mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
add esp32s2beta component
This commit is contained in:
parent
91508ca27f
commit
b146104885
@ -76,7 +76,7 @@ else()
|
||||
add_custom_command(
|
||||
OUTPUT esp32_out.ld
|
||||
COMMAND "${CMAKE_C_COMPILER}" -C -P -x c -E -o esp32_out.ld -I ${config_dir} ${LD_DIR}/esp32.ld
|
||||
MAIN_DEPENDENCY ${LD_DIR}/esp32.ld ${SDKCONFIG_H}
|
||||
MAIN_DEPENDENCY ${LD_DIR}/esp32.ld ${sdkconfig_header}
|
||||
COMMENT "Generating linker script..."
|
||||
VERBATIM)
|
||||
|
||||
|
81
components/esp32s2beta/CMakeLists.txt
Normal file
81
components/esp32s2beta/CMakeLists.txt
Normal file
@ -0,0 +1,81 @@
|
||||
if(BOOTLOADER_BUILD AND CONFIG_IDF_TARGET_ESP32S2BETA)
|
||||
# For bootloader, all we need from esp32s2beta is headers
|
||||
set(COMPONENT_ADD_INCLUDEDIRS include)
|
||||
set(COMPONENT_REQUIRES ${IDF_COMPONENTS} soc) #unfortunately rom/uart uses SOC registers directly
|
||||
set(COMPONENT_SRCS )
|
||||
register_component()
|
||||
elseif(CONFIG_IDF_TARGET_ESP32S2BETA)
|
||||
# Regular app build
|
||||
|
||||
set(COMPONENT_SRCS "brownout.c"
|
||||
"cache_err_int.c"
|
||||
"clk.c"
|
||||
"cpu_start.c"
|
||||
"crosscore_int.c"
|
||||
"dport_access.c"
|
||||
"dport_panic_highint_hdl.S"
|
||||
"esp_timer_esp32s2beta.c"
|
||||
"gdbstub.c"
|
||||
"hw_random.c"
|
||||
"int_wdt.c"
|
||||
"intr_alloc.c"
|
||||
"panic.c"
|
||||
"pm_esp32s2beta.c"
|
||||
"pm_trace.c"
|
||||
"sleep_modes.c"
|
||||
"spiram.c"
|
||||
"spiram_psram.c"
|
||||
"system_api.c"
|
||||
"task_wdt.c")
|
||||
set(COMPONENT_ADD_INCLUDEDIRS "include")
|
||||
|
||||
set(COMPONENT_REQUIRES driver esp_event efuse soc) #unfortunately rom/uart uses SOC registers directly
|
||||
|
||||
# driver is a public requirement because esp_sleep.h uses gpio_num_t & touch_pad_t
|
||||
# app_update is added here because cpu_start.c uses esp_ota_get_app_description() function.
|
||||
set(COMPONENT_PRIV_REQUIRES
|
||||
app_trace app_update bootloader_support log mbedtls nvs_flash
|
||||
pthread smartconfig_ack spi_flash vfs wpa_supplicant espcoredump esp_common esp_wifi)
|
||||
|
||||
set(COMPONENT_ADD_LDFRAGMENTS linker.lf ld/esp32s2beta_fragments.lf)
|
||||
|
||||
register_component()
|
||||
|
||||
target_linker_script(${COMPONENT_LIB} "${CMAKE_CURRENT_BINARY_DIR}/esp32s2beta_out.ld")
|
||||
|
||||
# Process the template file through the linker script generation mechanism, and use the output for linking the
|
||||
# final binary
|
||||
target_linker_script(${COMPONENT_LIB} "${CMAKE_CURRENT_LIST_DIR}/ld/esp32s2beta.project.ld.in" PROCESS)
|
||||
|
||||
target_linker_script(${COMPONENT_LIB} "ld/esp32s2beta.peripherals.ld")
|
||||
|
||||
target_link_libraries(${COMPONENT_LIB} gcc)
|
||||
target_link_libraries(${COMPONENT_LIB} "-u call_user_start_cpu0")
|
||||
|
||||
#ld_include_panic_highint_hdl is added as an undefined symbol because otherwise the
|
||||
#linker will ignore panic_highint_hdl.S as it has no other files depending on any
|
||||
#symbols in it.
|
||||
target_link_libraries(${COMPONENT_LIB} "-u ld_include_panic_highint_hdl")
|
||||
|
||||
idf_build_get_property(sdkconfig_header SDKCONFIG_HEADER)
|
||||
get_filename_component(config_dir ${sdkconfig_header} DIRECTORY)
|
||||
# Preprocess esp32s2beta.ld linker script to include configuration, becomes esp32s2beta_out.ld
|
||||
set(LD_DIR ${CMAKE_CURRENT_SOURCE_DIR}/ld)
|
||||
add_custom_command(
|
||||
OUTPUT esp32s2beta_out.ld
|
||||
COMMAND "${CMAKE_C_COMPILER}" -C -P -x c -E -o esp32s2beta_out.ld -I ${config_dir} ${LD_DIR}/esp32s2beta.ld
|
||||
MAIN_DEPENDENCY ${LD_DIR}/esp32s2beta.ld ${sdkconfig_header}
|
||||
COMMENT "Generating linker script..."
