mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
newlib: separate low-level code in time.c implementation
This commit is contained in:
parent
cda9c595d7
commit
a395a00d2c
@ -20,6 +20,7 @@ list(APPEND ldfragments newlib.lf)
|
||||
|
||||
idf_component_register(SRCS "${srcs}"
|
||||
INCLUDE_DIRS "${include_dirs}"
|
||||
PRIV_INCLUDE_DIRS priv_include
|
||||
PRIV_REQUIRES soc esp_timer
|
||||
LDFRAGMENTS "${ldfragments}")
|
||||
|
||||
@ -40,3 +41,5 @@ target_link_libraries(${COMPONENT_LIB} INTERFACE "${EXTRA_LINK_FLAGS}")
|
||||
if(CONFIG_NEWLIB_NANO_FORMAT)
|
||||
target_link_libraries(${COMPONENT_LIB} INTERFACE "--specs=nano.specs")
|
||||
endif()
|
||||
|
||||
add_subdirectory(port)
|
||||
|
@ -12,6 +12,9 @@ ifdef CONFIG_SPIRAM_CACHE_WORKAROUND
|
||||
COMPONENT_ADD_LDFRAGMENTS := esp32-spiram-rom-functions-c.lf
|
||||
endif
|
||||
|
||||
COMPONENT_PRIV_INCLUDEDIRS := priv_include
|
||||
COMPONENT_SRCDIRS := . port
|
||||
|
||||
# Forces the linker to include locks, heap, and syscalls from this component,
|
||||
# instead of the implementations provided by newlib.
|
||||
COMPONENT_ADD_LDFLAGS += -u newlib_include_locks_impl
|
||||
|
@ -17,6 +17,11 @@
|
||||
|
||||
#include <sys/reent.h>
|
||||
|
||||
/*
|
||||
* Initialize newlib time functions
|
||||
*/
|
||||
void esp_newlib_time_init(void);
|
||||
|
||||
/**
|
||||
* Replacement for newlib's _REENT_INIT_PTR and __sinit.
|
||||
*
|
||||
|
1
components/newlib/port/CMakeLists.txt
Normal file
1
components/newlib/port/CMakeLists.txt
Normal file
@ -0,0 +1 @@
|
||||
target_sources(${COMPONENT_LIB} PRIVATE "${CMAKE_CURRENT_LIST_DIR}/esp_time_impl.c")
|
207
components/newlib/port/esp_time_impl.c
Normal file
207
components/newlib/port/esp_time_impl.c
Normal file
@ -0,0 +1,207 @@
|
||||
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include <stdint.h>
|
||||
#include <time.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
#include "esp_timer.h"
|
||||
|
||||
#include "esp_system.h"
|
||||
|
||||
#include "soc/spinlock.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "esp_rom_sys.h"
|
||||
|
||||
#include "esp_time_impl.h"
|
||||
|
||||
#include "sdkconfig.h"
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
#include "esp32/rom/rtc.h"
|
||||
#include "esp32/clk.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32S2
|
||||
#include "esp32s2/rom/rtc.h"
|
||||
#include "esp32s2/clk.h"
|
||||
#endif
|
||||
|
||||
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) \
|
||||
|| defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) \
|
||||
|| defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC ) \
|
||||
|| defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 )
|
||||
#define WITH_RTC 1
|
||||
#endif
|
||||
|
||||
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) \
|
||||
|| defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) \
|
||||
|| defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_FRC1 ) \
|
||||
|| defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 )
|
||||
#define WITH_FRC 1
|
||||
#endif
|
||||
|
||||
// Offset between FRC timer and the RTC.
|
||||
// Initialized after reset or light sleep.
