// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "esp_attr.h" #include "esp_err.h" #include "esp_pm.h" #include "esp_log.h" #include "esp_private/crosscore_int.h" #include "soc/rtc.h" #include "hal/cpu_hal.h" #include "hal/uart_ll.h" #include "hal/uart_types.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #if __XTENSA__ #include "freertos/xtensa_timer.h" #include "xtensa/core-macros.h" #endif #include "esp_private/pm_impl.h" #include "esp_private/pm_trace.h" #include "esp_private/esp_timer_private.h" #include "esp_sleep.h" #include "sdkconfig.h" // [refactor-todo] opportunity for further refactor #if CONFIG_IDF_TARGET_ESP32 #include "esp32/clk.h" #include "esp32/pm.h" #include "driver/gpio.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/clk.h" #include "esp32s2/pm.h" #include "driver/gpio.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/clk.h" #include "esp32s3/pm.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/clk.h" #include "esp32c3/pm.h" #include "driver/gpio.h" #include "esp_private/sleep_modes.h" #endif #define MHZ (1000000) #if __XTENSA__ /* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work * for the purpose of detecting a deadlock. */ #define CCOMPARE_UPDATE_TIMEOUT 1000000 /* When changing CCOMPARE, don't allow changes if the difference is less * than this. This is to prevent setting CCOMPARE below CCOUNT. */ #define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000 #endif /* When light sleep is used, wake this number of microseconds earlier than * the next tick. */ #define LIGHT_SLEEP_EARLY_WAKEUP_US 100 #if CONFIG_IDF_TARGET_ESP32 /* Minimal divider at which REF_CLK_FREQ can be obtained */ #define REF_CLK_DIV_MIN 10 #define DEFAULT_CPU_FREQ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ #elif CONFIG_IDF_TARGET_ESP32S2 /* Minimal divider at which REF_CLK_FREQ can be obtained */ #define REF_CLK_DIV_MIN 2 #define DEFAULT_CPU_FREQ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ #elif CONFIG_IDF_TARGET_ESP32S3 /* Minimal divider at which REF_CLK_FREQ can be obtained */ #define REF_CLK_DIV_MIN 2 #define DEFAULT_CPU_FREQ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ #elif CONFIG_IDF_TARGET_ESP32C3 #define REF_CLK_DIV_MIN 2 #define DEFAULT_CPU_FREQ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ #endif #ifdef CONFIG_PM_PROFILING #define WITH_PROFILING #endif static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED; /* The following state variables are protected using s_switch_lock: */ /* Current sleep mode; When switching, contains old mode until switch is complete */ static pm_mode_t s_mode = PM_MODE_CPU_MAX; /* True when switch is in progress */ static volatile bool s_is_switching; /* Number of times each mode was locked */ static size_t s_mode_lock_counts[PM_MODE_COUNT]; /* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */ static uint32_t s_mode_mask; #if CONFIG_FREERTOS_USE_TICKLESS_IDLE #define PERIPH_SKIP_LIGHT_SLEEP_NO 1 /* Indicates if light sleep shoule be skipped by peripherals. */ static skip_light_sleep_cb_t s_periph_skip_light_sleep_cb[PERIPH_SKIP_LIGHT_SLEEP_NO]; /* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU. * This in turn gets used in IDLE hook to decide if `waiti` needs * to be invoked or not. */ static bool s_skipped_light_sleep[portNUM_PROCESSORS]; #if portNUM_PROCESSORS == 2 /* When light sleep is finished on one CPU, it is possible that the other CPU * will enter light sleep again very soon, before interrupts on the first CPU * get a chance to run. To avoid such situation, set a flag for the other CPU to * skip light sleep attempt. */ static bool s_skip_light_sleep[portNUM_PROCESSORS]; #endif // portNUM_PROCESSORS == 2 #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE /* A flag indicating that Idle hook has run on a given CPU; * Next interrupt on the same CPU will take s_rtos_lock_handle. */ static bool s_core_idle[portNUM_PROCESSORS]; /* When no RTOS tasks are active, these locks are released to allow going into * a lower power mode. Used by ISR hook and idle hook. */ static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS]; /* Lookup table of CPU frequency configs to be used