|
||||
VERBATIM)
|
||||
|
||||
add_custom_target(esp32s2beta_linker_script DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/esp32s2beta_out.ld)
|
||||
add_dependencies(${COMPONENT_LIB} esp32s2beta_linker_script)
|
||||
|
||||
# disable stack protection in files which are involved in initialization of that feature
|
||||
set_source_files_properties(
|
||||
cpu_start.c
|
||||
PROPERTIES COMPILE_FLAGS
|
||||
-fno-stack-protector)
|
||||
else()
|
||||
register_config_only_component()
|
||||
endif()
|
1045
components/esp32s2beta/Kconfig
Normal file
1045
components/esp32s2beta/Kconfig
Normal file
File diff suppressed because it is too large
Load Diff
44
components/esp32s2beta/Makefile.projbuild
Normal file
44
components/esp32s2beta/Makefile.projbuild
Normal file
@ -0,0 +1,44 @@
|
||||
ifdef CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
|
||||
|
||||
PHY_INIT_DATA_OBJ = $(BUILD_DIR_BASE)/phy_init_data.o
|
||||
PHY_INIT_DATA_BIN = $(BUILD_DIR_BASE)/phy_init_data.bin
|
||||
|
||||
# Command to flash PHY init data partition
|
||||
PHY_INIT_DATA_FLASH_CMD = $(ESPTOOLPY_SERIAL) write_flash $(PHY_DATA_OFFSET) $(PHY_INIT_DATA_BIN)
|
||||
ESPTOOL_ALL_FLASH_ARGS += $(PHY_DATA_OFFSET) $(PHY_INIT_DATA_BIN)
|
||||
|
||||
ESP32_COMPONENT_PATH := $(COMPONENT_PATH)
|
||||
|
||||
$(PHY_INIT_DATA_OBJ): $(ESP32_COMPONENT_PATH)/phy_init_data.h $(BUILD_DIR_BASE)/include/sdkconfig.h
|
||||
$(summary) CC $(notdir $@)
|
||||
printf "#include \"phy_init_data.h\"\n" | $(CC) -I $(BUILD_DIR_BASE)/include -I $(ESP32_COMPONENT_PATH) -I $(ESP32_COMPONENT_PATH)/include -c -o $@ -xc -
|
||||
|
||||
$(PHY_INIT_DATA_BIN): $(PHY_INIT_DATA_OBJ)
|
||||
$(summary) BIN $(notdir $@)
|
||||
$(OBJCOPY) -O binary $< $@
|
||||
|
||||
phy_init_data: $(PHY_INIT_DATA_BIN)
|
||||
|
||||
phy_init_data-flash: $(BUILD_DIR_BASE)/phy_init_data.bin
|
||||
@echo "Flashing PHY init data..."
|
||||
$(PHY_INIT_DATA_FLASH_CMD)
|
||||
|
||||
phy_init_data-clean:
|
||||
rm -f $(PHY_INIT_DATA_BIN) $(PHY_INIT_DATA_OBJ)
|
||||
|
||||
all: phy_init_data
|
||||
flash: phy_init_data
|
||||
|
||||
endif # CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
|
||||
|
||||
|
||||
# Enable psram cache bug workaround in compiler if selected
|
||||
ifdef CONFIG_SPIRAM_CACHE_WORKAROUND
|
||||
CFLAGS+=-mfix-esp32-psram-cache-issue
|
||||
CXXFLAGS+=-mfix-esp32-psram-cache-issue
|
||||
endif
|
||||
|
||||
# Enable dynamic esp_timer overflow value if building unit tests
|
||||
ifneq ("$(TEST_COMPONENTS_LIST)","")
|
||||
CPPFLAGS += -DESP_TIMER_DYNAMIC_OVERFLOW_VAL
|
||||
endif
|
56
components/esp32s2beta/brownout.c
Normal file
56
components/esp32s2beta/brownout.c
Normal file
@ -0,0 +1,56 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include "sdkconfig.h"
|
||||
#include "soc/soc.h"
|
||||
#include "soc/cpu.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "esp32s2beta/rom/ets_sys.h"
|
||||
#include "esp_private/system_internal.h"
|
||||
#include "driver/rtc_cntl.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
|
||||
#ifdef CONFIG_BROWNOUT_DET_LVL
|
||||
#define BROWNOUT_DET_LVL CONFIG_BROWNOUT_DET_LVL
|
||||
#else
|
||||
#define BROWNOUT_DET_LVL 0
|
||||
#endif //CONFIG_BROWNOUT_DET_LVL
|
||||
|
||||
static void rtc_brownout_isr_handler()
|
||||
{
|
||||
/* Normally RTC ISR clears the interrupt flag after the application-supplied
|
||||
* handler returns. Since restart is called here, the flag needs to be
|
||||
* cleared manually.
|
||||
*/
|
||||
REG_WRITE(RTC_CNTL_INT_CLR_REG, RTC_CNTL_BROWN_OUT_INT_CLR);
|
||||
/* Stall the other CPU to make sure the code running there doesn't use UART
|
||||
* at the same time as the following ets_printf.
|
||||
*/
|
||||
esp_cpu_stall(!xPortGetCoreID());
|
||||
ets_printf("\r\nBrownout detector was triggered\r\n\r\n");
|
||||
esp_restart_noos();
|
||||
}
|
||||
|
||||
void esp_brownout_init()
|
||||
{
|
||||
//TODO, chip7.2.2 will use i2c inteface to configure brown out threshold
|
||||
|
||||
ESP_ERROR_CHECK( rtc_isr_register(rtc_brownout_isr_handler, NULL, RTC_CNTL_BROWN_OUT_INT_ENA_M) );
|
||||
|
||||
REG_SET_BIT(RTC_CNTL_INT_ENA_REG, RTC_CNTL_BROWN_OUT_INT_ENA_M);
|
||||
}
|
69
components/esp32s2beta/cache_err_int.c
Normal file
69
components/esp32s2beta/cache_err_int.c
Normal file
@ -0,0 +1,69 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/*
|
||||
The cache has an interrupt that can be raised as soon as an access to a cached
|
||||
region (flash, psram) is done without the cache being enabled. We use that here
|
||||
to panic the CPU, which from a debugging perspective is better than grabbing bad
|
||||
data from the bus.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_attr.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include "sdkconfig.h"
|
||||
#include "esp32s2beta/dport_access.h"
|
||||
|
||||
void esp_cache_err_int_init()
|
||||
{
|
||||
uint32_t core_id = xPortGetCoreID();
|
||||
ESP_INTR_DISABLE(ETS_CACHEERR_INUM);
|
||||
|
||||
// We do not register a handler for the interrupt because it is interrupt
|
||||
// level 4 which is not serviceable from C. Instead, xtensa_vectors.S has
|
||||
// a call to the panic handler for
|
||||
// this interrupt.
|
||||
intr_matrix_set(core_id, ETS_CACHE_IA_INTR_SOURCE, ETS_CACHEERR_INUM);
|
||||
|
||||
// Enable invalid cache access interrupt when the cache is disabled.
|
||||
// When the interrupt happens, we can not determine the CPU where the
|
||||
// invalid cache access has occurred. We enable the interrupt to catch
|
||||
// invalid access on both CPUs, but the interrupt is connected to the
|
||||
// CPU which happens to call this function.
