM output pins
* three MCPWM fault input pins
* three MCPWM sync input pins
* three MCPWM capture input pins
## Step 2: Connection
* Six MCPWM output pins to motor driver input signals
* Fault, sync, capture signals can be connected to respective signals
## Step 3: Initialize MCPWM
* You need to set the frequency and duty cycle of each three MCPWM timer along with other parameters mentioned
* You need to set the MCPWM channel you want to use, with these timers
## Step 4: Testing
* The deadtime module, set deadtime type and with value as time*100ns
* The sync module, synchonizes all the timer pulses
* The fault module when enabled takes action on MCPWM signals when fault occurs
* The capture module captures input signal(digital i.e. hall sensor value, etc), timing between two rising/falling edge

View File

@ -0,0 +1,3 @@
#
# Main Makefile. This is basically the same as a component makefile.
#

View File

@ -0,0 +1,290 @@
/* MCPWM basic config example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
/*
* This example will show you how to use each submodule of MCPWM unit.
* The example can't be used without modifying the code first.
* Edit the macros at the top of mcpwm_example_basic_config.c to enable/disable the submodules which are used in the example.
*/
#include <stdio.h>
#include "string.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_attr.h"
#include "soc/rtc.h"
#include "driver/mcpwm.h"
#include "soc/mcpwm_reg.h"
#include "soc/mcpwm_struct.h"
#define MCPWM_EN_CARRIER 0 //Make this 1 to test carrier submodule of mcpwm, set high frequency carrier parameters
#define MCPWM_EN_DEADTIME 0 //Make this 1 to test deadtime submodule of mcpwm, set deadtime value and deadtime mode
#define MCPWM_EN_FAULT 0 //Make this 1 to test fault submodule of mcpwm, set action on MCPWM signal on fault occurence like overcurrent, overvoltage, etc
#define MCPWM_EN_SYNC 0 //Make this 1 to test sync submodule of mcpwm, sync timer signals
#define MCPWM_EN_CAPTURE 0 //Make this 1 to test capture submodule of mcpwm, measure time between rising/falling edge of captured signal
#define MCPWM_GPIO_INIT 0 //select which function to use to initialize gpio signals
#define CAP_SIG_NUM 3 //Three capture signals
#define CAP0_INT_EN BIT(27) //Capture 0 interrupt bit
#define CAP1_INT_EN BIT(28) //Capture 1 interrupt bit
#define CAP2_INT_EN BIT(29) //Capture 2 interrupt bit
#define GPIO_PWM0A_OUT 19 //Set GPIO 19 as PWM0A
#define GPIO_PWM0B_OUT 18 //Set GPIO 18 as PWM0B
#define GPIO_PWM1A_OUT 17 //Set GPIO 17 as PWM1A
#define GPIO_PWM1B_OUT 16 //Set GPIO 16 as PWM1B
#define GPIO_PWM2A_OUT 15 //Set GPIO 15 as PWM2A
#define GPIO_PWM2B_OUT 14 //Set GPIO 14 as PWM2B
#define GPIO_CAP0_IN 23 //Set GPIO 23 as CAP0
#define GPIO_CAP1_IN 25 //Set GPIO 25 as CAP1
#define GPIO_CAP2_IN 26 //Set GPIO 26 as CAP2
#define GPIO_SYNC0_IN 2 //Set GPIO 02 as SYNC0
#define GPIO_SYNC1_IN 4 //Set GPIO 04 as SYNC1
#define GPIO_SYNC2_IN 5 //Set GPIO 05 as SYNC2
#define GPIO_FAULT0_IN 32 //Set GPIO 32 as FAULT0
#define GPIO_FAULT1_IN 34 //Set GPIO 34 as FAULT1
#define GPIO_FAULT2_IN 34 //Set GPIO 34 as FAULT2
typedef struct {
uint32_t capture_signal;
mcpwm_capture_signal_t sel_cap_signal;
} capture;
xQueueHandle cap_queue;
static mcpwm_dev_t *MCPWM[2] = {&MCPWM0, &MCPWM1};
static void mcpwm_example_gpio_initialize()
{
printf("initializing mcpwm gpio...\n");
#if MCPWM_GPIO_INIT
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM0A, GPIO_PWM0A_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM0B, GPIO_PWM0B_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM1A, GPIO_PWM1A_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM1B, GPIO_PWM1B_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM2A, GPIO_PWM2A_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM2B, GPIO_PWM2B_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_CAP_0, GPIO_CAP0_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_CAP_1, GPIO_CAP1_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_CAP_2, GPIO_CAP2_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_SYNC_0, GPIO_SYNC0_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_SYNC_1, GPIO_SYNC1_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_SYNC_2, GPIO_SYNC2_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_FAULT_0, GPIO_FAULT0_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_FAULT_1, GPIO_FAULT1_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_FAULT_2, GPIO_FAULT2_IN);
#else
mcpwm_pin_config_t pin_config = {
.mcpwm0a_out_num = GPIO_PWM0A_OUT,
.mcpwm0b_out_num = GPIO_PWM0B_OUT,
.mcpwm1a_out_num = GPIO_PWM1A_OUT,
.mcpwm1b_out_num = GPIO_PWM1B_OUT,
.mcpwm2a_out_num = GPIO_PWM2A_OUT,
.mcpwm2b_out_num = GPIO_PWM2B_OUT,
.mcpwm_sync0_in_num = GPIO_SYNC0_IN,
.mcpwm_sync1_in_num = GPIO_SYNC1_IN,
.mcpwm_sync2_in_num = GPIO_SYNC2_IN,
.mcpwm_fault0_in_num = GPIO_FAULT0_IN,
.mcpwm_fault1_in_num = GPIO_FAULT1_IN,
.mcpwm_fault2_in_num = GPIO_FAULT2_IN,
.mcpwm_cap0_in_num = GPIO_CAP0_IN,
.mcpwm_cap1_in_num = GPIO_CAP1_IN,
.mcpwm_cap2_in_num = GPIO_CAP2_IN
};
mcpwm_set_pin(MCPWM_UNIT_0, &pin_config);
#endif
gpio_pulldown_en(GPIO_CAP0_IN); //Enable pull down on CAP0 signal
gpio_pulldown_en(GPIO_CAP1_IN); //Enable pull down on CAP1 signal
