esp-idf/components/esp_pm/pm_impl.c

890 lines
29 KiB
C
Raw Normal View History

// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
2019-05-09 23:34:06 -04:00
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_pm.h"
#include "esp_log.h"
2019-05-09 23:34:06 -04:00
#include "esp_private/crosscore_int.h"
#include "soc/rtc.h"
#include "hal/cpu_hal.h"
2020-07-27 02:06:59 -04:00
#include "hal/uart_ll.h"
#include "hal/uart_types.h"
2019-05-09 23:34:06 -04:00
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
2020-12-03 21:19:39 -05:00
#if __XTENSA__
2019-05-09 23:34:06 -04:00
#include "freertos/xtensa_timer.h"
#include "xtensa/core-macros.h"
2020-12-03 21:19:39 -05:00
#endif
2019-05-09 23:34:06 -04:00
#include "esp_private/pm_impl.h"
#include "esp_private/pm_trace.h"
#include "esp_private/esp_timer_private.h"
2020-02-12 06:41:52 -05:00
#include "esp_sleep.h"
2019-05-09 23:34:06 -04:00
#include "sdkconfig.h"
2020-09-14 00:15:00 -04:00
// [refactor-todo] opportunity for further refactor
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/clk.h"
#include "esp32/pm.h"
#include "driver/gpio.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/clk.h"
#include "esp32s2/pm.h"
#include "driver/gpio.h"
2020-09-14 00:15:00 -04:00
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/clk.h"
#include "esp32s3/pm.h"
2020-12-03 21:19:39 -05:00
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/clk.h"
#include "esp32c3/pm.h"
#include "driver/gpio.h"
#include "esp_private/sleep_modes.h"
#endif
#define MHZ (1000000)
2020-12-03 21:19:39 -05:00
#if __XTENSA__
2019-05-09 23:34:06 -04:00
/* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
* for the purpose of detecting a deadlock.
*/
#define CCOMPARE_UPDATE_TIMEOUT 1000000
/* When changing CCOMPARE, don't allow changes if the difference is less
* than this. This is to prevent setting CCOMPARE below CCOUNT.
*/
#define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
2020-12-03 21:19:39 -05:00
#endif
2019-05-09 23:34:06 -04:00
/* When light sleep is used, wake this number of microseconds earlier than
* the next tick.
*/
#define LIGHT_SLEEP_EARLY_WAKEUP_US 100
#if CONFIG_IDF_TARGET_ESP32
/* Minimal divider at which REF_CLK_FREQ can be obtained */
#define REF_CLK_DIV_MIN 10
#define DEFAULT_CPU_FREQ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
#elif CONFIG_IDF_TARGET_ESP32S2
2020-02-12 06:41:52 -05:00
/* Minimal divider at which REF_CLK_FREQ can be obtained */
#define REF_CLK_DIV_MIN 2
#define DEFAULT_CPU_FREQ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
2020-09-14 00:15:00 -04:00
#elif CONFIG_IDF_TARGET_ESP32S3
/* Minimal divider at which REF_CLK_FREQ can be obtained */
#define REF_CLK_DIV_MIN 2
#define DEFAULT_CPU_FREQ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
2020-12-03 21:19:39 -05:00
#elif CONFIG_IDF_TARGET_ESP32C3
#define REF_CLK_DIV_MIN 2
#define DEFAULT_CPU_FREQ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
#endif
2019-05-09 23:34:06 -04:00
#ifdef CONFIG_PM_PROFILING
#define WITH_PROFILING
#endif
static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
/* The following state variables are protected using s_switch_lock: */
/* Current sleep mode; When switching, contains old mode until switch is complete */
static pm_mode_t s_mode = PM_MODE_CPU_MAX;
/* True when switch is in progress */
static volatile bool s_is_switching;
/* Number of times each mode was locked */
static size_t s_mode_lock_counts[PM_MODE_COUNT];
/* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
static uint32_t s_mode_mask;
2020-02-12 06:41:52 -05:00
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
#define PERIPH_SKIP_LIGHT_SLEEP_NO 1
/* Indicates if light sleep shoule be skipped by peripherals. */
static skip_light_sleep_cb_t s_periph_skip_light_sleep_cb[PERIPH_SKIP_LIGHT_SLEEP_NO];
2020-02-12 06:41:52 -05:00
/* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
* This in turn gets used in IDLE hook to decide if `waiti` needs
* to be invoked or not.