|
||||
#if defined(WITH_RTC) && defined(WITH_FRC)
|
||||
uint64_t s_microseconds_offset;
|
||||
#endif
|
||||
|
||||
#ifndef WITH_RTC
|
||||
static uint64_t s_boot_time; // when RTC is used to persist time, two RTC_STORE registers are used to store boot time instead
|
||||
#endif
|
||||
|
||||
static spinlock_t s_time_lock = SPINLOCK_INITIALIZER;
|
||||
|
||||
#ifdef WITH_RTC
|
||||
static uint64_t get_rtc_time_us(void)
|
||||
{
|
||||
const uint64_t ticks = rtc_time_get();
|
||||
const uint32_t cal = esp_clk_slowclk_cal_get();
|
||||
/* RTC counter result is up to 2^48, calibration factor is up to 2^24,
|
||||
* for a 32kHz clock. We need to calculate (assuming no overflow):
|
||||
* (ticks * cal) >> RTC_CLK_CAL_FRACT
|
||||
*
|
||||
* An overflow in the (ticks * cal) multiplication would cause time to
|
||||
* wrap around after approximately 13 days, which is probably not enough
|
||||
* for some applications.
|
||||
* Therefore multiplication is split into two terms, for the lower 32-bit
|
||||
* and the upper 16-bit parts of "ticks", i.e.:
|
||||
* ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT
|
||||
*/
|
||||
const uint64_t ticks_low = ticks & UINT32_MAX;
|
||||
const uint64_t ticks_high = ticks >> 32;
|
||||
return ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) +
|
||||
((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT));
|
||||
}
|
||||
#endif // WITH_RTC
|
||||
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
uint64_t esp_time_impl_get_time_since_boot(void)
|
||||
{
|
||||
uint64_t microseconds = 0;
|
||||
|
||||
#ifdef WITH_FRC
|
||||
#ifdef WITH_RTC
|
||||
microseconds = s_microseconds_offset + esp_timer_get_time();
|
||||
#else
|
||||
microseconds = esp_timer_get_time();
|
||||
#endif // WITH_RTC
|
||||
#elif defined(WITH_RTC)
|
||||
microseconds = get_rtc_time_us();
|
||||
#endif // WITH_FRC
|
||||
return microseconds;
|
||||
}
|
||||
|
||||
uint64_t esp_time_impl_get_time(void)
|
||||
{
|
||||
#if defined( WITH_FRC )
|
||||
return esp_timer_get_time();
|
||||
#elif defined( WITH_RTC )
|
||||
return get_rtc_time_us();
|
||||
#endif // WITH_FRC
|
||||
}
|
||||
#endif // defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
|
||||
|
||||
void esp_time_impl_set_boot_time(uint64_t time_us)
|
||||
{
|
||||
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
|
||||
#ifdef WITH_RTC
|
||||
REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff));
|
||||
REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32));
|
||||
#else
|
||||
s_boot_time = time_us;
|
||||
#endif
|
||||
spinlock_release(&s_time_lock);
|
||||
}
|
||||
|
||||
uint64_t esp_clk_rtc_time(void)
|
||||
{
|
||||
#ifdef WITH_RTC
|
||||
return esp_rtc_get_time_us();
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
uint64_t esp_time_impl_get_boot_time(void)
|
||||
{
|
||||
uint64_t result;
|
||||
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
|
||||
#ifdef WITH_RTC
|
||||
result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32);
|
||||
#else
|
||||
result = s_boot_time;
|
||||
#endif
|
||||
spinlock_release(&s_time_lock);
|
||||
return result;
|
||||
}
|
||||
|
||||
uint32_t esp_clk_slowclk_cal_get(void)
|
||||
{
|
||||
return REG_READ(RTC_SLOW_CLK_CAL_REG);
|
||||
}
|
||||
|
||||
void esp_clk_slowclk_cal_set(uint32_t new_cal)
|
||||
{
|
||||
#if defined(WITH_RTC)
|
||||
/* To force monotonic time values even when clock calibration value changes,
|
||||