gpio_pulldown_en(GPIO_CAP2_IN); //Enable pull down on CAP2 signal
gpio_pulldown_en(GPIO_SYNC0_IN); //Enable pull down on SYNC0 signal
gpio_pulldown_en(GPIO_SYNC1_IN); //Enable pull down on SYNC1 signal
gpio_pulldown_en(GPIO_SYNC2_IN); //Enable pull down on SYNC2 signal
gpio_pulldown_en(GPIO_FAULT0_IN); //Enable pull down on FAULT0 signal
gpio_pulldown_en(GPIO_FAULT1_IN); //Enable pull down on FAULT1 signal
gpio_pulldown_en(GPIO_FAULT2_IN); //Enable pull down on FAULT2 signal
}
/**
* @brief Set gpio 12 as our test signal that generates high-low waveform continuously, connect this gpio to capture pin.
*/
static void gpio_test_signal(void *arg)
{
printf("intializing test signal...\n");
gpio_config_t gp;
gp.intr_type = GPIO_INTR_DISABLE;
gp.mode = GPIO_MODE_OUTPUT;
gp.pin_bit_mask = GPIO_SEL_12;
gpio_config(&gp);
while (1) {
//here the period of test signal is 20ms
gpio_set_level(GPIO_NUM_12, 1); //Set high
vTaskDelay(10); //delay of 10ms
gpio_set_level(GPIO_NUM_12, 0); //Set low
vTaskDelay(10); //delay of 10ms
}
}
/**
* @brief When interrupt occurs, we receive the counter value and display the time between two rising edge
*/
static void disp_captured_signal(void *arg)
{
uint32_t *current_cap_value = (uint32_t *)malloc(sizeof(CAP_SIG_NUM));
uint32_t *previous_cap_value = (uint32_t *)malloc(sizeof(CAP_SIG_NUM));
capture evt;
while (1) {
xQueueReceive(cap_queue, &evt, portMAX_DELAY);
if (evt.sel_cap_signal == MCPWM_SELECT_CAP0) {
current_cap_value[0] = evt.capture_signal - previous_cap_value[0];
previous_cap_value[0] = evt.capture_signal;
current_cap_value[0] = (current_cap_value[0] / 10000) * (10000000000 / rtc_clk_apb_freq_get());
printf("CAP0 : %d us\n", current_cap_value[0]);
}
if (evt.sel_cap_signal == MCPWM_SELECT_CAP1) {
current_cap_value[1] = evt.capture_signal - previous_cap_value[1];
previous_cap_value[1] = evt.capture_signal;
current_cap_value[1] = (current_cap_value[1] / 10000) * (10000000000 / rtc_clk_apb_freq_get());
printf("CAP1 : %d us\n", current_cap_value[1]);
}
if (evt.sel_cap_signal == MCPWM_SELECT_CAP2) {
current_cap_value[2] = evt.capture_signal - previous_cap_value[2];
previous_cap_value[2] = evt.capture_signal;
current_cap_value[2] = (current_cap_value[2] / 10000) * (10000000000 / rtc_clk_apb_freq_get());
printf("CAP2 : %d us\n", current_cap_value[2]);
}
}
}
/**
* @brief this is ISR handler function, here we check for interrupt that triggers rising edge on CAP0 signal and according take action
*/
static void IRAM_ATTR isr_handler()
{
uint32_t mcpwm_intr_status;
capture evt;
mcpwm_intr_status = MCPWM[MCPWM_UNIT_0]->int_st.val; //Read interrupt status
if (mcpwm_intr_status & CAP0_INT_EN) { //Check for interrupt on rising edge on CAP0 signal
evt.capture_signal = mcpwm_capture_signal_get_value(MCPWM_UNIT_0, MCPWM_SELECT_CAP0); //get capture signal counter value
evt.sel_cap_signal = MCPWM_SELECT_CAP0;
xQueueSendFromISR(cap_queue, &evt, NULL);
}
if (mcpwm_intr_status & CAP1_INT_EN) { //Check for interrupt on rising edge on CAP0 signal
evt.capture_signal = mcpwm_capture_signal_get_value(MCPWM_UNIT_0, MCPWM_SELECT_CAP1); //get capture signal counter value
evt.sel_cap_signal = MCPWM_SELECT_CAP1;
xQueueSendFromISR(cap_queue, &evt, NULL);
}
if (mcpwm_intr_status & CAP2_INT_EN) { //Check for interrupt on rising edge on CAP0 signal
evt.capture_signal = mcpwm_capture_signal_get_value(MCPWM_UNIT_0, MCPWM_SELECT_CAP2); //get capture signal counter value
evt.sel_cap_signal = MCPWM_SELECT_CAP2;
xQueueSendFromISR(cap_queue, &evt, NULL);
}
MCPWM[MCPWM_UNIT_0]->int_clr.val = mcpwm_intr_status;
}
/**
* @brief Configure whole MCPWM module
*/
static void mcpwm_example_config(void *arg)
{
//1. mcpwm gpio initialization
mcpwm_example_gpio_initialize();
//2. initialize mcpwm configuration
printf("Configuring Initial Parameters of mcpwm...\n");
mcpwm_config_t pwm_config;
pwm_config.frequency = 1000; //frequency = 1000Hz
pwm_config.cmpr_a = 60.0; //duty cycle of PWMxA = 60.0%
pwm_config.cmpr_b = 50.0; //duty cycle of PWMxb = 50.0%
pwm_config.counter_mode = MCPWM_UP_COUNTER;
pwm_config.duty_mode = MCPWM_DUTY_MODE_0;
mcpwm_init(MCPWM_UNIT_0, MCPWM_TIMER_0, &pwm_config); //Configure PWM0A & PWM0B with above settings
pwm_config.frequency = 500; //frequency = 500Hz
pwm_config.cmpr_a = 45.9; //duty cycle of PWMxA = 45.9%
pwm_config.cmpr_b = 7.0; //duty cycle of PWMxb = 07.0%
pwm_config.counter_mode = MCPWM_UP_COUNTER;
pwm_config.duty_mode = MCPWM_DUTY_MODE_0;
mcpwm_init(MCPWM_UNIT_0, MCPWM_TIMER_1, &pwm_config); //Configure PWM1A & PWM1B with above settings
pwm_config.frequency = 400; //frequency = 400Hz
pwm_config.cmpr_a = 23.2; //duty cycle of PWMxA = 23.2%
pwm_config.cmpr_b = 97.0; //duty cycle of PWMxb = 97.0%
pwm_config.counter_mode = MCPWM_UP_DOWN_COUNTER; //frequency is half when up down count mode is set i.e. SYMMETRIC PWM
pwm_config.duty_mode = MCPWM_DUTY_MODE_1;
mcpwm_init(MCPWM_UNIT_0, MCPWM_TIMER_2, &pwm_config); //Configure PWM2A & PWM2B with above settings
#if MCPWM_EN_CARRIER
//3. carrier configuration
//comment if you don't want to use carrier mode
//in carrier mode very high frequency carrier signal is generated at mcpwm high level signal
mcpwm_carrier_config_t chop_config;
chop_config.carrier_period = 6; //carrier period = (6 + 1)*800ns