in each mode. * Initialized by esp_pm_impl_init and modified by esp_pm_configure. */ static rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT]; /* Whether automatic light sleep is enabled */ static bool s_light_sleep_en = false; /* When configuration is changed, current frequency may not match the * newly configured frequency for the current mode. This is an indicator * to the mode switch code to get the actual current frequency instead of * relying on the current mode. */ static bool s_config_changed = false; #ifdef WITH_PROFILING /* Time, in microseconds, spent so far in each mode */ static pm_time_t s_time_in_mode[PM_MODE_COUNT]; /* Timestamp, in microseconds, when the mode switch last happened */ static pm_time_t s_last_mode_change_time; /* User-readable mode names, used by esp_pm_impl_dump_stats */ static const char* s_mode_names[] = { "SLEEP", "APB_MIN", "APB_MAX", "CPU_MAX" }; #endif // WITH_PROFILING #if __XTENSA__ /* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU. * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU. */ static volatile bool s_need_update_ccompare[portNUM_PROCESSORS]; /* Divider and multiplier used to adjust (ccompare - ccount) duration. * Only set to non-zero values when switch is in progress. */ static uint32_t s_ccount_div; static uint32_t s_ccount_mul; static void update_ccompare(void); #endif // __XTENSA__ static const char* TAG = "pm"; static void do_switch(pm_mode_t new_mode); static void leave_idle(void); static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us); #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz); #endif pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg) { (void) arg; if (type == ESP_PM_CPU_FREQ_MAX) { return PM_MODE_CPU_MAX; } else if (type == ESP_PM_APB_FREQ_MAX) { return PM_MODE_APB_MAX; } else if (type == ESP_PM_NO_LIGHT_SLEEP) { return PM_MODE_APB_MIN; } else { // unsupported mode abort(); } } esp_err_t esp_pm_configure(const void* vconfig) { #ifndef CONFIG_PM_ENABLE return ESP_ERR_NOT_SUPPORTED; #endif #if CONFIG_IDF_TARGET_ESP32 const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig; #elif CONFIG_IDF_TARGET_ESP32S2 const esp_pm_config_esp32s2_t* config = (const esp_pm_config_esp32s2_t*) vconfig; #elif CONFIG_IDF_TARGET_ESP32S3 const esp_pm_config_esp32s3_t* config = (const esp_pm_config_esp32s3_t*) vconfig; #elif CONFIG_IDF_TARGET_ESP32C3 const esp_pm_config_esp32c3_t* config = (const esp_pm_config_esp32c3_t*) vconfig; #endif #ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE if (config->light_sleep_enable) { return ESP_ERR_NOT_SUPPORTED; } #endif int min_freq_mhz = config->min_freq_mhz; int max_freq_mhz = config->max_freq_mhz; if (min_freq_mhz > max_freq_mhz) { return ESP_ERR_INVALID_ARG; } rtc_cpu_freq_config_t freq_config; if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) { ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz); return ESP_ERR_INVALID_ARG; } int xtal_freq_mhz = (int) rtc_clk_xtal_freq_get(); if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) { ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ); return ESP_ERR_INVALID_ARG; } if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) { ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz); return ESP_ERR_INVALID_ARG; } #if CONFIG_IDF_TARGET_ESP32 int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */ if (max_freq_mhz == 240) { /* We can't switch between 240 and 80/160 without disabling PLL, * so use 240MHz CPU frequency when 80MHz APB frequency is requested. */ apb_max_freq = 240; } else if (max_freq_mhz == 160 || max_freq_mhz == 80) { /* Otherwise, can use 80MHz * CPU frequency when 80MHz APB frequency is requested. */ apb_max_freq = 80; } #else int apb_max_freq = MIN(max_freq_mhz, 80); /* CPU frequency in APB_MAX mode */ #endif apb_max_freq = MAX(apb_max_freq, min_freq_mhz); ESP_LOGI(TAG, "Frequency switching config: " "CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s", max_freq_mhz, apb_max_freq, min_freq_mhz, config->light_sleep_enable ? "ENABLED" : "DISABLED"); portENTER_CRITICAL(&s_switch_lock); bool res = false; res = rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]); assert(res); res = rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]); assert(res); res = rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]); assert(res); s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN]; s_light_sleep_en = config->light_sleep_enable; s_config_changed = true; portEXIT_CRITICAL(&s_switch_lock); #if CONFIG_PM_SLP_DISABLE_GPIO esp_sleep_enable_gpio_switch(config->light_sleep_enable); #endif #if CONFIG_ESP_SYSTEM_PM_POWER_DOWN_CPU && SOC_PM_SUPPORT_CPU_PD esp_err_t ret = esp_sleep_cpu_pd_low_init(config->light_sleep_enable); if (config->light_sleep_enable && ret != ESP_OK) { ESP_LOGW(TAG, "Failed to enable CPU power down during light sleep."); } #endif #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT if (config->light_sleep_enable) { esp_pm_light_sleep_default_params_config(min_freq_mhz, max_freq_mhz); } #endif return ESP_OK; } esp_err_t esp_pm_get_configuration(void* vconfig) { if (vconfig == NULL) { return ESP_ERR_INVALID_ARG; } #if CONFIG_IDF_TARGET_ESP32 esp_pm_config_esp32_t* config = (esp_pm_config_esp32_t*) vconfig; #elif CONFIG_IDF_TARGET_ESP32S2 esp_pm_config_esp32s2_t* config = (esp_pm_config_esp32s2_t*) vconfig; #elif CONFIG_IDF_TARGET_ESP32S3 esp_pm_config_esp32s3_t* config = (esp_pm_config_esp32s3_t*) vconfig; #elif CONFIG_IDF_TARGET_ESP32C3 esp_pm_config_esp32c3_t* config = (esp_pm_config_esp32c3_t*) vconfig; #endif portENTER_CRITICAL(&s_switch_lock); config->light_sleep_enable = s_light_sleep_en; config->max_freq_mhz = s_cpu_freq_by_mode[PM_MODE_CPU_MAX].freq_mhz; config->min_freq_mhz = s_cpu_freq_by_mode[PM_MODE_APB_MIN].freq_mhz; portEXIT_CRITICAL(&s_switch_lock); return ESP_OK; } static pm_mode_t IRAM_ATTR get_lowest_allowed_mode(void) { /* TODO: optimize using ffs/clz */ if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) { return PM_MODE_CPU_MAX; } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) { return PM_MODE_APB_MAX; } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) { return PM_MODE_APB_MIN; } else { return PM_MODE_LIGHT_SLEEP; } } void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode, pm_mode_switch_t lock_or_unlock, pm_time_t now) { bool need_switch = false; uint32_t mode_mask = BIT(mode); portENTER_CRITICAL_SAFE(&s_switch_lock); uint32_t count; if (lock_or_unlock == MODE_LOCK) { count = ++s_mode_lock_counts[mode]; } else { count = s_mode_lock_counts[mode]--; } if (count == 1) { if (lock_or_unlock == MODE_LOCK) { s_mode_mask |= mode_mask; } else { s_mode_mask &= ~mode_mask; } need_switch = true; } pm_mode_t new_mode = s_mode; if (need_switch) { new_mode = get_lowest_allowed_mode(); #ifdef WITH_PROFILING if (s_last_mode_change_time != 0) { pm_time_t diff = now - s_last_mode_change_time; s_time_in_mode[s_mode] += diff; } s_last_mode_change_time = now; #endif // WITH_PROFILING } portEXIT_CRITICAL_SAFE(&s_switch_lock); if (need_switch) { do_switch(new_mode); } } /** * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE * values on both CPUs. * @param old_ticks_per_us old CPU frequency * @param ticks_per_us new CPU frequency */ static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us) { uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80); uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80); /* Update APB frequency value used by the timer */ if (old_apb_ticks_per_us != apb_ticks_per_us) { esp_timer_private_update_apb_freq(apb_ticks_per_us); } #if __XTENSA__ #ifdef XT_RTOS_TIMER_INT /* Calculate new tick divisor */ _xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC; #endif int core_id = xPortGetCoreID(); if (s_rtos_lock_handle[core_id] != NULL) { ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id); /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare * to calculate new CCOMPARE value. */ s_ccount_div = old_ticks_per_us; s_ccount_mul = ticks_per_us; /* Update CCOMPARE value on this CPU */ update_ccompare(); #if portNUM_PROCESSORS == 2 /* Send interrupt to the other CPU to update CCOMPARE value */ int other_core_id = (core_id == 0) ? 