|
||||
// For this reason, panic handler backtrace will not be correct if the
|
||||
// interrupt is connected to PRO CPU and invalid access happens on the APP
|
||||
// CPU.
|
||||
#if 0
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_IA_INT_EN_REG,
|
||||
DPORT_CACHE_IA_INT_PRO_DRAM1 |
|
||||
DPORT_CACHE_IA_INT_PRO_DROM0 |
|
||||
DPORT_CACHE_IA_INT_PRO_IROM0 |
|
||||
DPORT_CACHE_IA_INT_PRO_IRAM0 |
|
||||
DPORT_CACHE_IA_INT_PRO_IRAM1);
|
||||
#endif
|
||||
ESP_INTR_ENABLE(ETS_CACHEERR_INUM);
|
||||
}
|
||||
|
||||
int IRAM_ATTR esp_cache_err_get_cpuid()
|
||||
{
|
||||
esp_dport_access_int_pause();
|
||||
return PRO_CPU_NUM;
|
||||
}
|
307
components/esp32s2beta/clk.c
Normal file
307
components/esp32s2beta/clk.c
Normal file
@ -0,0 +1,307 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <sys/cdefs.h>
|
||||
#include <sys/time.h>
|
||||
#include <sys/param.h>
|
||||
#include "sdkconfig.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp32s2beta/clk.h"
|
||||
#include "esp_clk_internal.h"
|
||||
#include "esp32s2beta/rom/ets_sys.h"
|
||||
#include "esp32s2beta/rom/uart.h"
|
||||
#include "esp32s2beta/rom/rtc.h"
|
||||
#include "soc/soc.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/i2s_reg.h"
|
||||
#include "driver/periph_ctrl.h"
|
||||
#include "xtensa/core-macros.h"
|
||||
#include "bootloader_clock.h"
|
||||
#include "soc/syscon_reg.h"
|
||||
|
||||
/* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
|
||||
* Larger values increase startup delay. Smaller values may cause false positive
|
||||
* detection (i.e. oscillator runs for a few cycles and then stops).
|
||||
*/
|
||||
#define SLOW_CLK_CAL_CYCLES CONFIG_ESP32_RTC_CLK_CAL_CYCLES
|
||||
|
||||
#define MHZ (1000000)
|
||||
|
||||
static void select_rtc_slow_clk(rtc_slow_freq_t slow_clk);
|
||||
|
||||
// g_ticks_us defined in ROMs for PRO and APP CPU
|
||||
extern uint32_t g_ticks_per_us_pro;
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
extern uint32_t g_ticks_per_us_app;
|
||||
#endif //!CONFIG_FREERTOS_UNICORE
|
||||
|
||||
static const char* TAG = "clk";
|
||||
|
||||
|
||||
void esp_clk_init(void)
|
||||
{
|
||||
rtc_config_t cfg = RTC_CONFIG_DEFAULT();
|
||||
rtc_init(cfg);
|
||||
|
||||
#ifdef CONFIG_COMPATIBLE_PRE_V2_1_BOOTLOADERS
|
||||
/* Check the bootloader set the XTAL frequency.
|
||||
|
||||
Bootloaders pre-v2.1 don't do this.
|
||||
*/
|
||||
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
|
||||
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
|
||||
ESP_EARLY_LOGW(TAG, "RTC domain not initialised by bootloader");
|
||||
bootloader_clock_configure();
|
||||
}
|
||||
#else
|
||||
/* If this assertion fails, either upgrade the bootloader or enable CONFIG_COMPATIBLE_PRE_V2_1_BOOTLOADERS */
|
||||
assert(rtc_clk_xtal_freq_get() != RTC_XTAL_FREQ_AUTO);
|
||||
#endif
|
||||
|
||||
rtc_clk_fast_freq_set(RTC_FAST_FREQ_8M);
|
||||
|
||||
#ifdef CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
|
||||
select_rtc_slow_clk(RTC_SLOW_FREQ_32K_XTAL);
|
||||
#else
|
||||
select_rtc_slow_clk(RTC_SLOW_FREQ_RTC);
|
||||
#endif
|
||||
|
||||
uint32_t freq_mhz = CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ;
|
||||
rtc_cpu_freq_t freq = RTC_CPU_FREQ_80M;
|
||||
switch(freq_mhz) {
|
||||
case 240:
|
||||
freq = RTC_CPU_FREQ_240M;
|
||||
break;
|
||||
case 160:
|
||||
freq = RTC_CPU_FREQ_160M;
|
||||
break;
|
||||
default:
|
||||
freq_mhz = 80;
|
||||
/* no break */
|
||||
case 80:
|
||||
freq = RTC_CPU_FREQ_80M;
|
||||
break;
|
||||
}
|
||||
|
||||
// Wait for UART TX to finish, otherwise some UART output will be lost
|
||||
// when switching APB frequency
|
||||
uart_tx_wait_idle(CONFIG_CONSOLE_UART_NUM);
|
||||
|
||||
uint32_t freq_before = rtc_clk_cpu_freq_value(rtc_clk_cpu_freq_get()) / MHZ ;
|
||||
|
||||
rtc_clk_cpu_freq_set(freq);
|
||||
|
||||
// Re calculate the ccount to make time calculation correct.
|
||||
uint32_t freq_after = CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ;
|
||||
XTHAL_SET_CCOUNT( XTHAL_GET_CCOUNT() * freq_after / freq_before );
|
||||
}
|
||||
|
||||
int IRAM_ATTR esp_clk_cpu_freq(void)
|
||||
{
|
||||
return g_ticks_per_us_pro * 1000000;
|
||||
}
|
||||
|
||||
int IRAM_ATTR esp_clk_apb_freq(void)
|
||||
{
|
||||
return MIN(g_ticks_per_us_pro, 80) * 1000000;
|
||||
}
|
||||
|
||||
void IRAM_ATTR ets_update_cpu_frequency(uint32_t ticks_per_us)
|
||||
{
|
||||
/* Update scale factors used by ets_delay_us */
|
||||
g_ticks_per_us_pro = ticks_per_us;
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
g_ticks_per_us_app = ticks_per_us;
|
||||
#endif //!CONFIG_FREERTOS_UNICORE
|
||||
}
|
||||
|
||||
static void select_rtc_slow_clk(rtc_slow_freq_t slow_clk)
|
||||
{
|
||||
uint32_t cal_val = 0;
|
||||
uint32_t wait = 0;
|
||||
const uint32_t warning_timeout = 3 /* sec */ * 32768 /* Hz */ / (2 * SLOW_CLK_CAL_CYCLES);
|
||||
bool changing_clock_to_150k = false;
|
||||
do {
|
||||
if (slow_clk == RTC_SLOW_FREQ_32K_XTAL) {
|
||||
/* 32k XTAL oscillator needs to be enabled and running before it can
|
||||
* be used. Hardware doesn't have a direct way of checking if the
|
||||
* oscillator is running. Here we use rtc_clk_cal function to count
|
||||
* the number of main XTAL cycles in the given number of 32k XTAL
|
||||
* oscillator cycles. If the 32k XTAL has not started up, calibration
|
||||
* will time out, returning 0.