chop_config.carrier_duty = 3; //carrier duty = (3)*12.5%
chop_config.carrier_os_mode = MCPWM_ONESHOT_MODE_EN; //If one shot mode is enabled then set pulse width, if disabled no need to set pulse width
chop_config.pulse_width_in_os = 3; //first pulse width = (3 + 1)*carrier_period
chop_config.carrier_ivt_mode = MCPWM_CARRIER_OUT_IVT_EN; //output signal inversion enable
mcpwm_carrier_init(MCPWM_UNIT_0, MCPWM_TIMER_2, &chop_config); //Enable carrier on PWM2A and PWM2B with above settings
//use mcpwm_carrier_disable function to disable carrier on mcpwm timer on which it was enabled
#endif
#if MCPWM_EN_DEADTIME
//4. deadtime configuration
//comment if you don't want to use deadtime submodule
//add rising edge delay or falling edge delay. There are 8 different types, each explained in mcpwm_deadtime_type_t in mcpwm.h
mcpwm_deadtime_enable(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_BYPASS_FED, 1000, 1000); //Enable deadtime on PWM2A and PWM2B with red = (1000)*100ns on PWM2A
mcpwm_deadtime_enable(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_BYPASS_RED, 300, 2000); //Enable deadtime on PWM1A and PWM1B with fed = (2000)*100ns on PWM1B
mcpwm_deadtime_enable(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_ACTIVE_RED_FED_FROM_PWMXA, 656, 67); //Enable deadtime on PWM0A and PWM0B with red = (656)*100ns & fed = (67)*100ns on PWM0A and PWM0B generated from PWM0A
//use mcpwm_deadtime_disable function to disable deadtime on mcpwm timer on which it was enabled
#endif
#if MCPWM_EN_FAULT
//5. enable fault condition
//comment if you don't want to use fault submodule, also u can comment the fault gpio signals
//whenever fault occurs you can configure mcpwm signal to either force low, force high or toggle.
//in cycmode, as soon as fault condition is over, the mcpwm signal is resumed, whereas in oneshot mode you need to reset.
mcpwm_fault_init(MCPWM_UNIT_0, MCPWM_HIGH_LEVEL_TGR, MCPWM_SELECT_F0); //Enable FAULT, when high level occurs on FAULT0 signal
mcpwm_fault_init(MCPWM_UNIT_0, MCPWM_HIGH_LEVEL_TGR, MCPWM_SELECT_F1); //Enable FAULT, when high level occurs on FAULT1 signal
mcpwm_fault_init(MCPWM_UNIT_0, MCPWM_HIGH_LEVEL_TGR, MCPWM_SELECT_F2); //Enable FAULT, when high level occurs on FAULT2 signal
mcpwm_fault_set_oneshot_mode(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_SELECT_F0, MCPWM_FORCE_MCPWMXA_HIGH, MCPWM_FORCE_MCPWMXB_LOW); //Action taken on PWM1A and PWM1B, when FAULT0 occurs
mcpwm_fault_set_oneshot_mode(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_SELECT_F1, MCPWM_FORCE_MCPWMXA_LOW, MCPWM_FORCE_MCPWMXB_HIGH); //Action taken on PWM1A and PWM1B, when FAULT1 occurs
mcpwm_fault_set_oneshot_mode(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_SELECT_F2, MCPWM_FORCE_MCPWMXA_HIGH, MCPWM_FORCE_MCPWMXB_LOW); //Action taken on PWM0A and PWM0B, when FAULT2 occurs
mcpwm_fault_set_oneshot_mode(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_SELECT_F1, MCPWM_FORCE_MCPWMXA_LOW, MCPWM_FORCE_MCPWMXB_HIGH); //Action taken on PWM0A and PWM0B, when FAULT1 occurs
#endif
#if MCPWM_EN_SYNC
//6. Syncronization configuration
//comment if you don't want to use sync submodule, also u can comment the sync gpio signals
//here synchronization occurs on PWM1A and PWM1B
mcpwm_sync_enable(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_SELECT_SYNC0, 200); //Load counter value with 20% of period counter of mcpwm timer 1 when sync 0 occurs
#endif
#if MCPWM_EN_CAPTURE
//7. Capture configuration
//comment if you don't want to use capture submodule, also u can comment the capture gpio signals
//configure CAP0, CAP1 and CAP2 signal to start capture counter on rising edge
//we generate a gpio_test_signal of 20ms on GPIO 12 and connect it to one of the capture signal, the disp_captured_function displays the time between rising edge
//In general practice you can connect Capture to external signal, measure time between rising edge or falling edge and take action accordingly
mcpwm_capture_enable(MCPWM_UNIT_0, MCPWM_SELECT_CAP0, MCPWM_POS_EDGE, 0); //capture signal on rising edge, prescale = 0 i.e. 800,000,000 counts is equal to one second
mcpwm_capture_enable(MCPWM_UNIT_0, MCPWM_SELECT_CAP2, MCPWM_POS_EDGE, 0); //capture signal on rising edge, prescale = 0 i.e. 800,000,000 counts is equal to one second
mcpwm_capture_enable(MCPWM_UNIT_0, MCPWM_SELECT_CAP1, MCPWM_POS_EDGE, 0); //capture signal on rising edge, prescale = 0 i.e. 800,000,000 counts is equal to one second
//enable interrupt, so each this a rising edge occurs interrupt is triggered
MCPWM[MCPWM_UNIT_0]->int_ena.val = CAP0_INT_EN | CAP1_INT_EN | CAP2_INT_EN; //Enable interrupt on CAP0, CAP1 and CAP2 signal
mcpwm_isr_register(MCPWM_UNIT_0, isr_handler, NULL, ESP_INTR_FLAG_IRAM, NULL); //Set ISR Handler
#endif
vTaskDelete(NULL);
}
void app_main()
{
printf("Testing MCPWM...\n");
cap_queue = xQueueCreate(1, sizeof(capture)); //comment if you don't want to use capture module
xTaskCreate(disp_captured_signal, "mcpwm_config", 4096, NULL, 5, NULL); //comment if you don't want to use capture module
xTaskCreate(gpio_test_signal, "gpio_test_signal", 4096, NULL, 5, NULL); //comment if you don't want to use capture module
xTaskCreate(mcpwm_example_config, "mcpwm_example_config", 4096, NULL, 5, NULL);
}

