Set CONFIG_NEWLIB_TIME_SYSCALL_USE_HRT to enable to force CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER to disable
and hence prevent the following tests from being executed:
- Timestamp after abort is correct in case RTC & High-res timer have + big error
- Timestamp after restart is correct in case RTC & High-res timer have + big error
- Timestamp after restart is correct in case RTC & High-res timer have - big error
Moved the following kconfig options out of the target component:
* CONFIG_ESP*_DEFAULT_CPU_FREQ* -> esp_system
* ESP*_REV_MIN -> esp_hw_support
* ESP*_TIME_SYSCALL -> newlib
* ESP*_RTC_* -> esp_hw_support
Where applicable these target specific konfig names were merged into
a single common config, e.g;
CONFIG_ESP*_DEFAULT_CPU_FREQ -> CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ
This commit removes the usage of all legacy FreeRTOS data types that
are exposed via configENABLE_BACKWARD_COMPATIBILITY. Legacy types can
still be used by enabling CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY.
To make the transition from 32-bit time_t to 64-bit time_t smoother,
detect the size of this type in CMake and remove the manual option in
Kconfig.
The information about 64-bit time_t support is moved from Kconfig help
string into the "system time" section of the API reference.
* Target components pull in xtensa component directly
* Use CPU HAL where applicable
* Remove unnecessary xtensa headers
* Compilation changes necessary to support non-xtensa gcc types (ie int32_t/uint32_t is no
longer signed/unsigned int).
Changes come from internal branch commit a6723fc
Using xxx_periph.h in whole IDF instead of xxx_reg.h, xxx_struct.h, xxx_channel.h ... .
Cleaned up header files from unnecessary headers (releated to soc/... headers).
Fixed adjtime function: While using the adjtime() function,
the time correction accumulated an error
when reading the time frequently (using gettimeofday).
New unity component can be used for testing other applications.
Upstream version of Unity is included as a submodule.
Utilities specific to ESP-IDF unit tests (partitions, leak checking
setup/teardown functions, etc) are kept only in unit-test-app.
Kconfig options are added to allow disabling certain Unity features.
This function speeds up or slows down the system clock in order to make a gradual adjustment. This ensures
that the calendar time reported by the system clock is always monotonically increasing, which might not happen
if you simply set the clock.
The delta argument specifies a relative adjustment to be made to the clock time. If negative, the system clock is
slowed down for a while until it has lost this much elapsed time. If positive, the system clock is speeded up for a
while.
If the olddelta argument is not a null pointer, the adjtime function returns information about any previous time
adjustment that has not yet completed.
The return value is 0 on success and -1 on failure.
To stop the adjustement, call the function settimeofday(current_time).
In some cases (when RTC register reads are performed from the APP CPU), a write to FRC_TIMER_INT_REG may be lost on the bus.
Writing to another DPORT register immediately before or after that works around the issue.
We write one dummy value to an address which doesn’t have any register associated with it.
Fixes https://github.com/espressif/arduino-esp32/issues/120