*/
static bool s_skipped_light_sleep[portNUM_PROCESSORS];
#if portNUM_PROCESSORS == 2
/* When light sleep is finished on one CPU, it is possible that the other CPU
* will enter light sleep again very soon, before interrupts on the first CPU
* get a chance to run. To avoid such situation, set a flag for the other CPU to
* skip light sleep attempt.
*/
static bool s_skip_light_sleep[portNUM_PROCESSORS];
#endif // portNUM_PROCESSORS == 2
#endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
2019-05-09 23:34:06 -04:00
/* A flag indicating that Idle hook has run on a given CPU;
* Next interrupt on the same CPU will take s_rtos_lock_handle.
*/
static bool s_core_idle[portNUM_PROCESSORS];
2020-02-12 06:41:52 -05:00
/* When no RTOS tasks are active, these locks are released to allow going into
* a lower power mode. Used by ISR hook and idle hook.
2019-05-09 23:34:06 -04:00
*/
2020-02-12 06:41:52 -05:00
static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
2019-05-09 23:34:06 -04:00
2020-02-12 06:41:52 -05:00
/* Lookup table of CPU frequency configs to be used in each mode.
* Initialized by esp_pm_impl_init and modified by esp_pm_configure.
2019-05-09 23:34:06 -04:00
*/
static rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
2019-05-09 23:34:06 -04:00
/* Whether automatic light sleep is enabled */
static bool s_light_sleep_en = false;
/* When configuration is changed, current frequency may not match the
* newly configured frequency for the current mode. This is an indicator
* to the mode switch code to get the actual current frequency instead of
* relying on the current mode.
*/
static bool s_config_changed = false;
#ifdef WITH_PROFILING
/* Time, in microseconds, spent so far in each mode */
static pm_time_t s_time_in_mode[PM_MODE_COUNT];
/* Timestamp, in microseconds, when the mode switch last happened */
static pm_time_t s_last_mode_change_time;
/* User-readable mode names, used by esp_pm_impl_dump_stats */
static const char* s_mode_names[] = {
"SLEEP",
"APB_MIN",
"APB_MAX",
"CPU_MAX"
};
#endif // WITH_PROFILING
2020-12-03 21:19:39 -05:00
#if __XTENSA__
/* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
* Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
*/
static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
/* Divider and multiplier used to adjust (ccompare - ccount) duration.
* Only set to non-zero values when switch is in progress.
*/
static uint32_t s_ccount_div;
static uint32_t s_ccount_mul;
2019-05-09 23:34:06 -04:00
2019-08-11 22:06:07 -04:00
static void update_ccompare(void);
2020-12-03 21:19:39 -05:00
#endif // __XTENSA__
static const char* TAG = "pm";
2019-05-09 23:34:06 -04:00
static void do_switch(pm_mode_t new_mode);
2019-08-11 22:06:07 -04:00
static void leave_idle(void);
2019-05-09 23:34:06 -04:00
static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
#if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz);
#endif
2019-05-09 23:34:06 -04:00
pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
{
(void) arg;
if (type == ESP_PM_CPU_FREQ_MAX) {
return PM_MODE_CPU_MAX;
} else if (type == ESP_PM_APB_FREQ_MAX) {
return PM_MODE_APB_MAX;
} else if (type == ESP_PM_NO_LIGHT_SLEEP) {
return PM_MODE_APB_MIN;
} else {
// unsupported mode
abort();
}
}
esp_err_t esp_pm_configure(const void* vconfig)
{
#ifndef CONFIG_PM_ENABLE
return ESP_ERR_NOT_SUPPORTED;
#endif
#if CONFIG_IDF_TARGET_ESP32
const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
#elif CONFIG_IDF_TARGET_ESP32S2
2020-07-27 02:06:59 -04:00