View File

@ -0,0 +1,9 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := mcpwm_bldc_control_hall_sensor
include $(IDF_PATH)/make/project.mk

View File

@ -0,0 +1,43 @@
# MCPWM BLDC motor control(hall sensor feedback) Example
This example will show you how to use MCPWM module to control bldc motor with hall sensor feedback
The following examples uses MCPWM module to control bldc motor and vary its speed continuously
The bldc motor used for testing this code had hall sensor capture sequence of 6-->4-->5-->1-->3-->2-->6-->4--> and so on
IR2136 3-ph bridge driver is used for testing this example code
User needs to make changes according to the motor and gate driver ic used
## Step 1: Pin assignment
* The gpio init function initializes:
* GPIO15 is assigned as the MCPWM signal for 1H(UH)
* GPIO02 is assigned as the MCPWM signal for 1L(UL)
* GPIO00 is assigned as the MCPWM signal for 2H(VH)
* GPIO04 is assigned as the MCPWM signal for 2L(VL)
* GPIO16 is assigned as the MCPWM signal for 3H(WH)
* GPIO17 is assigned as the MCPWM signal for 3L(WL)
* GPIO25 is assigned as the MCPWM capture signal for Hall A
* GPIO26 is assigned as the MCPWM capture signal for HALL B
* GPIO27 is assigned as the MCPWM capture signal for HALL C
## Step 2: Connection
* Connect GPIO15 with 1H/UH of BLDC motor driver
* Connect GPIO02 with 1L/UL of BLDC motor driver
* Connect GPIO00 with 2H/VH of BLDC motor driver
* Connect GPIO04 with 2L/VL of BLDC motor driver
* Connect GPIO16 with 3H/WH of BLDC motor driver
* Connect GPIO17 with 3L/WL of BLDC motor driver
* Connect GPIO25 to hall sensor A output
* Connect GPIO26 to hall sensor B output
* Connect GPIO27 to hall sensor C output
## Step 3: Initialize MCPWM
* You need to set the frequency and duty cycle of MCPWM timer
* You need to set the MCPWM channel you want to use, and bind the channel with one of the timers
* You need to set the capture unit, for POS/NEG edge capture
* Also reversing the hall sensor BIT weight, will make bldc motor rotate CW or CCW

View File

@ -0,0 +1,3 @@
#
# Main Makefile. This is basically the same as a component makefile.
#