1 : 0; s_need_update_ccompare[other_core_id] = true; esp_crosscore_int_send_freq_switch(other_core_id); int timeout = 0; while (s_need_update_ccompare[other_core_id]) { if (++timeout == CCOMPARE_UPDATE_TIMEOUT) { assert(false && "failed to update CCOMPARE, possible deadlock"); } } #endif // portNUM_PROCESSORS == 2 s_ccount_mul = 0; s_ccount_div = 0; ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id); } #endif // __XTENSA__ } /** * Perform the switch to new power mode. * Currently only changes the CPU frequency and adjusts clock dividers. * No light sleep yet. * @param new_mode mode to switch to */ static void IRAM_ATTR do_switch(pm_mode_t new_mode) { const int core_id = xPortGetCoreID(); do { portENTER_CRITICAL_ISR(&s_switch_lock); if (!s_is_switching) { break; } #if __XTENSA__ if (s_need_update_ccompare[core_id]) { s_need_update_ccompare[core_id] = false; } #endif portEXIT_CRITICAL_ISR(&s_switch_lock); } while (true); if (new_mode == s_mode) { portEXIT_CRITICAL_ISR(&s_switch_lock); return; } s_is_switching = true; bool config_changed = s_config_changed; s_config_changed = false; portEXIT_CRITICAL_ISR(&s_switch_lock); rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode]; rtc_cpu_freq_config_t old_config; if (!config_changed) { old_config = s_cpu_freq_by_mode[s_mode]; } else { rtc_clk_cpu_freq_get_config(&old_config); } if (new_config.freq_mhz != old_config.freq_mhz) { uint32_t old_ticks_per_us = old_config.freq_mhz; uint32_t new_ticks_per_us = new_config.freq_mhz; bool switch_down = new_ticks_per_us < old_ticks_per_us; ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id); if (switch_down) { on_freq_update(old_ticks_per_us, new_ticks_per_us); } rtc_clk_cpu_freq_set_config_fast(&new_config); if (!switch_down) { on_freq_update(old_ticks_per_us, new_ticks_per_us); } ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id); } portENTER_CRITICAL_ISR(&s_switch_lock); s_mode = new_mode; s_is_switching = false; portEXIT_CRITICAL_ISR(&s_switch_lock); } #if __XTENSA__ /** * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div} * * Adjusts CCOMPARE value so that the interrupt happens at the same time as it * would happen without the frequency change. * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div. */ static void IRAM_ATTR update_ccompare(void) { uint32_t ccount = cpu_hal_get_cycle_count(); uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX); if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) { uint32_t diff = ccompare - ccount; uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div; if (diff_scaled < _xt_tick_divisor) { uint32_t new_ccompare = ccount + diff_scaled; XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare); } } } #endif // __XTENSA__ static void IRAM_ATTR leave_idle(void) { int core_id = xPortGetCoreID(); if (s_core_idle[core_id]) { // TODO: possible optimization: raise frequency here first esp_pm_lock_acquire(s_rtos_lock_handle[core_id]); s_core_idle[core_id] = false; } } #if CONFIG_FREERTOS_USE_TICKLESS_IDLE esp_err_t esp_pm_register_skip_light_sleep_callback(skip_light_sleep_cb_t cb) { for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) { if (s_periph_skip_light_sleep_cb[i] == cb) { return ESP_OK; } else if (s_periph_skip_light_sleep_cb[i] == NULL) { s_periph_skip_light_sleep_cb[i] = cb; return ESP_OK; } } return ESP_ERR_NO_MEM; } esp_err_t esp_pm_unregister_skip_light_sleep_callback(skip_light_sleep_cb_t cb) { for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) { if (s_periph_skip_light_sleep_cb[i] == cb) { s_periph_skip_light_sleep_cb[i] = NULL; return ESP_OK; } } return ESP_ERR_INVALID_STATE; } static inline bool IRAM_ATTR periph_should_skip_light_sleep(void) { if (s_light_sleep_en) { for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) { if (s_periph_skip_light_sleep_cb[i]) { if (s_periph_skip_light_sleep_cb[i]() == true) { return true; } } } } return false; } static inline bool IRAM_ATTR should_skip_light_sleep(int core_id) { #if portNUM_PROCESSORS == 2 if (s_skip_light_sleep[core_id]) { s_skip_light_sleep[core_id] = false; s_skipped_light_sleep[core_id] = true; return true; } #endif // portNUM_PROCESSORS == 2 if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching || periph_should_skip_light_sleep()) { s_skipped_light_sleep[core_id] = true; } else { s_skipped_light_sleep[core_id] = false; } return