const esp_pm_config_esp32s2_t* config = (const esp_pm_config_esp32s2_t*) vconfig;
2020-09-14 00:15:00 -04:00
#elif CONFIG_IDF_TARGET_ESP32S3
const esp_pm_config_esp32s3_t* config = (const esp_pm_config_esp32s3_t*) vconfig;
2020-12-03 21:19:39 -05:00
#elif CONFIG_IDF_TARGET_ESP32C3
const esp_pm_config_esp32c3_t* config = (const esp_pm_config_esp32c3_t*) vconfig;
#endif
2019-05-09 23:34:06 -04:00
#ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
if (config->light_sleep_enable) {
return ESP_ERR_NOT_SUPPORTED;
}
#endif
2020-02-12 06:41:52 -05:00
int min_freq_mhz = config->min_freq_mhz;
int max_freq_mhz = config->max_freq_mhz;
2019-05-09 23:34:06 -04:00
if (min_freq_mhz > max_freq_mhz) {
return ESP_ERR_INVALID_ARG;
}
2020-02-12 06:41:52 -05:00
rtc_cpu_freq_config_t freq_config;
if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
return ESP_ERR_INVALID_ARG;
}
int xtal_freq_mhz = (int) rtc_clk_xtal_freq_get();
if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
return ESP_ERR_INVALID_ARG;
}
if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
return ESP_ERR_INVALID_ARG;
2019-05-09 23:34:06 -04:00
}
#if CONFIG_IDF_TARGET_ESP32
int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
if (max_freq_mhz == 240) {
/* We can't switch between 240 and 80/160 without disabling PLL,
* so use 240MHz CPU frequency when 80MHz APB frequency is requested.
*/
apb_max_freq = 240;
} else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
/* Otherwise, can use 80MHz
* CPU frequency when 80MHz APB frequency is requested.
*/
apb_max_freq = 80;
}
2020-12-03 21:19:39 -05:00
#else
2020-02-12 06:41:52 -05:00
int apb_max_freq = MIN(max_freq_mhz, 80); /* CPU frequency in APB_MAX mode */
#endif
2020-02-12 06:41:52 -05:00
apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
2019-05-09 23:34:06 -04:00
ESP_LOGI(TAG, "Frequency switching config: "
2020-02-12 06:41:52 -05:00
"CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
max_freq_mhz,
apb_max_freq,
min_freq_mhz,
2019-05-09 23:34:06 -04:00
config->light_sleep_enable ? "ENABLED" : "DISABLED");
portENTER_CRITICAL(&s_switch_lock);
bool res = false;
res = rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
2020-02-12 06:41:52 -05:00
assert(res);
res = rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
assert(res);
res = rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
assert(res);
s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
2019-05-09 23:34:06 -04:00
s_light_sleep_en = config->light_sleep_enable;
s_config_changed = true;
portEXIT_CRITICAL(&s_switch_lock);
#if CONFIG_PM_SLP_DISABLE_GPIO
esp_sleep_enable_gpio_switch(config->light_sleep_enable);
#endif
#if CONFIG_ESP_SYSTEM_PM_POWER_DOWN_CPU && SOC_PM_SUPPORT_CPU_PD
esp_err_t ret = esp_sleep_cpu_pd_low_init(config->light_sleep_enable);
if (config->light_sleep_enable && ret != ESP_OK) {
ESP_LOGW(TAG, "Failed to enable CPU power down during light sleep.");
}
#endif
#if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
if (config->light_sleep_enable) {
esp_pm_light_sleep_default_params_config(min_freq_mhz, max_freq_mhz);
}
#endif
2019-05-09 23:34:06 -04:00
return ESP_OK;
}
esp_err_t esp_pm_get_configuration(void* vconfig)
{
if (vconfig == NULL) {
return ESP_ERR_INVALID_ARG;
}
#if CONFIG_IDF_TARGET_ESP32
esp_pm_config_esp32_t* config = (esp_pm_config_esp32_t*) vconfig;
#elif CONFIG_IDF_TARGET_ESP32S2
esp_pm_config_esp32s2_t* config = (esp_pm_config_esp32s2_t*) vconfig;
#elif CONFIG_IDF_TARGET_ESP32S3
esp_pm_config_esp32s3_t* config = (esp_pm_config_esp32s3_t*) vconfig;
#elif CONFIG_IDF_TARGET_ESP32C3