View File

@ -0,0 +1,313 @@
/* MCPWM BLDC control Test code
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
/*
* The following examples uses mcpwm module to control bldc motor vary its speed continiously
* The BLDC motor used for testing this code had sequence of 6-->4-->5-->1-->3-->2-->6-->4--> and so on
* IR2136 3-ph bridge driver is used for testing this example code
* User needs to make changes according to the motor and gate driver ic used
*/
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_attr.h"
#include "soc/rtc.h"
#include "driver/mcpwm.h"
#include "soc/mcpwm_reg.h"
#include "soc/mcpwm_struct.h"
#define INITIAL_DUTY 10.0 //initial duty cycle is 10.0%
#define MCPWM_GPIO_INIT 0 //select which function to use to initialize gpio signals
#define CAP_SIG_NUM 3 //three capture signals from HALL-A, HALL-B, HALL-C
#define CAP0_INT_EN BIT(27) //Capture 0 interrupt bit
#define CAP1_INT_EN BIT(28) //Capture 1 interrupt bit
#define CAP2_INT_EN BIT(29) //Capture 2 interrupt bit
#define GPIO_PWM0A_OUT 15 //Set GPIO 15 as PWM0A
#define GPIO_PWM0B_OUT 02 //Set GPIO 02 as PWM0B
#define GPIO_PWM1A_OUT 00 //Set GPIO 00 as PWM1A
#define GPIO_PWM1B_OUT 04 //Set GPIO 04 as PWM1B
#define GPIO_PWM2A_OUT 16 //Set GPIO 16 as PWM2A
#define GPIO_PWM2B_OUT 17 //Set GPIO 17 as PWM2B
#define GPIO_CAP0_IN 25 //Set GPIO 25 as CAP0
#define GPIO_CAP1_IN 26 //Set GPIO 26 as CAP1
#define GPIO_CAP2_IN 27 //Set GPIO 27 as CAP2
typedef struct {
uint32_t capture_signal;
mcpwm_capture_signal_t sel_cap_signal;
} capture;
static uint32_t hall_sensor_value = 0;
static uint32_t hall_sensor_previous = 0;
xQueueHandle cap_queue;
static mcpwm_dev_t *MCPWM[2] = {&MCPWM0, &MCPWM1};
static void mcpwm_example_gpio_initialize()
{
printf("initializing mcpwm bldc control gpio...\n");
#if MCPWM_GPIO_INIT
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM0A, GPIO_PWM0A_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM0B, GPIO_PWM0B_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM1A, GPIO_PWM1A_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM1B, GPIO_PWM1B_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM2A, GPIO_PWM2A_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM2B, GPIO_PWM2B_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_CAP_0, GPIO_CAP0_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_CAP_1, GPIO_CAP1_IN);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM_CAP_2, GPIO_CAP2_IN);
#else
mcpwm_pin_config_t pin_config = {
.mcpwm0a_out_num = GPIO_PWM0A_OUT,
.mcpwm0b_out_num = GPIO_PWM0B_OUT,
.mcpwm1a_out_num = GPIO_PWM1A_OUT,
.mcpwm1b_out_num = GPIO_PWM1B_OUT,
.mcpwm2a_out_num = GPIO_PWM2A_OUT,
.mcpwm2b_out_num = GPIO_PWM2B_OUT,
.mcpwm_cap0_in_num = GPIO_CAP0_IN,
.mcpwm_cap1_in_num = GPIO_CAP1_IN,
.mcpwm_cap2_in_num = GPIO_CAP2_IN,
.mcpwm_sync0_in_num = -1, //Not used
.mcpwm_sync1_in_num = -1, //Not used
.mcpwm_sync2_in_num = -1, //Not used
.mcpwm_fault0_in_num = -1, //Not used
.mcpwm_fault1_in_num = -1, //Not used
.mcpwm_fault2_in_num = -1 //Not used
};
mcpwm_set_pin(MCPWM_UNIT_0, &pin_config);
#endif
gpio_pulldown_en(GPIO_CAP0_IN); //Enable pull down on CAP0 signal
gpio_pulldown_en(GPIO_CAP1_IN); //Enable pull down on CAP1 signal
gpio_pulldown_en(GPIO_CAP2_IN); //Enable pull down on CAP2 signal
}
/**
* @brief Set gpio 13, 12, 14 as our test signal of hall sensors, that generates high-low waveform continuously
* Attach this pins to GPIO 27, 26, 25 respectively for capture unit
*/
static void gpio_test_signal(void *arg)
{
printf("intializing test signal...\n");
gpio_config_t gp;
gp.intr_type = GPIO_INTR_DISABLE;
gp.mode = GPIO_MODE_OUTPUT;
gp.pin_bit_mask = GPIO_SEL_13 | GPIO_SEL_12 | GPIO_SEL_14;
gpio_config(&gp);
while (1) {
gpio_set_level(GPIO_NUM_13, 1); //Set H1 high
gpio_set_level(GPIO_NUM_12, 0); //Set H2 low
gpio_set_level(GPIO_NUM_14, 1); //Set H3 high
vTaskDelay(1);
gpio_set_level(GPIO_NUM_14, 0); //Set H3 low
vTaskDelay(1);
gpio_set_level(GPIO_NUM_12, 1); //Set H2 high
vTaskDelay(1);
gpio_set_level(GPIO_NUM_13, 0); //Set H1 low
vTaskDelay(1);
gpio_set_level(GPIO_NUM_14, 1); //Set H3 high
vTaskDelay(1);
gpio_set_level(GPIO_NUM_12, 0); //Set H2 high
vTaskDelay(1);
}
}
/**
* @brief When interrupt occurs, we receive the counter value and display the time between two rising edge
*/
static void disp_captured_signal(void *arg)
{
uint32_t *current_cap_value = (uint32_t *)malloc(sizeof(CAP_SIG_NUM));
uint32_t *previous_cap_value = (uint32_t *)malloc(sizeof(CAP_SIG_NUM));
capture evt;
while (1) {
xQueueReceive(cap_queue, &evt, portMAX_DELAY);
if (evt.sel_cap_signal == MCPWM_SELECT_CAP0) {
current_cap_value[0] = evt.capture_signal - previous_cap_value[0];
previous_cap_value[0] = evt.capture_signal;
current_cap_value[0] = (current_cap_value[0] / 10000) * (10000000000 / rtc_clk_apb_freq_get());
//printf("CAP0 : %d us\n", current_cap_value[0]);
}
if (evt.sel_cap_signal == MCPWM_SELECT_CAP1) {
current_cap_value[1] = evt.capture_signal - previous_cap_value[1];
previous_cap_value[1] = evt.capture_signal;
current_cap_value[1] = (current_cap_value[1] / 10000) * (10000000000 / rtc_clk_apb_freq_get());