* we adjust boot time, given current time and the new calibration value:
|
||||
* T = boot_time_old + cur_cal * ticks / 2^19
|
||||
* T = boot_time_adj + new_cal * ticks / 2^19
|
||||
* which results in:
|
||||
* boot_time_adj = boot_time_old + ticks * (cur_cal - new_cal) / 2^19
|
||||
*/
|
||||
const int64_t ticks = (int64_t) rtc_time_get();
|
||||
const uint32_t cur_cal = REG_READ(RTC_SLOW_CLK_CAL_REG);
|
||||
int32_t cal_diff = (int32_t) (cur_cal - new_cal);
|
||||
int64_t boot_time_diff = ticks * cal_diff / (1LL << RTC_CLK_CAL_FRACT);
|
||||
uint64_t boot_time_adj = esp_time_impl_get_boot_time() + boot_time_diff;
|
||||
esp_time_impl_set_boot_time(boot_time_adj);
|
||||
#endif // WITH_RTC
|
||||
REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal);
|
||||
}
|
||||
|
||||
void esp_set_time_from_rtc(void)
|
||||
{
|
||||
#if defined( WITH_FRC ) && defined( WITH_RTC )
|
||||
// initialize time from RTC clock
|
||||
s_microseconds_offset = get_rtc_time_us() - esp_timer_get_time();
|
||||
#endif // WITH_FRC && WITH_RTC
|
||||
}
|
||||
|
||||
void esp_sync_counters_rtc_and_frc(void)
|
||||
{
|
||||
#if defined( WITH_FRC ) && defined( WITH_RTC )
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, NULL);
|
||||
settimeofday(&tv, NULL);
|
||||
int64_t s_microseconds_offset_cur = get_rtc_time_us() - esp_timer_get_time();
|
||||
esp_time_impl_set_boot_time(esp_time_impl_get_boot_time() + ((int64_t)s_microseconds_offset - s_microseconds_offset_cur));
|
||||
#endif
|
||||
}
|
||||
|
||||
void esp_time_impl_init(void)
|
||||
{
|
||||
esp_set_time_from_rtc();
|
||||
}
|
||||
|
||||
uint32_t esp_time_impl_get_time_resolution(void)
|
||||
{
|
||||
#if defined( WITH_FRC )
|
||||
return 1L;
|
||||
#elif defined( WITH_RTC )
|
||||
uint32_t rtc_freq = rtc_clk_slow_freq_get_hz();
|
||||
assert(rtc_freq != 0);
|
||||
return 1000000L / rtc_freq;
|
||||
#endif // WITH_FRC
|
||||
}
|
26
components/newlib/priv_include/esp_time_impl.h
Normal file
26
components/newlib/priv_include/esp_time_impl.h
Normal file
@ -0,0 +1,26 @@
|
||||
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#pragma once
|
||||
|
||||
void esp_time_impl_init(void);
|
||||
|
||||
uint64_t esp_time_impl_get_time(void);
|
||||
|
||||
uint64_t esp_time_impl_get_time_since_boot(void);
|
||||
|
||||
uint32_t esp_time_impl_get_time_resolution(void);
|
||||
|
||||
void esp_time_impl_set_boot_time(uint64_t t);
|
||||
|
||||
uint64_t esp_time_impl_get_boot_time(void);
|
@ -13,6 +13,13 @@
|
||||
#include "test_utils.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_rom_sys.h"
|
||||
#include "esp_system.h"
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
#include "esp32/clk.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32S2
|
||||
#include "esp32s2/clk.h"
|
||||
#endif
|
||||
|
||||
#if portNUM_PROCESSORS == 2
|
||||
|
||||
@ -379,8 +386,8 @@ void test_posix_timers_clock (void)
|
||||
ts.tv_nsec = 100000000L;
|
||||
TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0);
|
||||
TEST_ASSERT(gettimeofday(&now, NULL) == 0);
|
||||
TEST_ASSERT(now.tv_sec == ts.tv_sec);
|
||||
TEST_ASSERT_INT_WITHIN(5000L, now.tv_usec, ts.tv_nsec / 1000L);
|
||||
TEST_ASSERT_EQUAL(ts.tv_sec, now.tv_sec);
|
||||
TEST_ASSERT_INT_WITHIN(5000L, ts.tv_nsec / 1000L, now.tv_usec);
|
||||
|
||||
TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
|
||||
|
||||
|
@ -21,26 +21,18 @@
|
||||
#include <sys/reent.h>
|
||||
#include <sys/time.h>
|
||||
#include <sys/times.h>
|
||||
#include <sys/lock.h>