|
||||
*/
|
||||
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
|
||||
rtc_clk_32k_enable(true);
|
||||
cal_val = rtc_clk_cal(RTC_CAL_32K_XTAL, SLOW_CLK_CAL_CYCLES);
|
||||
if(cal_val == 0 || cal_val < 15000000L){
|
||||
ESP_EARLY_LOGE(TAG, "RTC: Not found External 32 kHz XTAL. Switching to Internal 150 kHz RC chain");
|
||||
slow_clk = RTC_SLOW_FREQ_RTC;
|
||||
changing_clock_to_150k = true;
|
||||
}
|
||||
}
|
||||
rtc_clk_slow_freq_set(slow_clk);
|
||||
if (changing_clock_to_150k == true && wait > 1){
|
||||
// This helps when there are errors when switching the clock from External 32 kHz XTAL to Internal 150 kHz RC chain.
|
||||
rtc_clk_32k_enable(false);
|
||||
uint32_t min_bootstrap = 5; // Min bootstrapping for continue switching the clock.
|
||||
rtc_clk_32k_bootstrap(min_bootstrap);
|
||||
rtc_clk_32k_enable(true);
|
||||
}
|
||||
|
||||
if (SLOW_CLK_CAL_CYCLES > 0) {
|
||||
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
|
||||
* Improve calibration routine to wait until the frequency is stable.
|
||||
*/
|
||||
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
|
||||
} else {
|
||||
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
|
||||
cal_val = (uint32_t) (cal_dividend / rtc_clk_slow_freq_get_hz());
|
||||
}
|
||||
if (++wait % warning_timeout == 0) {
|
||||
ESP_EARLY_LOGW(TAG, "still waiting for source selection RTC");
|
||||
}
|
||||
} while (cal_val == 0);
|
||||
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val);
|
||||
esp_clk_slowclk_cal_set(cal_val);
|
||||
}
|
||||
|
||||
void rtc_clk_select_rtc_slow_clk()
|
||||
{
|
||||
select_rtc_slow_clk(RTC_SLOW_FREQ_32K_XTAL);
|
||||
}
|
||||
|
||||
/* This function is not exposed as an API at this point.
|
||||
* All peripheral clocks are default enabled after chip is powered on.
|
||||
* This function disables some peripheral clocks when cpu starts.
|
||||
* These peripheral clocks are enabled when the peripherals are initialized
|
||||
* and disabled when they are de-initialized.
|
||||
*/
|
||||
void esp_perip_clk_init(void)
|
||||
{
|
||||
uint32_t common_perip_clk, hwcrypto_perip_clk, wifi_bt_sdio_clk = 0;
|
||||
uint32_t common_perip_clk1 = 0;
|
||||
|
||||
#if CONFIG_FREERTOS_UNICORE
|
||||
RESET_REASON rst_reas[1];
|
||||
#else
|
||||
RESET_REASON rst_reas[2];
|
||||
#endif
|
||||
|
||||
rst_reas[0] = rtc_get_reset_reason(0);
|
||||
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
rst_reas[1] = rtc_get_reset_reason(1);
|
||||
#endif
|
||||
|
||||
/* For reason that only reset CPU, do not disable the clocks
|
||||
* that have been enabled before reset.
|
||||
*/
|
||||
if ((rst_reas[0] >= TG0WDT_CPU_RESET && rst_reas[0] <= TG0WDT_CPU_RESET && rst_reas[0] != RTCWDT_BROWN_OUT_RESET)
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
|| (rst_reas[1] >= TGWDT_CPU_RESET && rst_reas[1] <= RTCWDT_CPU_RESET)
|
||||
#endif
|
||||
) {
|
||||
common_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERIP_CLK_EN_REG);
|
||||
hwcrypto_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERI_CLK_EN_REG);
|
||||
wifi_bt_sdio_clk = ~DPORT_READ_PERI_REG(DPORT_WIFI_CLK_EN_REG);
|
||||
}
|
||||
else {
|
||||
common_perip_clk = DPORT_WDG_CLK_EN |
|
||||
DPORT_I2S0_CLK_EN |
|
||||
#if CONFIG_CONSOLE_UART_NUM != 0
|
||||
DPORT_UART_CLK_EN |
|
||||
#endif
|
||||
#if CONFIG_CONSOLE_UART_NUM != 1
|
||||
DPORT_UART1_CLK_EN |
|
||||
#endif
|
||||
DPORT_USB_CLK_EN |
|
||||
DPORT_SPI2_CLK_EN |
|
||||
DPORT_I2C_EXT0_CLK_EN |
|
||||
DPORT_UHCI0_CLK_EN |
|
||||
DPORT_RMT_CLK_EN |
|
||||
DPORT_PCNT_CLK_EN |
|
||||
DPORT_LEDC_CLK_EN |
|
||||
DPORT_TIMERGROUP1_CLK_EN |
|
||||
DPORT_SPI3_CLK_EN |
|
||||
DPORT_SPI4_CLK_EN |
|
||||
DPORT_PWM0_CLK_EN |
|
||||
DPORT_CAN_CLK_EN |
|
||||
DPORT_PWM1_CLK_EN |
|
||||
DPORT_I2S1_CLK_EN |
|
||||
DPORT_SPI2_DMA_CLK_EN |
|
||||
DPORT_SPI3_DMA_CLK_EN |
|
||||
DPORT_PWM2_CLK_EN |
|
||||
DPORT_PWM3_CLK_EN;
|
||||
common_perip_clk1 = DPORT_SPI_SHARED_DMA_CLK_EN;
|
||||
hwcrypto_perip_clk = DPORT_PERI_EN_AES |
|
||||
DPORT_PERI_EN_SHA |
|
||||
DPORT_PERI_EN_RSA |
|
||||
DPORT_PERI_EN_SECUREBOOT;
|
||||
wifi_bt_sdio_clk = DPORT_WIFI_CLK_WIFI_EN |
|
||||
DPORT_WIFI_CLK_BT_EN_M |
|
||||
DPORT_WIFI_CLK_UNUSED_BIT5 |
|
||||
DPORT_WIFI_CLK_UNUSED_BIT12 |
|
||||
DPORT_WIFI_CLK_SDIOSLAVE_EN |
|
||||
DPORT_WIFI_CLK_SDIO_HOST_EN |
|
||||
DPORT_WIFI_CLK_EMAC_EN;
|
||||
}
|
||||
|
||||
//Reset the communication peripherals like I2C, SPI, UART, I2S and bring them to known state.