//printf("CAP1 : %d us\n", current_cap_value[1]);
}
if (evt.sel_cap_signal == MCPWM_SELECT_CAP2) {
current_cap_value[2] = evt.capture_signal - previous_cap_value[2];
previous_cap_value[2] = evt.capture_signal;
current_cap_value[2] = (current_cap_value[2] / 10000) * (10000000000 / rtc_clk_apb_freq_get());
//printf("CAP2 : %d us\n", current_cap_value[2]);
}
}
}
/**
* @brief this is ISR handler function, here we check for interrupt that triggers rising edge on CAP0 signal and according take action
*/
static void IRAM_ATTR isr_handler()
{
uint32_t mcpwm_intr_status;
capture evt;
mcpwm_intr_status = MCPWM[MCPWM_UNIT_0]->int_st.val; //Read interrupt status
if (mcpwm_intr_status & CAP0_INT_EN) { //Check for interrupt on rising edge on CAP0 signal
evt.capture_signal = mcpwm_capture_signal_get_value(MCPWM_UNIT_0, MCPWM_SELECT_CAP0); //get capture signal counter value
evt.sel_cap_signal = MCPWM_SELECT_CAP0;
xQueueSendFromISR(cap_queue, &evt, NULL);
}
if (mcpwm_intr_status & CAP1_INT_EN) { //Check for interrupt on rising edge on CAP1 signal
evt.capture_signal = mcpwm_capture_signal_get_value(MCPWM_UNIT_0, MCPWM_SELECT_CAP1); //get capture signal counter value
evt.sel_cap_signal = MCPWM_SELECT_CAP1;
xQueueSendFromISR(cap_queue, &evt, NULL);
}
if (mcpwm_intr_status & CAP2_INT_EN) { //Check for interrupt on rising edge on CAP2 signal
evt.capture_signal = mcpwm_capture_signal_get_value(MCPWM_UNIT_0, MCPWM_SELECT_CAP2); //get capture signal counter value
evt.sel_cap_signal = MCPWM_SELECT_CAP2;
xQueueSendFromISR(cap_queue, &evt, NULL);
}
MCPWM[MCPWM_UNIT_0]->int_clr.val = mcpwm_intr_status;
}
static void change_duty(void *arg)
{
int j;
while (1) {
for (j = 0; j < 18; j++) {
//printf("duty cycle: %d\n", (0 +j*50));
mcpwm_set_duty(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A, (INITIAL_DUTY + j * 5.0));
mcpwm_set_duty(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_B, (INITIAL_DUTY + j * 5.0));
mcpwm_set_duty(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_A, (INITIAL_DUTY + j * 5.0));
mcpwm_set_duty(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_B, (INITIAL_DUTY + j * 5.0));
mcpwm_set_duty(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_A, (INITIAL_DUTY + j * 5.0));
mcpwm_set_duty(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_B, (INITIAL_DUTY + j * 5.0));
vTaskDelay(500 / portTICK_RATE_MS);
}
}
}
/**
* @brief Configure whole MCPWM module for bldc motor control
*/
static void mcpwm_example_bldc_control(void *arg)
{
//1. mcpwm gpio initialization
mcpwm_example_gpio_initialize();
//2. initial mcpwm configuration
printf("Configuring Initial Parameters of mcpwm bldc control...\n");
mcpwm_config_t pwm_config;
pwm_config.frequency = 1000; //frequency = 1000Hz
pwm_config.cmpr_a = 50.0; //duty cycle of PWMxA = 50.0%
pwm_config.cmpr_b = 50.0; //duty cycle of PWMxb = 50.0%
pwm_config.counter_mode = MCPWM_UP_COUNTER;
pwm_config.duty_mode = MCPWM_DUTY_MODE_1;
mcpwm_init(MCPWM_UNIT_0, MCPWM_TIMER_0, &pwm_config); //Configure PWM0A & PWM0B with above settings
mcpwm_init(MCPWM_UNIT_0, MCPWM_TIMER_1, &pwm_config); //Configure PWM1A & PWM1B with above settings
mcpwm_init(MCPWM_UNIT_0, MCPWM_TIMER_2, &pwm_config); //Configure PWM2A & PWM2B with above settings
//3. Capture configuration
//configure CAP0, CAP1 and CAP2 signal to start capture counter on rising edge
//we generate a gpio_test_signal of 20ms on GPIO 12 and connect it to one of the capture signal, the disp_captured_function displays the time between rising edge
//In general practice you can connect Capture to external signal, measure time between rising edge or falling edge and take action accordingly
mcpwm_capture_enable(MCPWM_UNIT_0, MCPWM_SELECT_CAP0, MCPWM_POS_EDGE, 0); //capture signal on rising edge, pulse num = 0 i.e. 800,000,000 counts is equal to one second
mcpwm_capture_enable(MCPWM_UNIT_0, MCPWM_SELECT_CAP1, MCPWM_POS_EDGE, 0); //capture signal on rising edge, pulse num = 0 i.e. 800,000,000 counts is equal to one second
mcpwm_capture_enable(MCPWM_UNIT_0, MCPWM_SELECT_CAP2, MCPWM_POS_EDGE, 0); //capture signal on rising edge, pulse num = 0 i.e. 800,000,000 counts is equal to one second
//enable interrupt, so each this a rising edge occurs interrupt is triggered
MCPWM[MCPWM_UNIT_0]->int_ena.val = (CAP0_INT_EN | CAP1_INT_EN | CAP2_INT_EN); //Enable interrupt on CAP0, CAP1 and CAP2 signal
mcpwm_isr_register(MCPWM_UNIT_0, isr_handler, NULL, ESP_INTR_FLAG_IRAM, NULL); //Set ISR Handler
//According to the hall sensor input value take action on PWM0A/0B/1A/1B/2A/2B
while (1) {
hall_sensor_value = (gpio_get_level(GPIO_NUM_27) * 1) + (gpio_get_level(GPIO_NUM_26) * 2) + (gpio_get_level(GPIO_NUM_25) * 4);
if (hall_sensor_value != hall_sensor_previous) {
//printf("hall_sen val: %d\n", hall_sensor_value);
if (hall_sensor_value == 2) {
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_A);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_B);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_A);
mcpwm_set_signal_high(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_B);