|
||||
|
||||
#include "esp_attr.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_timer.h"
|
||||
#include "soc/soc.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/frc_timer_reg.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/xtensa_api.h"
|
||||
#include "freertos/task.h"
|
||||
#include "limits.h"
|
||||
|
||||
#include "soc/spinlock.h"
|
||||
#include "soc/rtc.h"
|
||||
|
||||
#include "esp_time_impl.h"
|
||||
|
||||
#include "sdkconfig.h"
|
||||
#include "esp_rom_sys.h"
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
#include "esp32/clk.h"
|
||||
#include "esp32/rom/rtc.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32S2
|
||||
#include "esp32s2/clk.h"
|
||||
#include "esp32s2/rom/rtc.h"
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
|
||||
_Static_assert(sizeof(time_t) == 8, "The toolchain does not support time_t wide 64-bits");
|
||||
@ -48,161 +40,95 @@ _Static_assert(sizeof(time_t) == 8, "The toolchain does not support time_t wide
|
||||
_Static_assert(sizeof(time_t) == 4, "The toolchain supports time_t wide 64-bits. Please enable CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS.");
|
||||
#endif
|
||||
|
||||
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 )
|
||||
#define WITH_RTC 1
|
||||
#if !CONFIG_ESP32_TIME_SYSCALL_USE_NONE && !CONFIG_ESP32S2_TIME_SYSCALL_USE_NONE
|
||||
#define IMPL_NEWLIB_TIME_FUNCS 1
|
||||
#endif
|
||||
|
||||
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 )
|
||||
#define WITH_FRC 1
|
||||
#endif
|
||||
|
||||
#ifdef WITH_RTC
|
||||
static uint64_t get_rtc_time_us(void)
|
||||
{
|
||||
const uint64_t ticks = rtc_time_get();
|
||||
const uint32_t cal = esp_clk_slowclk_cal_get();
|
||||
/* RTC counter result is up to 2^48, calibration factor is up to 2^24,
|
||||
* for a 32kHz clock. We need to calculate (assuming no overflow):
|
||||
* (ticks * cal) >> RTC_CLK_CAL_FRACT
|
||||
*
|
||||
* An overflow in the (ticks * cal) multiplication would cause time to
|
||||
* wrap around after approximately 13 days, which is probably not enough
|
||||
* for some applications.
|
||||
* Therefore multiplication is split into two terms, for the lower 32-bit
|
||||
* and the upper 16-bit parts of "ticks", i.e.:
|
||||
* ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT
|
||||
*/
|
||||
const uint64_t ticks_low = ticks & UINT32_MAX;
|
||||
const uint64_t ticks_high = ticks >> 32;
|
||||
return ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) +
|
||||
((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT));
|
||||
}
|
||||
#endif // WITH_RTC
|
||||
|
||||
|
||||
// s_boot_time: time from Epoch to the first boot time
|
||||
#ifdef WITH_RTC
|
||||
// when RTC is used to persist time, two RTC_STORE registers are used to store boot time
|
||||
#elif defined(WITH_FRC)
|
||||
static uint64_t s_boot_time;
|
||||
#endif // WITH_RTC
|
||||
|
||||
#if defined(WITH_RTC) || defined(WITH_FRC)
|
||||
static _lock_t s_boot_time_lock;
|
||||
static _lock_t s_adjust_time_lock;
|
||||
#if IMPL_NEWLIB_TIME_FUNCS
|
||||
// stores the start time of the slew
|
||||
static uint64_t adjtime_start = 0;
|
||||
static uint64_t s_adjtime_start_us;
|
||||
// is how many microseconds total to slew
|
||||
static int64_t adjtime_total_correction = 0;
|
||||
#define ADJTIME_CORRECTION_FACTOR 6
|
||||
static uint64_t get_time_since_boot(void);
|
||||
#endif
|
||||
// Offset between FRC timer and the RTC.
|
||||
// Initialized after reset or light sleep.