|
||||
common_perip_clk |= DPORT_I2S0_CLK_EN |
|
||||
#if CONFIG_CONSOLE_UART_NUM != 0
|
||||
DPORT_UART_CLK_EN |
|
||||
#endif
|
||||
#if CONFIG_CONSOLE_UART_NUM != 1
|
||||
DPORT_UART1_CLK_EN |
|
||||
#endif
|
||||
DPORT_USB_CLK_EN |
|
||||
DPORT_SPI2_CLK_EN |
|
||||
DPORT_I2C_EXT0_CLK_EN |
|
||||
DPORT_UHCI0_CLK_EN |
|
||||
DPORT_RMT_CLK_EN |
|
||||
DPORT_UHCI1_CLK_EN |
|
||||
DPORT_SPI3_CLK_EN |
|
||||
DPORT_SPI4_CLK_EN |
|
||||
DPORT_I2C_EXT1_CLK_EN |
|
||||
DPORT_I2S1_CLK_EN |
|
||||
DPORT_SPI2_DMA_CLK_EN |
|
||||
DPORT_SPI3_DMA_CLK_EN;
|
||||
common_perip_clk1 = DPORT_SPI_SHARED_DMA_CLK_EN;
|
||||
|
||||
/* Change I2S clock to audio PLL first. Because if I2S uses 160MHz clock,
|
||||
* the current is not reduced when disable I2S clock.
|
||||
*/
|
||||
REG_SET_FIELD(I2S_CLKM_CONF_REG(0), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL);
|
||||
REG_SET_FIELD(I2S_CLKM_CONF_REG(1), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL);
|
||||
|
||||
/* Disable some peripheral clocks. */
|
||||
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, common_perip_clk);
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, common_perip_clk);
|
||||
|
||||
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN1_REG, common_perip_clk1);
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN1_REG, common_perip_clk1);
|
||||
|
||||
/* Disable hardware crypto clocks. */
|
||||
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERI_CLK_EN_REG, hwcrypto_perip_clk);
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_PERI_RST_EN_REG, hwcrypto_perip_clk);
|
||||
|
||||
/* Disable WiFi/BT/SDIO clocks. */
|
||||
DPORT_CLEAR_PERI_REG_MASK(DPORT_WIFI_CLK_EN_REG, wifi_bt_sdio_clk);
|
||||
|
||||
/* Enable RNG clock. */
|
||||
periph_module_enable(PERIPH_RNG_MODULE);
|
||||
}
|
4
components/esp32s2beta/component.mk
Normal file
4
components/esp32s2beta/component.mk
Normal file
@ -0,0 +1,4 @@
|
||||
#
|
||||
# Component Makefile
|
||||
#
|
||||
COMPONENT_CONFIG_ONLY := 1
|
523
components/esp32s2beta/cpu_start.c
Normal file
523
components/esp32s2beta/cpu_start.c
Normal file
@ -0,0 +1,523 @@
|
||||
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
|
||||
#include "esp32s2beta/rom/ets_sys.h"
|
||||
#include "esp32s2beta/rom/uart.h"
|
||||
#include "esp32s2beta/rom/rtc.h"
|
||||
#include "esp32s2beta/rom/cache.h"
|
||||
|
||||
#include "soc/cpu.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/io_mux_reg.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/timer_group_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
|
||||
#include "driver/rtc_io.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "freertos/queue.h"
|
||||
#include "freertos/portmacro.h"
|
||||
|
||||
#include "esp_heap_caps_init.h"
|
||||
#include "sdkconfig.h"
|
||||
#include "esp_system.h"
|
||||
#include "esp_spi_flash.h"
|
||||
#include "nvs_flash.h"
|
||||
#include "esp_event.h"
|
||||
#include "esp_spi_flash.h"
|
||||
#include "esp_ipc.h"
|
||||
#include "esp32s2beta/dport_access.h"
|
||||
#include "esp_private/crosscore_int.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_vfs_dev.h"
|
||||
#include "esp_newlib.h"
|
||||
#include "esp32s2beta/brownout.h"
|
||||
#include "esp_int_wdt.h"
|
||||
#include "esp_task.h"
|
||||
#include "esp_task_wdt.h"
|
||||
#include "esp_phy_init.h"
|
||||
#include "esp32s2beta/cache_err_int.h"
|
||||
#include "esp_coexist_internal.h"
|
||||
#include "esp_debug_helpers.h"
|
||||
#include "esp_core_dump.h"
|
||||
#include "esp_app_trace.h"
|
||||
#include "esp_private/dbg_stubs.h"
|
||||
#include "esp_efuse.h"
|
||||
#include "esp32s2beta/spiram.h"
|
||||
#include "esp_clk_internal.h"
|
||||
#include "esp_timer.h"
|
||||
#include "esp_pm.h"
|
||||
#include "esp_private/pm_impl.h"
|
||||
#include "trax.h"
|
||||
|
||||
#define STRINGIFY(s) STRINGIFY2(s)
|
||||
#define STRINGIFY2(s) #s
|
||||
|
||||
void start_cpu0(void) __attribute__((weak, alias("start_cpu0_default"))) __attribute__((noreturn));
|
||||
void start_cpu0_default(void) IRAM_ATTR __attribute__((noreturn));
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
static void IRAM_ATTR call_start_cpu1() __attribute__((noreturn));
|
||||
void start_cpu1(void) __attribute__((weak, alias("start_cpu1_default"))) __attribute__((noreturn));
|
||||
void start_cpu1_default(void) IRAM_ATTR __attribute__((noreturn));
|
||||
static bool app_cpu_started = false;
|
||||
#endif //!CONFIG_FREERTOS_UNICORE
|
||||
|
||||
static void do_global_ctors(void);
|
||||
static void main_task(void* args);
|
||||
extern void app_main(void);
|
||||
extern esp_err_t esp_pthread_init(void);
|
||||
|
||||
extern int _bss_start;
|
||||
extern int _bss_end;
|
||||
extern int _rtc_bss_start;
|
||||
extern int _rtc_bss_end;
|
||||
extern int _init_start;
|
||||
extern void (*__init_array_start)(void);
|
||||
extern void (*__init_array_end)(void);
|
||||
extern volatile int port_xSchedulerRunning[2];
|
||||
|
||||
static const char* TAG = "cpu_start";
|
||||
|
||||
struct object { long placeholder[ 10 ]; };
|
||||
void __register_frame_info (const void *begin, struct object *ob);
|
||||
extern char __eh_frame[];
|
||||
|
||||
//If CONFIG_SPIRAM_IGNORE_NOTFOUND is set and external RAM is not found or errors out on testing, this is set to false.