esp_pm_config_esp32c3_t* config = (esp_pm_config_esp32c3_t*) vconfig;
#endif
portENTER_CRITICAL(&s_switch_lock);
config->light_sleep_enable = s_light_sleep_en;
config->max_freq_mhz = s_cpu_freq_by_mode[PM_MODE_CPU_MAX].freq_mhz;
config->min_freq_mhz = s_cpu_freq_by_mode[PM_MODE_APB_MIN].freq_mhz;
portEXIT_CRITICAL(&s_switch_lock);
return ESP_OK;
}
2019-08-11 22:06:07 -04:00
static pm_mode_t IRAM_ATTR get_lowest_allowed_mode(void)
2019-05-09 23:34:06 -04:00
{
/* TODO: optimize using ffs/clz */
if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
return PM_MODE_CPU_MAX;
} else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
return PM_MODE_APB_MAX;
} else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
return PM_MODE_APB_MIN;
} else {
return PM_MODE_LIGHT_SLEEP;
}
}
void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
pm_mode_switch_t lock_or_unlock, pm_time_t now)
{
bool need_switch = false;
uint32_t mode_mask = BIT(mode);
2020-02-12 06:41:52 -05:00
portENTER_CRITICAL_SAFE(&s_switch_lock);
2019-05-09 23:34:06 -04:00
uint32_t count;
if (lock_or_unlock == MODE_LOCK) {
count = ++s_mode_lock_counts[mode];
} else {
count = s_mode_lock_counts[mode]--;
}
if (count == 1) {
if (lock_or_unlock == MODE_LOCK) {
s_mode_mask |= mode_mask;
} else {
s_mode_mask &= ~mode_mask;
}
need_switch = true;
}
pm_mode_t new_mode = s_mode;
if (need_switch) {
new_mode = get_lowest_allowed_mode();
#ifdef WITH_PROFILING
if (s_last_mode_change_time != 0) {
pm_time_t diff = now - s_last_mode_change_time;
s_time_in_mode[s_mode] += diff;
}
s_last_mode_change_time = now;
#endif // WITH_PROFILING
}
2020-02-12 06:41:52 -05:00
portEXIT_CRITICAL_SAFE(&s_switch_lock);
2022-02-23 08:50:37 -05:00
if (need_switch) {
2019-05-09 23:34:06 -04:00
do_switch(new_mode);
}
}
/**
* @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
* values on both CPUs.
* @param old_ticks_per_us old CPU frequency
* @param ticks_per_us new CPU frequency
*/
static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
{
uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
/* Update APB frequency value used by the timer */
if (old_apb_ticks_per_us != apb_ticks_per_us) {
esp_timer_private_update_apb_freq(apb_ticks_per_us);
2019-05-09 23:34:06 -04:00
}
2020-12-03 21:19:39 -05:00
#if __XTENSA__
#ifdef XT_RTOS_TIMER_INT
2019-05-09 23:34:06 -04:00
/* Calculate new tick divisor */
2020-02-12 06:41:52 -05:00
_xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
2020-12-03 21:19:39 -05:00
#endif
2019-05-09 23:34:06 -04:00
int core_id = xPortGetCoreID();
if (s_rtos_lock_handle[core_id] != NULL) {
ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
/* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
* to calculate new CCOMPARE value.
*/
s_ccount_div = old_ticks_per_us;
s_ccount_mul = ticks_per_us;
/* Update CCOMPARE value on this CPU */
update_ccompare();
#if portNUM_PROCESSORS == 2
/* Send interrupt to the other CPU to update CCOMPARE value */
int other_core_id = (core_id == 0) ? 1 : 0;
s_need_update_ccompare[other_core_id] = true;
esp_crosscore_int_send_freq_switch(other_core_id);
int timeout = 0;
while (s_need_update_ccompare[other_core_id]) {
if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
assert(false && "failed to update CCOMPARE, possible deadlock");
}
}
#endif // portNUM_PROCESSORS == 2
s_ccount_mul = 0;
s_ccount_div = 0;
ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
}
2020-12-03 21:19:39 -05:00
#endif // __XTENSA__
2019-05-09 23:34:06 -04:00
}
/**
* Perform the switch to new power mode.