|
||||
#if defined(WITH_RTC) && defined(WITH_FRC)
|
||||
uint64_t s_microseconds_offset;
|
||||
#endif
|
||||
static int64_t s_adjtime_total_correction_us;
|
||||
|
||||
#if defined(WITH_RTC) || defined(WITH_FRC)
|
||||
static void set_boot_time(uint64_t time_us)
|
||||
{
|
||||
_lock_acquire(&s_boot_time_lock);
|
||||
#ifdef WITH_RTC
|
||||
REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff));
|
||||
REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32));
|
||||
#else
|
||||
s_boot_time = time_us;
|
||||
#endif
|
||||
_lock_release(&s_boot_time_lock);
|
||||
}
|
||||
|
||||
static uint64_t get_boot_time(void)
|
||||
{
|
||||
uint64_t result;
|
||||
_lock_acquire(&s_boot_time_lock);
|
||||
#ifdef WITH_RTC
|
||||
result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32);
|
||||
#else
|
||||
result = s_boot_time;
|
||||
#endif
|
||||
_lock_release(&s_boot_time_lock);
|
||||
return result;
|
||||
}
|
||||
static spinlock_t s_time_lock = SPINLOCK_INITIALIZER;
|
||||
|
||||
// This function gradually changes boot_time to the correction value and immediately updates it.
|
||||
static uint64_t adjust_boot_time(void)
|
||||
{
|
||||
uint64_t boot_time = get_boot_time();
|
||||
if ((boot_time == 0) || (get_time_since_boot() < adjtime_start)) {
|
||||
adjtime_start = 0;
|
||||
#define ADJTIME_CORRECTION_FACTOR 6
|
||||
|
||||
uint64_t boot_time = esp_time_impl_get_boot_time();
|
||||
if ((boot_time == 0) || (esp_time_impl_get_time_since_boot() < s_adjtime_start_us)) {
|
||||
s_adjtime_start_us = 0;
|
||||
}
|
||||
if (adjtime_start > 0) {
|
||||
uint64_t since_boot = get_time_since_boot();
|
||||
// If to call this function once per second, then (since_boot - adjtime_start) will be 1_000_000 (1 second),
|
||||
if (s_adjtime_start_us > 0) {
|
||||
uint64_t since_boot = esp_time_impl_get_time_since_boot();
|
||||
// If to call this function once per second, then (since_boot - s_adjtime_start_us) will be 1_000_000 (1 second),
|
||||
// and the correction will be equal to (1_000_000us >> 6) = 15_625 us.
|
||||
// The minimum possible correction step can be (64us >> 6) = 1us.
|
||||
// Example: if the time error is 1 second, then it will be compensate for 1 sec / 0,015625 = 64 seconds.
|
||||
int64_t correction = (since_boot >> ADJTIME_CORRECTION_FACTOR) - (adjtime_start >> ADJTIME_CORRECTION_FACTOR);
|
||||
int64_t correction = (since_boot >> ADJTIME_CORRECTION_FACTOR) - (s_adjtime_start_us >> ADJTIME_CORRECTION_FACTOR);
|
||||
if (correction > 0) {
|
||||
adjtime_start = since_boot;
|
||||
if (adjtime_total_correction < 0) {
|
||||
if ((adjtime_total_correction + correction) >= 0) {
|
||||
boot_time = boot_time + adjtime_total_correction;
|
||||
adjtime_start = 0;
|
||||
s_adjtime_start_us = since_boot;
|
||||
if (s_adjtime_total_correction_us < 0) {
|
||||
if ((s_adjtime_total_correction_us + correction) >= 0) {
|
||||
boot_time = boot_time + s_adjtime_total_correction_us;
|
||||
s_adjtime_start_us = 0;
|
||||
} else {
|
||||
adjtime_total_correction += correction;
|
||||
s_adjtime_total_correction_us += correction;
|
||||
boot_time -= correction;
|
||||
}
|
||||
} else {
|
||||
if ((adjtime_total_correction - correction) <= 0) {
|
||||
boot_time = boot_time + adjtime_total_correction;
|
||||
adjtime_start = 0;
|
||||
if ((s_adjtime_total_correction_us - correction) <= 0) {
|
||||
boot_time = boot_time + s_adjtime_total_correction_us;
|
||||
s_adjtime_start_us = 0;
|
||||
} else {
|
||||
adjtime_total_correction -= correction;
|
||||
s_adjtime_total_correction_us -= correction;
|
||||
boot_time += correction;
|
||||
}
|
||||
}
|
||||
set_boot_time(boot_time);
|
||||
esp_time_impl_set_boot_time(boot_time);
|
||||
}
|
||||
}
|
||||
return boot_time;
|
||||
}
|
||||
|
||||
|
||||
// Get the adjusted boot time.
