modem retention: Support esp32c6 wifi MAC and baseband sleep retention
sleep_modem: wifi MAC modem wakeup protect in modem state before PMU trigger sleep enable request
sleep modem: provide a interface to get whether the Modem power domain is allowed to power off during sleep
add i2c_ana master header file to project
auto beacon: release PMU's lock on root clock source (it is locked in the PLL)
wifi receiving beacon frame in PMU modem state strongly depends on the BBPLL
clock, PMU will forcibly lock the root clock source as PLL, when the root
clock source of the software system is selected as PLL, we need to release
the root clock source locking.
When it is judged that the PLL is locked by PMU after wakeing up from the PMU
modem state, switch the root clock source to the PLL in the sleep process (a
critical section).
auto beacon: fix the failure to receive broadcast/multicast frames in modem state
When the multicast field in the beacon frame received in the PMU modem state is
True, the PMU switches to the PMU active state (the PMU waits for the HP LDO to
stabilize and then restores the MAC context) and starts to receive
broadcast/multicast frames (Broadcast/Multicast frames will be sent after a
minimum delay of 48 us after the beacon frame), because the PMU waits for the HP
LDO to stabilize too long (~154 us), which will cause broadcast/multicast frame
reception to be missed.
auto beacon: select the PLL clock source as the REGDMA backup clock source when the PMU switches to ACTIVE from MODEM state
update Digital Peripheral (M2A switch) REGDMA restore time parameter
auto beacon: fix the issue that only channel 1 can connect to AP in modem state
Initialize the pmu sleep machine constant when pmu is initialized, and calculate
the pmu sleep time adjustment value and hardware configuration value according
to the machine constant during system sleep.
Calibrate fast OSC before each sleep and use the calibration value to calculate
PMU hardware wait cycles when use the fast OSC as the work clock.
1. Fix deep sleep wakeup IOs can not be unhold issue
2. Correct hold related APIs' description
3. Fix gpio_force_hold_all API
docs: Add GPIO wakeup source to sleep_modes doc for ESP32C3 and C2
light sleep wakeup flag is true to indicate the most recent successful wakeup from light sleep,
which means the most recent light sleep occurred successfully and then wakes up by wakeup source
ESP32-C2 has a single group timer, thus it will use it for the interrupt watchdog,
which is more critical than the task watchdog. The latter is implement in
software thanks to the `esp_timer`component.
esp_light_sleep_start() will stall the other CPU via esp_ipc_isr_stall_other_cpu(). After stalling the other CPU,
will call esp_clk_... API which themselves take locks. If the other stalled CPU is holding those locks, this will
result in a deadlock.
This commit adds a workaround calling esp_clk_private_lock() to take the lock before stalling the other CPU.
Since cpu retention dma use rc fast as clk source, so rc_fast_digi
will be enabled when we config to pd cpu. And cpu retention does not
need rc fast keep on during light sleep. So, if we use rc_fast_digi
to determine whether rc fast can be powered down, then cpu and and
rc fast cannot pd at the same time.
This commit marks all functions in interrupt_controller_hal.h, cpu_ll.h and cpu_hal.h as deprecated.
Users should use functions from esp_cpu.h instead.
This function removes the following legacy atomic CAS functions:
From compare_set.h (file removed):
- compare_and_set_native()
- compare_and_set_extram()
From portmacro.h
- uxPortCompareSet()
- uxPortCompareSetExtram()
Users should call esp_cpu_compare_and_set() instead as this function hides the details
of atomic CAS on internal and external RAM addresses.
Due to the removal of compare_set.h, some missing header includes are also fixed in this commit.
When enable sleep reject before this fix, we have two limitations:
1. it must be light sleep
2. RTC GPIO wakeup source must be set
We require light sleep because `esp_deep_sleep_start` function has
been declared with "noreturn" attribute, So developers don't expect
that this function may return (due to an error or a sleep reject).
But the requirement for RTC GPIO wakeup source is not reasonable for
all chips. This requirement exists because ESP32 only supports RTC GPIO
and SDIO sleep reject sources. But later chips support all sleep reject
sources.
This fix brings the following changes:
for ESP32: RTC GPIO and SDIO sleep reject sources can be enabled
when corresponding wakeup source is set.
for later chips: all sleep reject sources can be enabled when
corresponding wakeup source is set.
Since ulp wakeup signal are connected to ulp int raw(except esp32), we
need to clear ulp int raw before sleep when ulp wakeup enabled. Otherwise,
if the ulp int raw is already set, chip will not sleep properly.
Closes https://github.com/espressif/esp-idf/issues/6229
introduced in e44ead5356
1. The int8M power domain config by default is PD. While LEDC is using
RTC8M as clock source, this power domain will be kept on.
But when 8MD256 is used as RTC clock source, the power domain should
also be kept on.
On ESP32, there was protection for it, but broken by commit
e44ead5356. Currently the power domain
will be forced on when LEDC is using RTC8M as clock source &&
!int8m_pd_en (user enable ESP_PDP_DOMAIN_RTC8M in lightsleep). Otherwise
the power domain will be powered off, regardless of RTC clock source.
In other words, int8M domain will be forced off (even when 8MD256
used as RTC clock source) if LEDC not using RTC8M as clock source, user
doesn't enable ESP_PDP_DOMAIN_RTC8M, or in deep sleep.
On later chips, there's no such protection, so 8MD256 could't be used as
RTC clock source in sleep modes.
This commit adds protection of 8MD256 clock to other chips. Fixes the
incorrect protection logic overriding on ESP32. Now the power domain
will be determiend by the logic below (order by priority):
1. When RTC clock source uses 8MD256, power up
2. When LEDC uses RTC8M clock source, power up
3. In deepsleep, power down
4. Otherwise determined by user config of ESP_PDP_DOMAIN_RTC8M,
power down by default. (This is preferred to have highest
priority, but it's kept as is because of current code structure.)
2. Before, after the macro `RTC_SLEEP_CONFIG_DEFAULT` decides dbias, the
protection above may force the int8m PU. This may cause the inconsistent
of dbias and the int8m PU status.
This commit lifts the logic of pd int8m/xtal fpu logic to upper layer
(sleep_modes.c).
Related: https://github.com/espressif/esp-idf/issues/8007, https://github.com/espressif/esp-idf/pull/8089
temp
Moved the following kconfig options out of the target component:
* CONFIG_ESP*_DEFAULT_CPU_FREQ* -> esp_system
* ESP*_REV_MIN -> esp_hw_support
* ESP*_TIME_SYSCALL -> newlib
* ESP*_RTC_* -> esp_hw_support
Where applicable these target specific konfig names were merged into
a single common config, e.g;
CONFIG_ESP*_DEFAULT_CPU_FREQ -> CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ
This commit refactors the ulp component.
Files are now divided based on type of ulp, viz., fsm or risc-v.
Files common to both are maintained in the ulp_common folder.
This commit also adds menuconfig options for ULP within the ulp
component instead of presenting target specific configuations for ulp.