* Currently only changes the CPU frequency and adjusts clock dividers.
* No light sleep yet.
* @param new_mode mode to switch to
*/
static void IRAM_ATTR do_switch(pm_mode_t new_mode)
{
const int core_id = xPortGetCoreID();
do {
portENTER_CRITICAL_ISR(&s_switch_lock);
if (!s_is_switching) {
break;
}
2020-12-03 21:19:39 -05:00
#if __XTENSA__
2019-05-09 23:34:06 -04:00
if (s_need_update_ccompare[core_id]) {
s_need_update_ccompare[core_id] = false;
}
2020-12-03 21:19:39 -05:00
#endif
2019-05-09 23:34:06 -04:00
portEXIT_CRITICAL_ISR(&s_switch_lock);
} while (true);
2022-02-23 08:50:37 -05:00
if (new_mode == s_mode) {
portEXIT_CRITICAL_ISR(&s_switch_lock);
return;
}
2019-05-09 23:34:06 -04:00
s_is_switching = true;
bool config_changed = s_config_changed;
s_config_changed = false;
portEXIT_CRITICAL_ISR(&s_switch_lock);
2020-02-12 06:41:52 -05:00
rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
rtc_cpu_freq_config_t old_config;
2019-05-09 23:34:06 -04:00
if (!config_changed) {
2020-02-12 06:41:52 -05:00
old_config = s_cpu_freq_by_mode[s_mode];
2019-05-09 23:34:06 -04:00
} else {
2020-02-12 06:41:52 -05:00
rtc_clk_cpu_freq_get_config(&old_config);
2019-05-09 23:34:06 -04:00
}
2020-02-12 06:41:52 -05:00
if (new_config.freq_mhz != old_config.freq_mhz) {
uint32_t old_ticks_per_us = old_config.freq_mhz;
uint32_t new_ticks_per_us = new_config.freq_mhz;
2019-05-09 23:34:06 -04:00
bool switch_down = new_ticks_per_us < old_ticks_per_us;
ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
if (switch_down) {
on_freq_update(old_ticks_per_us, new_ticks_per_us);
}
2020-02-12 06:41:52 -05:00
rtc_clk_cpu_freq_set_config_fast(&new_config);
2019-05-09 23:34:06 -04:00
if (!switch_down) {
on_freq_update(old_ticks_per_us, new_ticks_per_us);
}
ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
}
portENTER_CRITICAL_ISR(&s_switch_lock);
s_mode = new_mode;
s_is_switching = false;
portEXIT_CRITICAL_ISR(&s_switch_lock);
}
2020-12-03 21:19:39 -05:00
#if __XTENSA__
2019-05-09 23:34:06 -04:00
/**
* @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
*
* Adjusts CCOMPARE value so that the interrupt happens at the same time as it
* would happen without the frequency change.
* Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
*/
2019-08-11 22:06:07 -04:00
static void IRAM_ATTR update_ccompare(void)
2019-05-09 23:34:06 -04:00
{
uint32_t ccount = cpu_hal_get_cycle_count();
2019-05-09 23:34:06 -04:00
uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
uint32_t diff = ccompare - ccount;
uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
if (diff_scaled < _xt_tick_divisor) {
uint32_t new_ccompare = ccount + diff_scaled;
XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
}
}
}
2020-12-03 21:19:39 -05:00
#endif // __XTENSA__
2019-05-09 23:34:06 -04:00
2019-08-11 22:06:07 -04:00
static void IRAM_ATTR leave_idle(void)
2019-05-09 23:34:06 -04:00
{
int core_id = xPortGetCoreID();
if (s_core_idle[core_id]) {
// TODO: possible optimization: raise frequency here first
esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
s_core_idle[core_id] = false;
}
}
2020-02-12 06:41:52 -05:00
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
esp_err_t esp_pm_register_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
{
for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
if (s_periph_skip_light_sleep_cb[i] == cb) {
return ESP_OK;
} else if (s_periph_skip_light_sleep_cb[i] == NULL) {
s_periph_skip_light_sleep_cb[i] = cb;
return ESP_OK;
}
}
return ESP_ERR_NO_MEM;
}
esp_err_t esp_pm_unregister_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
{
for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
if (s_periph_skip_light_sleep_cb[i] == cb) {
s_periph_skip_light_sleep_cb[i] = NULL;
return ESP_OK;
}
}
return ESP_ERR_INVALID_STATE;
}
static inline bool IRAM_ATTR periph_should_skip_light_sleep(void)
{
if (s_light_sleep_en) {
for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
if (s_periph_skip_light_sleep_cb[i]) {
if (s_periph_skip_light_sleep_cb[i]() == true) {
return true;
}
}
}
}
return false;
}
2020-02-12 06:41:52 -05:00
static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
2019-05-09 23:34:06 -04:00
{
#if portNUM_PROCESSORS == 2
2020-02-12 06:41:52 -05:00
if (s_skip_light_sleep[core_id]) {
s_skip_light_sleep[core_id] = false;
s_skipped_light_sleep[core_id] = true;
return true;
2019-05-09 23:34:06 -04:00
}
#endif // portNUM_PROCESSORS == 2
2020-12-30 03:42:39 -05:00
if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching || periph_should_skip_light_sleep()) {
2020-02-12 06:41:52 -05:00
s_skipped_light_sleep[core_id] = true;
} else {
s_skipped_light_sleep[core_id] = false;
}
return s_skipped_light_sleep[core_id];
2019-05-09 23:34:06 -04:00
}
2020-02-12 06:41:52 -05:00
static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
{
#if portNUM_PROCESSORS == 2
s_skip_light_sleep[!core_id] = true;
#endif
}
2019-05-09 23:34:06 -04:00
2020-02-12 06:41:52 -05:00
void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
2019-05-09 23:34:06 -04:00
{
portENTER_CRITICAL(&s_switch_lock);
2020-02-12 06:41:52 -05:00
int core_id = xPortGetCoreID();
if (!should_skip_light_sleep(core_id)) {
2019-05-09 23:34:06 -04:00
/* Calculate how much we can sleep */
int64_t next_esp_timer_alarm = esp_timer_get_next_alarm();
int64_t now = esp_timer_get_time();
int64_t time_until_next_alarm = next_esp_timer_alarm - now;
int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
#ifdef CONFIG_PM_TRACE
/* to force tracing GPIOs to keep state */
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
#endif
/* Enter sleep */
ESP_PM_TRACE_ENTER(SLEEP, core_id);
int64_t sleep_start = esp_timer_get_time();
esp_light_sleep_start();
int64_t slept_us = esp_timer_get_time() - sleep_start;
ESP_PM_TRACE_EXIT(SLEEP, core_id);
uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
if (slept_ticks > 0) {
/* Adjust RTOS tick count based on the amount of time spent in sleep */
vTaskStepTick(slept_ticks);
2020-12-03 21:19:39 -05:00
#if __XTENSA__
2019-05-09 23:34:06 -04:00
/* Trigger tick interrupt, since sleep time was longer
* than portTICK_PERIOD_MS. Note that setting INTSET does not
* work for timer interrupt, and changing CCOMPARE would clear
* the interrupt flag.