|
||||
static uint64_t get_adjusted_boot_time (void)
|
||||
static uint64_t get_adjusted_boot_time(void)
|
||||
{
|
||||
_lock_acquire(&s_adjust_time_lock);
|
||||
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
|
||||
uint64_t adjust_time = adjust_boot_time();
|
||||
_lock_release(&s_adjust_time_lock);
|
||||
spinlock_release(&s_time_lock);
|
||||
return adjust_time;
|
||||
}
|
||||
|
||||
// Applying the accumulated correction to boot_time and stopping the smooth time adjustment.
|
||||
// Applying the accumulated correction to base_time and stopping the smooth time adjustment.
|
||||
static void adjtime_corr_stop (void)
|
||||
{
|
||||
_lock_acquire(&s_adjust_time_lock);
|
||||
if (adjtime_start != 0){
|
||||
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
|
||||
if (s_adjtime_start_us != 0){
|
||||
adjust_boot_time();
|
||||
adjtime_start = 0;
|
||||
s_adjtime_start_us = 0;
|
||||
}
|
||||
_lock_release(&s_adjust_time_lock);
|
||||
spinlock_release(&s_time_lock);
|
||||
}
|
||||
#endif //defined(WITH_RTC) || defined(WITH_FRC)
|
||||
#endif
|
||||
|
||||
int adjtime(const struct timeval *delta, struct timeval *outdelta)
|
||||
{
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
#if IMPL_NEWLIB_TIME_FUNCS
|
||||
if(outdelta != NULL){
|
||||
_lock_acquire(&s_adjust_time_lock);
|
||||
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
|
||||
adjust_boot_time();
|
||||
if (adjtime_start != 0) {
|
||||
outdelta->tv_sec = adjtime_total_correction / 1000000L;
|
||||
outdelta->tv_usec = adjtime_total_correction % 1000000L;
|
||||
if (s_adjtime_start_us != 0) {
|
||||
outdelta->tv_sec = s_adjtime_total_correction_us / 1000000L;
|
||||
outdelta->tv_usec = s_adjtime_total_correction_us % 1000000L;
|
||||
} else {
|
||||
outdelta->tv_sec = 0;
|
||||
outdelta->tv_usec = 0;
|
||||
}
|
||||
_lock_release(&s_adjust_time_lock);
|
||||
spinlock_release(&s_time_lock);
|
||||
}
|
||||
if(delta != NULL){
|
||||
int64_t sec = delta->tv_sec;
|
||||
@ -215,59 +141,16 @@ int adjtime(const struct timeval *delta, struct timeval *outdelta)
|
||||
* and the delta of the second call is not NULL, the earlier tuning is stopped,
|
||||
* but the already completed part of the adjustment is not canceled.
|
||||
*/
|
||||
_lock_acquire(&s_adjust_time_lock);
|
||||
// If correction is already in progress (adjtime_start != 0), then apply accumulated corrections.
|
||||
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
|
||||
// If correction is already in progress (s_adjtime_start_time_us != 0), then apply accumulated corrections.