|
||||
static bool s_spiram_okay=true;
|
||||
|
||||
/*
|
||||
* We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
|
||||
* and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
|
||||
*/
|
||||
|
||||
void IRAM_ATTR call_start_cpu0()
|
||||
{
|
||||
#if CONFIG_FREERTOS_UNICORE
|
||||
RESET_REASON rst_reas[1];
|
||||
#else
|
||||
RESET_REASON rst_reas[2];
|
||||
#endif
|
||||
cpu_configure_region_protection();
|
||||
|
||||
//Move exception vectors to IRAM
|
||||
asm volatile (\
|
||||
"wsr %0, vecbase\n" \
|
||||
::"r"(&_init_start));
|
||||
|
||||
rst_reas[0] = rtc_get_reset_reason(0);
|
||||
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
rst_reas[1] = rtc_get_reset_reason(1);
|
||||
#endif
|
||||
|
||||
// from panic handler we can be reset by RWDT or TG0WDT
|
||||
if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
|| rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET
|
||||
#endif
|
||||
) {
|
||||
esp_panic_wdt_stop();
|
||||
}
|
||||
|
||||
//Clear BSS. Please do not attempt to do any complex stuff (like early logging) before this.
|
||||
memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
|
||||
|
||||
/* Unless waking from deep sleep (implying RTC memory is intact), clear RTC bss */
|
||||
if (rst_reas[0] != DEEPSLEEP_RESET) {
|
||||
memset(&_rtc_bss_start, 0, (&_rtc_bss_end - &_rtc_bss_start) * sizeof(_rtc_bss_start));
|
||||
}
|
||||
|
||||
/* Configure the mode of instruction cache : cache size, cache associated ways, cache line size. */
|
||||
extern void esp_config_instruction_cache_mode(void);
|
||||
esp_config_instruction_cache_mode();
|
||||
|
||||
/* copy MMU table from ICache to DCache, so we can use DCache to access rodata later. */
|
||||
#if CONFIG_RODATA_USE_DATA_CACHE
|
||||
MMU_Drom0_I2D_Copy();
|
||||
#endif
|
||||
|
||||
/* If we need use SPIRAM, we should use data cache, or if we want to access rodata, we also should use data cache.
|
||||
Configure the mode of data : cache size, cache associated ways, cache line size.
|
||||
Enable data cache, so if we don't use SPIRAM, it just works. */
|
||||
#if CONFIG_SPIRAM_BOOT_INIT || CONFIG_RODATA_USE_DATA_CACHE
|
||||
extern void esp_config_data_cache_mode(void);
|
||||
esp_config_data_cache_mode();
|
||||
Cache_Enable_DCache(0);
|
||||
#endif
|
||||
|
||||
/* In SPIRAM code, we will reconfigure data cache, as well as instruction cache, so that we can:
|
||||
1. make data buses works with SPIRAM
|
||||
2. make instruction and rodata work with SPIRAM, still through instruction cache */
|
||||
#if CONFIG_SPIRAM_BOOT_INIT
|
||||
esp_spiram_init_cache();
|
||||
if (esp_spiram_init() != ESP_OK) {
|
||||
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
|
||||
ESP_EARLY_LOGI(TAG, "Failed to init external RAM; continuing without it.");
|
||||
s_spiram_okay = false;
|
||||
#else
|
||||
ESP_EARLY_LOGE(TAG, "Failed to init external RAM!");
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Start to use data cache to access rodata. */
|
||||
#if CONFIG_RODATA_USE_DATA_CACHE
|
||||
extern void esp_switch_rodata_to_dcache(void);
|
||||
esp_switch_rodata_to_dcache();
|
||||
#endif
|
||||
|
||||
ESP_EARLY_LOGI(TAG, "Pro cpu up.");
|
||||
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
ESP_EARLY_LOGI(TAG, "Starting app cpu, entry point is %p", call_start_cpu1);
|
||||
//Flush and enable icache for APP CPU
|
||||
Cache_Flush(1);
|
||||
Cache_Read_Enable(1);
|
||||
esp_cpu_unstall(1);
|
||||
// Enable clock and reset APP CPU. Note that OpenOCD may have already
|
||||
// enabled clock and taken APP CPU out of reset. In this case don't reset
|
||||
// APP CPU again, as that will clear the breakpoints which may have already
|
||||
// been set.