*/
cpu_hal_set_cycle_count(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
2019-05-09 23:34:06 -04:00
while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
;
}
#elif __riscv
portYIELD_WITHIN_API();
2020-12-03 21:19:39 -05:00
#endif
2019-05-09 23:34:06 -04:00
}
2020-02-12 06:41:52 -05:00
other_core_should_skip_light_sleep(core_id);
2019-05-09 23:34:06 -04:00
}
}
portEXIT_CRITICAL(&s_switch_lock);
}
#endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
#ifdef WITH_PROFILING
void esp_pm_impl_dump_stats(FILE* out)
{
pm_time_t time_in_mode[PM_MODE_COUNT];
portENTER_CRITICAL_ISR(&s_switch_lock);
memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
pm_time_t last_mode_change_time = s_last_mode_change_time;
pm_mode_t cur_mode = s_mode;
pm_time_t now = pm_get_time();
portEXIT_CRITICAL_ISR(&s_switch_lock);
time_in_mode[cur_mode] += now - last_mode_change_time;
fprintf(out, "Mode stats:\n");
for (int i = 0; i < PM_MODE_COUNT; ++i) {
if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
/* don't display light sleep mode if it's not enabled */
continue;
}
2020-02-12 06:41:52 -05:00
fprintf(out, "%8s %3dM %12lld %2d%%\n",
2019-05-09 23:34:06 -04:00
s_mode_names[i],
2020-02-12 06:41:52 -05:00
s_cpu_freq_by_mode[i].freq_mhz,
2019-05-09 23:34:06 -04:00
time_in_mode[i],
(int) (time_in_mode[i] * 100 / now));
}
}
#endif // WITH_PROFILING
int esp_pm_impl_get_cpu_freq(pm_mode_t mode)
{
int freq_mhz;
if (mode >= PM_MODE_LIGHT_SLEEP && mode < PM_MODE_COUNT) {
portENTER_CRITICAL(&s_switch_lock);
freq_mhz = s_cpu_freq_by_mode[mode].freq_mhz;
portEXIT_CRITICAL(&s_switch_lock);
} else {
abort();
}
return freq_mhz;
}
2019-08-11 22:06:07 -04:00
void esp_pm_impl_init(void)
2019-05-09 23:34:06 -04:00
{
2020-07-27 02:06:59 -04:00
#if defined(CONFIG_ESP_CONSOLE_UART)
2020-11-19 04:03:10 -05:00
//This clock source should be a source which won't be affected by DFS
uint32_t clk_source;
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
clk_source = UART_SCLK_REF_TICK;
#else
clk_source = UART_SCLK_XTAL;
#endif
while(!uart_ll_is_tx_idle(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM)));
2020-07-27 02:06:59 -04:00
/* When DFS is enabled, override system setting and use REFTICK as UART clock source */
uart_ll_set_sclk(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), clk_source);
uart_ll_set_baudrate(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), CONFIG_ESP_CONSOLE_UART_BAUDRATE);
2020-07-27 02:06:59 -04:00
#endif // CONFIG_ESP_CONSOLE_UART
2019-05-09 23:34:06 -04:00
#ifdef CONFIG_PM_TRACE
esp_pm_trace_init();
#endif
2020-07-27 02:06:59 -04:00
#if CONFIG_PM_SLP_DISABLE_GPIO
esp_sleep_config_gpio_isolate();
#endif
2019-05-09 23:34:06 -04:00
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
&s_rtos_lock_handle[0]));
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
2020-07-27 02:06:59 -04:00
2019-05-09 23:34:06 -04:00
#if portNUM_PROCESSORS == 2
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
&s_rtos_lock_handle[1]));
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
#endif // portNUM_PROCESSORS == 2
/* Configure all modes to use the default CPU frequency.
* This will be modified later by a call to esp_pm_configure.