|
||||
adjust_boot_time();
|
||||
adjtime_start = get_time_since_boot();
|
||||
adjtime_total_correction = sec * 1000000L + usec;
|
||||
_lock_release(&s_adjust_time_lock);
|
||||
s_adjtime_start_us = esp_time_impl_get_time_since_boot();
|
||||
s_adjtime_total_correction_us = sec * 1000000L + usec;
|
||||
spinlock_release(&s_time_lock);
|
||||
}
|
||||
return 0;
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void esp_clk_slowclk_cal_set(uint32_t new_cal)
|
||||
{
|
||||
#if defined(WITH_RTC)
|
||||
/* To force monotonic time values even when clock calibration value changes,
|
||||
* we adjust boot time, given current time and the new calibration value:
|
||||
* T = boot_time_old + cur_cal * ticks / 2^19
|
||||
* T = boot_time_adj + new_cal * ticks / 2^19
|
||||
* which results in:
|
||||
* boot_time_adj = boot_time_old + ticks * (cur_cal - new_cal) / 2^19
|
||||
*/
|
||||
const int64_t ticks = (int64_t) rtc_time_get();
|
||||
const uint32_t cur_cal = REG_READ(RTC_SLOW_CLK_CAL_REG);
|
||||
int32_t cal_diff = (int32_t) (cur_cal - new_cal);
|
||||
int64_t boot_time_diff = ticks * cal_diff / (1LL << RTC_CLK_CAL_FRACT);
|
||||
uint64_t boot_time_adj = get_boot_time() + boot_time_diff;
|
||||
set_boot_time(boot_time_adj);
|
||||
#endif // WITH_RTC
|
||||
REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal);
|
||||
}
|
||||
|
||||
uint32_t esp_clk_slowclk_cal_get(void)
|
||||
{
|
||||
return REG_READ(RTC_SLOW_CLK_CAL_REG);
|
||||
}
|
||||
|
||||
void esp_set_time_from_rtc(void)
|
||||
{
|
||||
#if defined( WITH_FRC ) && defined( WITH_RTC )
|
||||
// initialize time from RTC clock
|
||||
s_microseconds_offset = get_rtc_time_us() - esp_timer_get_time();
|
||||
#endif // WITH_FRC && WITH_RTC
|
||||
}
|
||||
|
||||
uint64_t esp_clk_rtc_time(void)
|
||||
{
|
||||
#ifdef WITH_RTC
|
||||
return get_rtc_time_us();
|
||||
#else
|
||||
return 0;
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -283,29 +166,13 @@ clock_t IRAM_ATTR _times_r(struct _reent *r, struct tms *ptms)
|
||||
return (clock_t) tv.tv_sec;
|
||||
}
|
||||
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
static uint64_t get_time_since_boot(void)
|
||||
{
|
||||
uint64_t microseconds = 0;
|
||||
#ifdef WITH_FRC
|
||||
#ifdef WITH_RTC
|
||||
microseconds = s_microseconds_offset + esp_timer_get_time();
|
||||
#else
|
||||
microseconds = esp_timer_get_time();
|
||||
#endif // WITH_RTC
|
||||
#elif defined(WITH_RTC)
|
||||
microseconds = get_rtc_time_us();
|
||||
#endif // WITH_FRC
|
||||
return microseconds;
|
||||
}
|
||||
#endif // defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
|
||||
int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz)
|
||||
{
|
||||
(void) tz;
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
|
||||
#if IMPL_NEWLIB_TIME_FUNCS
|
||||
if (tv) {
|
||||
uint64_t microseconds = get_adjusted_boot_time() + get_time_since_boot();
|
||||
uint64_t microseconds = get_adjusted_boot_time() + esp_time_impl_get_time_since_boot();
|
||||
tv->tv_sec = microseconds / 1000000;
|
||||
tv->tv_usec = microseconds % 1000000;
|
||||
}
|
||||
@ -313,18 +180,18 @@ int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz)
|
||||
#else
|
||||
__errno_r(r) = ENOSYS;
|
||||
return -1;
|
||||
#endif // defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
#endif
|
||||
}
|
||||
|
||||
int settimeofday(const struct timeval *tv, const struct timezone *tz)
|
||||
{
|
||||
(void) tz;
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
#if IMPL_NEWLIB_TIME_FUNCS
|
||||
if (tv) {
|
||||
adjtime_corr_stop();
|
||||