|
||||
if (!DPORT_GET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN)) {
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
|
||||
DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL);
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
|
||||
DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
|
||||
}
|
||||
ets_set_appcpu_boot_addr((uint32_t)call_start_cpu1);
|
||||
|
||||
while (!app_cpu_started) {
|
||||
ets_delay_us(100);
|
||||
}
|
||||
#else
|
||||
ESP_EARLY_LOGI(TAG, "Single core mode");
|
||||
#endif
|
||||
|
||||
|
||||
#if CONFIG_SPIRAM_MEMTEST
|
||||
if (s_spiram_okay) {
|
||||
bool ext_ram_ok=esp_spiram_test();
|
||||
if (!ext_ram_ok) {
|
||||
ESP_EARLY_LOGE(TAG, "External RAM failed memory test!");
|
||||
abort();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if CONFIG_INSTRUCTION_USE_SPIRAM
|
||||
extern void esp_spiram_enable_instruction_access(void);
|
||||
esp_spiram_enable_instruction_access();
|
||||
#endif
|
||||
#if CONFIG_RODATA_USE_SPIRAM
|
||||
extern void esp_spiram_enable_rodata_access(void);
|
||||
esp_spiram_enable_rodata_access();
|
||||
#endif
|
||||
|
||||
#if CONFIG_ENABLE_INSTRUCTION_CACHE_WRAP || CONFIG_ENABLE_DATA_CACHE_WRAP
|
||||
uint32_t icache_wrap_enable = 0,dcache_wrap_enable = 0;
|
||||
#if CONFIG_ENABLE_INSTRUCTION_CACHE_WRAP
|
||||
icache_wrap_enable = 1;
|
||||
#endif
|
||||
#if CONFIG_ENABLE_DATA_CACHE_WRAP
|
||||
dcache_wrap_enable = 1;
|
||||
#endif
|
||||
extern void esp_enable_cache_wrap(uint32_t icache_wrap_enable, uint32_t dcache_wrap_enable);
|
||||
esp_enable_cache_wrap(icache_wrap_enable, dcache_wrap_enable);
|
||||
#endif
|
||||
|
||||
/* Initialize heap allocator. WARNING: This *needs* to happen *after* the app cpu has booted.
|
||||
If the heap allocator is initialized first, it will put free memory linked list items into
|
||||
memory also used by the ROM. Starting the app cpu will let its ROM initialize that memory,
|
||||
corrupting those linked lists. Initializing the allocator *after* the app cpu has booted
|
||||
works around this problem.
|
||||
With SPI RAM enabled, there's a second reason: half of the SPI RAM will be managed by the
|
||||
app CPU, and when that is not up yet, the memory will be inaccessible and heap_caps_init may
|
||||
fail initializing it properly. */
|
||||
heap_caps_init();
|
||||
|
||||
ESP_EARLY_LOGI(TAG, "Pro cpu start user code");
|
||||
start_cpu0();
|
||||
}
|
||||
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
|
||||
static void wdt_reset_cpu1_info_enable(void)
|
||||
{
|
||||
DPORT_REG_SET_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_PDEBUG_ENABLE | DPORT_APP_CPU_RECORD_ENABLE);
|
||||
DPORT_REG_CLR_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_RECORD_ENABLE);
|
||||
}
|
||||
|
||||
void IRAM_ATTR call_start_cpu1()
|
||||
{
|
||||
asm volatile (\
|
||||
"wsr %0, vecbase\n" \
|
||||
::"r"(&_init_start));
|
||||
|
||||
ets_set_appcpu_boot_addr(0);
|
||||
cpu_configure_region_protection();
|
||||
|
||||
#if CONFIG_CONSOLE_UART_NONE
|
||||
ets_install_putc1(NULL);
|
||||
ets_install_putc2(NULL);
|
||||
#else // CONFIG_CONSOLE_UART_NONE
|
||||
uartAttach();
|
||||
ets_install_uart_printf();
|
||||
uart_tx_switch(CONFIG_CONSOLE_UART_NUM);
|
||||
#endif
|
||||
|
||||
wdt_reset_cpu1_info_enable();
|
||||
ESP_EARLY_LOGI(TAG, "App cpu up.");
|
||||
app_cpu_started = 1;
|
||||
start_cpu1();
|
||||
}
|
||||
#endif //!CONFIG_FREERTOS_UNICORE
|
||||
|
||||
static void intr_matrix_clear(void)
|
||||
{
|
||||
//Clear all the interrupt matrix register
|
||||
for (int i = ETS_WIFI_MAC_INTR_SOURCE; i < ETS_MAX_INTR_SOURCE; i++) {
|
||||
intr_matrix_set(0, i, ETS_INVALID_INUM);
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
intr_matrix_set(1, i, ETS_INVALID_INUM);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void start_cpu0_default(void)
|
||||
{
|
||||
esp_err_t err;
|
||||
esp_setup_syscall_table();
|
||||
|
||||
if (s_spiram_okay) {
|
||||
#if CONFIG_SPIRAM_BOOT_INIT && (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
|
||||
esp_err_t r=esp_spiram_add_to_heapalloc();
|
||||
if (r != ESP_OK) {
|
||||
ESP_EARLY_LOGE(TAG, "External RAM could not be added to heap!");
|
||||
abort();
|
||||
}
|
||||
#if CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL
|
||||
r=esp_spiram_reserve_dma_pool(CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL);
|
||||
if (r != ESP_OK) {
|
||||
ESP_EARLY_LOGE(TAG, "Could not reserve internal/DMA pool!");
|
||||
abort();
|
||||
}
|
||||
#endif
|
||||
#if CONFIG_SPIRAM_USE_MALLOC
|
||||
heap_caps_malloc_extmem_enable(CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
//Enable trace memory and immediately start trace.