s_skipped_light_sleep[core_id]; } static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id) { #if portNUM_PROCESSORS == 2 s_skip_light_sleep[!core_id] = true; #endif } void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime ) { portENTER_CRITICAL(&s_switch_lock); int core_id = xPortGetCoreID(); if (!should_skip_light_sleep(core_id)) { /* Calculate how much we can sleep */ int64_t next_esp_timer_alarm = esp_timer_get_next_alarm(); int64_t now = esp_timer_get_time(); int64_t time_until_next_alarm = next_esp_timer_alarm - now; int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime; int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm); if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) { esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US); #ifdef CONFIG_PM_TRACE /* to force tracing GPIOs to keep state */ esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON); #endif /* Enter sleep */ ESP_PM_TRACE_ENTER(SLEEP, core_id); int64_t sleep_start = esp_timer_get_time(); esp_light_sleep_start(); int64_t slept_us = esp_timer_get_time() - sleep_start; ESP_PM_TRACE_EXIT(SLEEP, core_id); uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL); if (slept_ticks > 0) { /* Adjust RTOS tick count based on the amount of time spent in sleep */ vTaskStepTick(slept_ticks); #if __XTENSA__ /* Trigger tick interrupt, since sleep time was longer * than portTICK_PERIOD_MS. Note that setting INTSET does not * work for timer interrupt, and changing CCOMPARE would clear * the interrupt flag. */ cpu_hal_set_cycle_count(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16); while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) { ; } #elif __riscv portYIELD_WITHIN_API(); #endif } other_core_should_skip_light_sleep(core_id); } } portEXIT_CRITICAL(&s_switch_lock); } #endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE #ifdef WITH_PROFILING void esp_pm_impl_dump_stats(FILE* out) { pm_time_t time_in_mode[PM_MODE_COUNT]; portENTER_CRITICAL_ISR(&s_switch_lock); memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode)); pm_time_t last_mode_change_time = s_last_mode_change_time; pm_mode_t cur_mode = s_mode; pm_time_t now = pm_get_time(); portEXIT_CRITICAL_ISR(&s_switch_lock); time_in_mode[cur_mode] += now - last_mode_change_time; fprintf(out, "Mode stats:\n"); for (int i = 0; i < PM_MODE_COUNT; ++i) { if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) { /* don't display light sleep mode if it's not enabled */ continue; } fprintf(out, "%8s %3dM %12lld %2d%%\n", s_mode_names[i], s_cpu_freq_by_mode[i].freq_mhz, time_in_mode[i], (int) (time_in_mode[i] * 100 / now)); } } #endif // WITH_PROFILING int esp_pm_impl_get_cpu_freq(pm_mode_t mode) { int freq_mhz; if (mode >= PM_MODE_LIGHT_SLEEP && mode < PM_MODE_COUNT) { portENTER_CRITICAL(&s_switch_lock); freq_mhz = s_cpu_freq_by_mode[mode].freq_mhz; portEXIT_CRITICAL(&s_switch_lock); } else { abort(); } return freq_mhz; } void esp_pm_impl_init(void) { #if defined(CONFIG_ESP_CONSOLE_UART) //This clock source should be a source which won't be affected by DFS uint32_t clk_source; #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 clk_source = UART_SCLK_REF_TICK; #else clk_source = UART_SCLK_XTAL; #endif while(!uart_ll_is_tx_idle(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM))); /* When DFS is enabled, override system setting and use REFTICK as UART clock source */ uart_ll_set_sclk(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), clk_source); uart_ll_set_baudrate(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), CONFIG_ESP_CONSOLE_UART_BAUDRATE); #endif // CONFIG_ESP_CONSOLE_UART #ifdef CONFIG_PM_TRACE esp_pm_trace_init(); #endif #if CONFIG_PM_SLP_DISABLE_GPIO esp_sleep_config_gpio_isolate(); #endif ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0", &s_rtos_lock_handle[0])); ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0])); #if portNUM_PROCESSORS == 2 ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1", &s_rtos_lock_handle[1])); ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1])); #endif // portNUM_PROCESSORS == 2 /* Configure all modes to use the default CPU frequency. * This