uint64_t now = ((uint64_t) tv->tv_sec) * 1000000LL + tv->tv_usec;
|
||||
uint64_t since_boot = get_time_since_boot();
|
||||
set_boot_time(now - since_boot);
|
||||
uint64_t since_boot = esp_time_impl_get_time_since_boot();
|
||||
esp_time_impl_set_boot_time(now - since_boot);
|
||||
}
|
||||
return 0;
|
||||
#else
|
||||
@ -353,48 +220,9 @@ unsigned int sleep(unsigned int seconds)
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint32_t system_get_time(void)
|
||||
int clock_settime(clockid_t clock_id, const struct timespec *tp)
|
||||
{
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
return get_time_since_boot();
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
uint32_t system_get_current_time(void) __attribute__((alias("system_get_time")));
|
||||
|
||||
uint32_t system_relative_time(uint32_t current_time)
|
||||
{
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
return get_time_since_boot() - current_time;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
uint64_t system_get_rtc_time(void)
|
||||
{
|
||||
#ifdef WITH_RTC
|
||||
return get_rtc_time_us();
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
void esp_sync_counters_rtc_and_frc(void)
|
||||
{
|
||||
#if defined( WITH_FRC ) && defined( WITH_RTC )
|
||||
adjtime_corr_stop();
|
||||
int64_t s_microseconds_offset_cur = get_rtc_time_us() - esp_timer_get_time();
|
||||
set_boot_time(get_adjusted_boot_time() + ((int64_t)s_microseconds_offset - s_microseconds_offset_cur));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
int clock_settime (clockid_t clock_id, const struct timespec *tp)
|
||||
{
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
#if IMPL_NEWLIB_TIME_FUNCS
|
||||
if (tp == NULL) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
@ -419,7 +247,7 @@ int clock_settime (clockid_t clock_id, const struct timespec *tp)
|
||||
|
||||
int clock_gettime (clockid_t clock_id, struct timespec *tp)
|
||||
{
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
#if IMPL_NEWLIB_TIME_FUNCS
|
||||
if (tp == NULL) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
@ -433,11 +261,7 @@ int clock_gettime (clockid_t clock_id, struct timespec *tp)
|
||||
tp->tv_nsec = tv.tv_usec * 1000L;
|
||||
break;
|
||||
case CLOCK_MONOTONIC:
|
||||
#if defined( WITH_FRC )
|
||||
monotonic_time_us = (uint64_t) esp_timer_get_time();
|
||||
#elif defined( WITH_RTC )
|
||||
monotonic_time_us = get_rtc_time_us();
|
||||
#endif // WITH_FRC
|
||||
monotonic_time_us = esp_time_impl_get_time();
|
||||
tp->tv_sec = monotonic_time_us / 1000000LL;
|
||||
tp->tv_nsec = (monotonic_time_us % 1000000LL) * 1000L;
|
||||
break;
|
||||
@ -454,23 +278,23 @@ int clock_gettime (clockid_t clock_id, struct timespec *tp)
|
||||
|
||||
int clock_getres (clockid_t clock_id, struct timespec *res)
|
||||
{
|
||||
#if defined( WITH_FRC ) || defined( WITH_RTC )
|
||||
#if IMPL_NEWLIB_TIME_FUNCS
|
||||
if (res == NULL) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
#if defined( WITH_FRC )
|
||||
|
||||
res->tv_sec = 0;
|
||||
res->tv_nsec = 1000L;
|
||||
#elif defined( WITH_RTC )
|
||||
res->tv_sec = 0;
|
||||
uint32_t rtc_freq = rtc_clk_slow_freq_get_hz();
|
||||
assert(rtc_freq != 0);
|
||||
res->tv_nsec = 1000000000L / rtc_freq;
|
||||
#endif // WITH_FRC
|
||||
res->tv_nsec = esp_time_impl_get_time_resolution() * 1000;
|
||||
|
||||
return 0;
|
||||
#else
|
||||
errno = ENOSYS;
|
||||
return -1;
|
||||
#endif
|
||||
}
|
||||
|
||||
void esp_newlib_time_init(void)
|
||||
{
|
||||
esp_time_impl_init();
|
||||
}
|
Loading…
Reference in New Issue
Block a user