*/
2020-02-12 06:41:52 -05:00
rtc_cpu_freq_config_t default_config;
2020-07-27 02:06:59 -04:00
if (!rtc_clk_cpu_freq_mhz_to_config(DEFAULT_CPU_FREQ, &default_config)) {
2019-05-09 23:34:06 -04:00
assert(false && "unsupported frequency");
}
for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
2020-02-12 06:41:52 -05:00
s_cpu_freq_by_mode[i] = default_config;
2019-05-09 23:34:06 -04:00
}
2020-07-27 02:06:59 -04:00
#ifdef CONFIG_PM_DFS_INIT_AUTO
int xtal_freq = (int) rtc_clk_xtal_freq_get();
#if CONFIG_IDF_TARGET_ESP32
esp_pm_config_esp32_t cfg = {
#elif CONFIG_IDF_TARGET_ESP32S2
esp_pm_config_esp32s2_t cfg = {
2020-09-14 00:15:00 -04:00
#elif CONFIG_IDF_TARGET_ESP32S3
esp_pm_config_esp32s3_t cfg = {
2020-12-03 21:19:39 -05:00
#elif CONFIG_IDF_TARGET_ESP32C3
esp_pm_config_esp32c3_t cfg = {
2020-07-27 02:06:59 -04:00
#endif
.max_freq_mhz = DEFAULT_CPU_FREQ,
.min_freq_mhz = xtal_freq,
};
esp_pm_configure(&cfg);
#endif //CONFIG_PM_DFS_INIT_AUTO
2020-09-14 00:15:00 -04:00
}
2020-12-30 03:42:39 -05:00
void esp_pm_impl_idle_hook(void)
{
int core_id = xPortGetCoreID();
uint32_t state = portENTER_CRITICAL_NESTED();
if (!s_core_idle[core_id]
#ifdef CONFIG_FREERTOS_USE_TICKLESS_IDLE
&& !periph_should_skip_light_sleep()
#endif
) {
esp_pm_lock_release(s_rtos_lock_handle[core_id]);
s_core_idle[core_id] = true;
}
portEXIT_CRITICAL_NESTED(state);
ESP_PM_TRACE_ENTER(IDLE, core_id);
}
void IRAM_ATTR esp_pm_impl_isr_hook(void)
{
int core_id = xPortGetCoreID();
ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
/* Prevent higher level interrupts (than the one this function was called from)
* from happening in this section, since they will also call into esp_pm_impl_isr_hook.
*/
uint32_t state = portENTER_CRITICAL_NESTED();
2020-12-03 21:19:39 -05:00
#if __XTENSA__ && (portNUM_PROCESSORS == 2)
2020-12-30 03:42:39 -05:00
if (s_need_update_ccompare[core_id]) {
update_ccompare();
s_need_update_ccompare[core_id] = false;
} else {
leave_idle();
}
#else
leave_idle();
#endif // portNUM_PROCESSORS == 2
portEXIT_CRITICAL_NESTED(state);
ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
}
void esp_pm_impl_waiti(void)
{
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
int core_id = xPortGetCoreID();
if (s_skipped_light_sleep[core_id]) {
2020-12-03 21:19:39 -05:00
cpu_hal_waiti();
2020-12-30 03:42:39 -05:00
/* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
* is now taken. However since we are back to idle task, we can release
* the lock so that vApplicationSleep can attempt to enter light sleep.
*/
esp_pm_impl_idle_hook();
}
s_skipped_light_sleep[core_id] = true;
2020-12-30 03:42:39 -05:00
#else
2020-12-03 21:19:39 -05:00
cpu_hal_waiti();
2020-12-30 03:42:39 -05:00
#endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
}
#define PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO 1
/* Inform peripherals of light sleep wakeup overhead time */
static inform_out_light_sleep_overhead_cb_t s_periph_inform_out_light_sleep_overhead_cb[PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO];
esp_err_t esp_pm_register_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
{
for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
return ESP_OK;
} else if (s_periph_inform_out_light_sleep_overhead_cb[i] == NULL) {
s_periph_inform_out_light_sleep_overhead_cb[i] = cb;
return ESP_OK;
}
}
return ESP_ERR_NO_MEM;
}
esp_err_t esp_pm_unregister_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
{
for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
s_periph_inform_out_light_sleep_overhead_cb[i] = NULL;
return ESP_OK;
}
}
return ESP_ERR_INVALID_STATE;
}
void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time)
{
for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
if (s_periph_inform_out_light_sleep_overhead_cb[i]) {
s_periph_inform_out_light_sleep_overhead_cb[i](out_light_sleep_time);
}
}
}
static update_light_sleep_default_params_config_cb_t s_light_sleep_default_params_config_cb = NULL;
void esp_pm_register_light_sleep_default_params_config_callback(update_light_sleep_default_params_config_cb_t cb)
{
if (s_light_sleep_default_params_config_cb == NULL) {
s_light_sleep_default_params_config_cb = cb;
}
}
void esp_pm_unregister_light_sleep_default_params_config_callback(void)
{
if (s_light_sleep_default_params_config_cb) {
s_light_sleep_default_params_config_cb = NULL;
}
}
#if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz)
{
if (s_light_sleep_default_params_config_cb) {
(*s_light_sleep_default_params_config_cb)(min_freq_mhz, max_freq_mhz);
}
}
#endif