//MCPWMXA to duty mode 1 and MCPWMXB to duty mode 0 or vice versa will generate MCPWM compliment signal of each other, there are also other ways to do it
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A, MCPWM_DUTY_MODE_1); //Set PWM0A to duty mode one
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_B, MCPWM_DUTY_MODE_0); //Set PWM0B back to duty mode zero
mcpwm_deadtime_enable(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_BYPASS_FED, 100, 100); //Deadtime of 10us
}
if (hall_sensor_value == 6) {
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_B);
mcpwm_deadtime_disable(MCPWM_UNIT_0, MCPWM_TIMER_0);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_A);
mcpwm_set_signal_high(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_B);
//MCPWMXA to duty mode 1 and MCPWMXB to duty mode 0 or vice versa will generate MCPWM compliment signal of each other, there are also other ways to do it
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_A, MCPWM_DUTY_MODE_1); //Set PWM2A to duty mode one
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_B, MCPWM_DUTY_MODE_0); //Set PWM2B back to duty mode zero
mcpwm_deadtime_enable(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_BYPASS_FED, 100, 100); //Deadtime of 10us
}
if (hall_sensor_value == 4) {
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_A);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_B);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A);
mcpwm_set_signal_high(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_B);
//MCPWMXA to duty mode 1 and MCPWMXB to duty mode 0 or vice versa will generate MCPWM compliment signal of each other, there are also other ways to do it
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_A, MCPWM_DUTY_MODE_1); //Set PWM2A to duty mode one
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_B, MCPWM_DUTY_MODE_0); //Set PWM2B back to duty mode zero
mcpwm_deadtime_enable(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_BYPASS_FED, 100, 100); //Deadtime of 10us
}
if (hall_sensor_value == 5) {
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_A);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_B);
mcpwm_deadtime_disable(MCPWM_UNIT_0, MCPWM_TIMER_2);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A);
mcpwm_set_signal_high(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_B);
//MCPWMXA to duty mode 1 and MCPWMXB to duty mode 0 or vice versa will generate MCPWM compliment signal of each other, there are also other ways to do it
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_A, MCPWM_DUTY_MODE_1); //Set PWM1A to duty mode one
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_B, MCPWM_DUTY_MODE_0); //Set PWM1B back to duty mode zero
mcpwm_deadtime_enable(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_BYPASS_FED, 100, 100); //Deadtime of 10uss
}
if (hall_sensor_value == 1) {
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_B);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_A);
mcpwm_set_signal_high(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_B);
//MCPWMXA to duty mode 1 and MCPWMXB to duty mode 0 or vice versa will generate MCPWM compliment signal of each other, there are also other ways to do it
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_A, MCPWM_DUTY_MODE_1); //Set PWM1A to duty mode one
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_B, MCPWM_DUTY_MODE_0); //Set PWM1B back to duty mode zero
mcpwm_deadtime_enable(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_BYPASS_FED, 100, 100); //Deadtime of 10uss
}
if (hall_sensor_value == 3) {
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_A);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_OPR_B);
mcpwm_deadtime_disable(MCPWM_UNIT_0, MCPWM_TIMER_1);
mcpwm_set_signal_low(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_A);
mcpwm_set_signal_high(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_OPR_B);
//MCPWMXA to duty mode 1 and MCPWMXB to duty mode 0 or vice versa will generate MCPWM compliment signal of each other, there are also other ways to do it
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A, MCPWM_DUTY_MODE_1); //Set PWM0A to duty mode one
mcpwm_set_duty_type(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_B, MCPWM_DUTY_MODE_0); //Set PWM0B back to duty mode zero
mcpwm_deadtime_enable(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_BYPASS_FED, 100, 100); //Deadtime of 10us
}
hall_sensor_previous = hall_sensor_value;
}
}
}
void app_main()
{
printf("Testing MCPWM BLDC Control...\n");
//xTaskCreate(change_duty, "change_duty", 2048, NULL, 2, NULL); //uncomment to change duty continuously
cap_queue = xQueueCreate(1, sizeof(capture)); //comment if you don't want to use capture module
//xTaskCreate(gpio_test_signal, "gpio_test_signal", 2048, NULL, 2, NULL);
xTaskCreate(disp_captured_signal, "mcpwm_config", 4096, NULL, 2, NULL); //comment if you don't want to use capture module
xTaskCreate(mcpwm_example_bldc_control, "mcpwm_example_bldc_control", 4096, NULL, 2, NULL);
}