will be modified later by a call to esp_pm_configure. */ rtc_cpu_freq_config_t default_config; if (!rtc_clk_cpu_freq_mhz_to_config(DEFAULT_CPU_FREQ, &default_config)) { assert(false && "unsupported frequency"); } for (size_t i = 0; i < PM_MODE_COUNT; ++i) { s_cpu_freq_by_mode[i] = default_config; } #ifdef CONFIG_PM_DFS_INIT_AUTO int xtal_freq = (int) rtc_clk_xtal_freq_get(); #if CONFIG_IDF_TARGET_ESP32 esp_pm_config_esp32_t cfg = { #elif CONFIG_IDF_TARGET_ESP32S2 esp_pm_config_esp32s2_t cfg = { #elif CONFIG_IDF_TARGET_ESP32S3 esp_pm_config_esp32s3_t cfg = { #elif CONFIG_IDF_TARGET_ESP32C3 esp_pm_config_esp32c3_t cfg = { #endif .max_freq_mhz = DEFAULT_CPU_FREQ, .min_freq_mhz = xtal_freq, }; esp_pm_configure(&cfg); #endif //CONFIG_PM_DFS_INIT_AUTO } void esp_pm_impl_idle_hook(void) { int core_id = xPortGetCoreID(); uint32_t state = portENTER_CRITICAL_NESTED(); if (!s_core_idle[core_id] #ifdef CONFIG_FREERTOS_USE_TICKLESS_IDLE && !periph_should_skip_light_sleep() #endif ) { esp_pm_lock_release(s_rtos_lock_handle[core_id]); s_core_idle[core_id] = true; } portEXIT_CRITICAL_NESTED(state); ESP_PM_TRACE_ENTER(IDLE, core_id); } void IRAM_ATTR esp_pm_impl_isr_hook(void) { int core_id = xPortGetCoreID(); ESP_PM_TRACE_ENTER(ISR_HOOK, core_id); /* Prevent higher level interrupts (than the one this function was called from) * from happening in this section, since they will also call into esp_pm_impl_isr_hook. */ uint32_t state = portENTER_CRITICAL_NESTED(); #if __XTENSA__ && (portNUM_PROCESSORS == 2) if (s_need_update_ccompare[core_id]) { update_ccompare(); s_need_update_ccompare[core_id] = false; } else { leave_idle(); } #else leave_idle(); #endif // portNUM_PROCESSORS == 2 portEXIT_CRITICAL_NESTED(state); ESP_PM_TRACE_EXIT(ISR_HOOK, core_id); } void esp_pm_impl_waiti(void) { #if CONFIG_FREERTOS_USE_TICKLESS_IDLE int core_id = xPortGetCoreID(); if (s_skipped_light_sleep[core_id]) { cpu_hal_waiti(); /* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id] * is now taken. However since we are back to idle task, we can release * the lock so that vApplicationSleep can attempt to enter light sleep. */ esp_pm_impl_idle_hook(); } s_skipped_light_sleep[core_id] = true; #else cpu_hal_waiti(); #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE } #define PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO 1 /* Inform peripherals of light sleep wakeup overhead time */ static inform_out_light_sleep_overhead_cb_t s_periph_inform_out_light_sleep_overhead_cb[PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO]; esp_err_t esp_pm_register_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb) { for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) { if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) { return ESP_OK; } else if (s_periph_inform_out_light_sleep_overhead_cb[i] == NULL) { s_periph_inform_out_light_sleep_overhead_cb[i] = cb; return ESP_OK; } } return ESP_ERR_NO_MEM; } esp_err_t esp_pm_unregister_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb) { for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) { if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) { s_periph_inform_out_light_sleep_overhead_cb[i] = NULL; return ESP_OK; } } return ESP_ERR_INVALID_STATE; } void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time) { for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) { if (s_periph_inform_out_light_sleep_overhead_cb[i]) { s_periph_inform_out_light_sleep_overhead_cb[i](out_light_sleep_time); } } } static update_light_sleep_default_params_config_cb_t s_light_sleep_default_params_config_cb = NULL; void esp_pm_register_light_sleep_default_params_config_callback(update_light_sleep_default_params_config_cb_t cb) { if (s_light_sleep_default_params_config_cb == NULL) { s_light_sleep_default_params_config_cb = cb; } } void esp_pm_unregister_light_sleep_default_params_config_callback(void) { if (s_light_sleep_default_params_config_cb) { s_light_sleep_default_params_config_cb = NULL; } } #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz) { if (s_light_sleep_default_params_config_cb) { (*s_light_sleep_default_params_config_cb)(min_freq_mhz, max_freq_mhz); } } #endif