View File

@ -0,0 +1,9 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := mcpwm_brushed_dc_control
include $(IDF_PATH)/make/project.mk

View File

@ -0,0 +1,22 @@
# MCPWM brushed dc motor control Example
This example will show you how to use MCPWM module to control brushed dc motor, you need to make connection between ESP32 and motor driver
This code is tested with L298 motor driver, user needs to make changes according to the driver they use
Motor first moves forward, then backward and then stops for 2 Secs each countinuously
## Step 1: Pin assignment
* GPIO15 is assigned as the enable/input 1 for motor driver
* GPIO16 is assigned as the enable/input 2 for motor driver
## Step 2: Connection
* connect GPIO15 with input 1 of motor driver
* connect GPIO16 with input 2 of motor driver
## Step 3: Initialize MCPWM
* You need to set the frequency and duty cycle of MCPWM timer
* You need to set the MCPWM channel you want to use, and bind the channel with one of the timers

View File

@ -0,0 +1,3 @@
#
# Main Makefile. This is basically the same as a component makefile.
#

View File

@ -0,0 +1,96 @@
/* brushed dc motor control example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
/*
* This example will show you how to use MCPWM module to control brushed dc motor.
* This code is tested with L298 motor driver.
* User may need to make changes according to the motor driver they use.
*/
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_attr.h"
#include "driver/mcpwm.h"
#include "soc/mcpwm_reg.h"
#include "soc/mcpwm_struct.h"
#define GPIO_PWM0A_OUT 15 //Set GPIO 15 as PWM0A
#define GPIO_PWM0B_OUT 16 //Set GPIO 16 as PWM0B
static void mcpwm_example_gpio_initialize()
{
printf("initializing mcpwm gpio...\n");
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM0A, GPIO_PWM0A_OUT);
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM0B, GPIO_PWM0B_OUT);
}
/**
* @brief motor moves in forward direction, with duty cycle = duty %
*/
static void brushed_motor_forward(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num , float duty_cycle)
{
mcpwm_set_signal_low(mcpwm_num, timer_num, MCPWM_OPR_B);
mcpwm_set_duty(mcpwm_num, timer_num, MCPWM_OPR_A, duty_cycle);
mcpwm_set_duty_type(mcpwm_num, timer_num, MCPWM_OPR_A, MCPWM_DUTY_MODE_0); //call this each time, if operator was previously in low/high state
}
/**
* @brief motor moves in backward direction, with duty cycle = duty %
*/
static void brushed_motor_backward(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num , float duty_cycle)
{
mcpwm_set_signal_low(mcpwm_num, timer_num, MCPWM_OPR_A);
mcpwm_set_duty(mcpwm_num, timer_num, MCPWM_OPR_B, duty_cycle);
mcpwm_set_duty_type(mcpwm_num, timer_num, MCPWM_OPR_B, MCPWM_DUTY_MODE_0); //call this each time, if operator was previously in low/high state
}
/**
* @brief motor stop
*/
static void brushed_motor_stop(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
mcpwm_set_signal_low(mcpwm_num, timer_num, MCPWM_OPR_A);
mcpwm_set_signal_low(mcpwm_num, timer_num, MCPWM_OPR_B);
}
/**
* @brief Configure MCPWM module for brushed dc motor
*/
static void mcpwm_example_brushed_motor_control(void *arg)
{
//1. mcpwm gpio initialization
mcpwm_example_gpio_initialize();
//2. initial mcpwm configuration
printf("Configuring Initial Parameters of mcpwm...\n");
mcpwm_config_t pwm_config;
pwm_config.frequency = 1000; //frequency = 500Hz,
pwm_config.cmpr_a = 0; //duty cycle of PWMxA = 0
pwm_config.cmpr_b = 0; //duty cycle of PWMxb = 0
pwm_config.counter_mode = MCPWM_UP_COUNTER;
pwm_config.duty_mode = MCPWM_DUTY_MODE_0;
mcpwm_init(MCPWM_UNIT_0, MCPWM_TIMER_0, &pwm_config); //Configure PWM0A & PWM0B with above settings
while (1) {
brushed_motor_forward(MCPWM_UNIT_0, MCPWM_TIMER_0, 50.0);
vTaskDelay(2000 / portTICK_RATE_MS);
brushed_motor_backward(MCPWM_UNIT_0, MCPWM_TIMER_0, 30.0);
vTaskDelay(2000 / portTICK_RATE_MS);
brushed_motor_stop(MCPWM_UNIT_0, MCPWM_TIMER_0);
vTaskDelay(2000 / portTICK_RATE_MS);
}
}
void app_main()
{
printf("Testing brushed motor...\n");
xTaskCreate(mcpwm_example_brushed_motor_control, "mcpwm_examlpe_brushed_motor_control", 4096, NULL, 5, NULL);
}

View File

@ -0,0 +1,9 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := mcpwm_servo_control
include $(IDF_PATH)/make/project.mk

View File

@ -0,0 +1,19 @@
# MCPWM servo motor control Example
This example will show you how to use MCPWM module to control servo motor
Assign pulse width range and the maximum degree, accordingly the servo will move from 0 to maximum degree continuously
## Step 1: Pin assignment
* GPIO15 is assigned as the MCPWM signal for servo motor
## Step 2: Connection
* connect GPIO15 with servo pwm signal
* other two wires of servo motor are VCC and GND
## Step 3: Initialize MCPWM
* You need to set the frequency(generally 50 Hz) and duty cycle of MCPWM timer
* You need to set the MCPWM channel you want to use, and bind the channel with one of the timers

View File

@ -0,0 +1,3 @@
#
# Main Makefile. This is basically the same as a component makefile.
#

View File

@ -0,0 +1,88 @@
/* servo motor control example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_attr.h"
#include "driver/mcpwm.h"
#include "soc/mcpwm_reg.h"
#include "soc/mcpwm_struct.h"
//You can get these value from the datasheet of servo you use, in general pulse width varies between 1000 to 2000 mocrosecond
#define SERVO_MIN_PULSEWIDTH 1000 //Minimum pulse width in microsecond
#define SERVO_MAX_PULSEWIDTH 2000 //Maximum pulse width in microsecond
#define SERVO_MAX_DEGREE 90 //Maximum angle in degree upto which servo can rotate
static void mcpwm_example_gpio_initialize()
{
printf("initializing mcpwm servo control gpio......\n");
mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM0A, 18); //Set GPIO 18 as PWM0A, to which servo is connected
}
/**
* @brief Use this function to calcute pulse width for per degree rotation
*
* @param degree_of_rotation the angle in degree to which servo has to rotate
*
* @return
* - calculated pulse width
*/
static uint32_t servo_per_degree_init(uint32_t degree_of_rotation)
{
uint32_t cal_pulsewidth = 0;
cal_pulsewidth = (SERVO_MIN_PULSEWIDTH + (((SERVO_MAX_PULSEWIDTH - SERVO_MIN_PULSEWIDTH) * (degree_of_rotation)) / (SERVO_MAX_DEGREE)));
return cal_pulsewidth;
}
/**
* @brief directly set servo motor to a particular angle
*/
static void servo_set_angle(uint32_t angle_of_rotation)
{
uint32_t angle_t;
angle_t = servo_per_degree_init(angle_of_rotation);
mcpwm_set_duty_in_us(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A, angle_t);
}
/**
* @brief Configure MCPWM module
*/
void mcpwm_example_servo_control(void *arg)
{
uint32_t angle, count;
//1. mcpwm gpio initialization
mcpwm_example_gpio_initialize();
//2. initial mcpwm configuration
printf("Configuring Initial Parameters of mcpwm......\n");
mcpwm_config_t pwm_config;
pwm_config.frequency = 50; //frequency = 50Hz, i.e. for every servo motor time period should be 20ms
pwm_config.cmpr_a = 0; //duty cycle of PWMxA = 0
pwm_config.cmpr_b = 0; //duty cycle of PWMxb = 0
pwm_config.counter_mode = MCPWM_UP_COUNTER;
pwm_config.duty_mode = MCPWM_DUTY_MODE_0;
mcpwm_init(MCPWM_UNIT_0, MCPWM_TIMER_0, &pwm_config); //Configure PWM0A & PWM0B with above settings
while (1) {
for (count = 0; count < SERVO_MAX_DEGREE; count++) {
printf("Angle of rotation: %d\n", count);
angle = servo_per_degree_init(count);
printf("pulse width: %dus\n", angle);
mcpwm_set_duty_in_us(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A, angle);
vTaskDelay(10); //Add delay, since it takes time for servo to rotate, generally 100ms/60degree rotation at 5V
}
}
}
void app_main()
{
printf("Testing servo motor.......\n");
xTaskCreate(mcpwm_example_servo_control, "mcpwm_example_servo_control", 4096, NULL, 5, NULL);
}