|
||||
#if CONFIG_ESP32_TRAX
|
||||
#if CONFIG_ESP32_TRAX_TWOBANKS
|
||||
trax_enable(TRAX_ENA_PRO_APP);
|
||||
#else
|
||||
trax_enable(TRAX_ENA_PRO);
|
||||
#endif
|
||||
trax_start_trace(TRAX_DOWNCOUNT_WORDS);
|
||||
#endif
|
||||
esp_clk_init();
|
||||
esp_perip_clk_init();
|
||||
intr_matrix_clear();
|
||||
|
||||
#ifndef CONFIG_CONSOLE_UART_NONE
|
||||
#ifdef CONFIG_PM_ENABLE
|
||||
const int uart_clk_freq = REF_CLK_FREQ;
|
||||
/* When DFS is enabled, use REFTICK as UART clock source */
|
||||
CLEAR_PERI_REG_MASK(UART_CONF0_REG(CONFIG_CONSOLE_UART_NUM), UART_TICK_REF_ALWAYS_ON);
|
||||
#else
|
||||
const int uart_clk_freq = APB_CLK_FREQ;
|
||||
#endif // CONFIG_PM_DFS_ENABLE
|
||||
uart_div_modify(CONFIG_CONSOLE_UART_NUM, (uart_clk_freq << 4) / CONFIG_CONSOLE_UART_BAUDRATE);
|
||||
#endif // CONFIG_CONSOLE_UART_NONE
|
||||
|
||||
#if CONFIG_BROWNOUT_DET
|
||||
esp_brownout_init();
|
||||
#endif
|
||||
#if CONFIG_DISABLE_BASIC_ROM_CONSOLE
|
||||
esp_efuse_disable_basic_rom_console();
|
||||
#endif
|
||||
rtc_gpio_force_hold_dis_all();
|
||||
esp_vfs_dev_uart_register();
|
||||
esp_reent_init(_GLOBAL_REENT);
|
||||
#ifndef CONFIG_CONSOLE_UART_NONE
|
||||
const char* default_uart_dev = "/dev/uart/" STRINGIFY(CONFIG_CONSOLE_UART_NUM);
|
||||
_GLOBAL_REENT->_stdin = fopen(default_uart_dev, "r");
|
||||
_GLOBAL_REENT->_stdout = fopen(default_uart_dev, "w");
|
||||
_GLOBAL_REENT->_stderr = fopen(default_uart_dev, "w");
|
||||
#else
|
||||
_GLOBAL_REENT->_stdin = (FILE*) &__sf_fake_stdin;
|
||||
_GLOBAL_REENT->_stdout = (FILE*) &__sf_fake_stdout;
|
||||
_GLOBAL_REENT->_stderr = (FILE*) &__sf_fake_stderr;
|
||||
#endif
|
||||
esp_timer_init();
|
||||
esp_set_time_from_rtc();
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
err = esp_apptrace_init();
|
||||
assert(err == ESP_OK && "Failed to init apptrace module on PRO CPU!");
|
||||
#endif
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_SYSVIEW_Conf();
|
||||
#endif
|
||||
#if CONFIG_ESP32_DEBUG_STUBS_ENABLE
|
||||
esp_dbg_stubs_init();
|
||||
#endif
|
||||
err = esp_pthread_init();
|
||||
assert(err == ESP_OK && "Failed to init pthread module!");
|
||||
|
||||
do_global_ctors();
|
||||
#if CONFIG_INT_WDT
|
||||
//esp_int_wdt_init();
|
||||
//Initialize the interrupt watch dog for CPU0.
|
||||
//esp_int_wdt_cpu_init();
|
||||
#endif
|
||||
//esp_cache_err_int_init();
|
||||
esp_crosscore_int_init();
|
||||
esp_ipc_init();
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
esp_dport_access_int_init();
|
||||
#endif
|
||||
spi_flash_init();
|
||||
/* init default OS-aware flash access critical section */
|
||||
spi_flash_guard_set(&g_flash_guard_default_ops);
|
||||
#ifdef CONFIG_PM_ENABLE
|
||||
esp_pm_impl_init();
|
||||
#ifdef CONFIG_PM_DFS_INIT_AUTO
|
||||
rtc_cpu_freq_t max_freq;
|
||||
rtc_clk_cpu_freq_from_mhz(CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ, &max_freq);
|
||||
esp_pm_config_esp32_t cfg = {
|
||||
.max_cpu_freq = max_freq,
|
||||
.min_cpu_freq = RTC_CPU_FREQ_XTAL
|
||||
};
|
||||
esp_pm_configure(&cfg);
|
||||
#endif //CONFIG_PM_DFS_INIT_AUTO
|
||||
#endif //CONFIG_PM_ENABLE
|
||||
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP
|
||||
esp_core_dump_init();
|
||||
#endif
|
||||
|
||||
portBASE_TYPE res = xTaskCreatePinnedToCore(&main_task, "main",
|
||||
ESP_TASK_MAIN_STACK, NULL,
|
||||
ESP_TASK_MAIN_PRIO, NULL, 0);
|
||||
assert(res == pdTRUE);
|
||||
ESP_LOGI(TAG, "Starting scheduler on PRO CPU.");
|
||||
vTaskStartScheduler();
|
||||
abort(); /* Only get to here if not enough free heap to start scheduler */
|
||||
}
|
||||
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
void start_cpu1_default(void)
|
||||
{
|
||||
// Wait for FreeRTOS initialization to finish on PRO CPU
|
||||
while (port_xSchedulerRunning[0] == 0) {
|
||||
;
|
||||
}
|
||||
#if CONFIG_ESP32_TRAX_TWOBANKS
|
||||
trax_start_trace(TRAX_DOWNCOUNT_WORDS);
|
||||
#endif
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
esp_err_t err = esp_apptrace_init();
|
||||
assert(err == ESP_OK && "Failed to init apptrace module on APP CPU!");
|
||||
#endif
|
||||
#if CONFIG_INT_WDT
|
||||
//Initialize the interrupt watch dog for CPU1.
|
||||
//esp_int_wdt_cpu_init();
|
||||
#endif
|
||||
//Take care putting stuff here: if asked, FreeRTOS will happily tell you the scheduler
|
||||
//has started, but it isn't active *on this CPU* yet.
|
||||
esp_cache_err_int_init();
|
||||
esp_crosscore_int_init();
|
||||
esp_dport_access_int_init();
|
||||
|
||||
ESP_EARLY_LOGI(TAG, "Starting scheduler on APP CPU.");
|
||||
xPortStartScheduler();
|
||||
abort(); /* Only get to here if FreeRTOS somehow very broken */
|
||||
}
|
||||
#endif //!CONFIG_FREERTOS_UNICORE
|
||||
|
||||
#ifdef CONFIG_CXX_EXCEPTIONS
|
||||
size_t __cxx_eh_arena_size_get()
|
||||
{
|
||||
return CONFIG_CXX_EXCEPTIONS_EMG_POOL_SIZE;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void do_global_ctors(void)
|
||||
{
|
||||
#ifdef CONFIG_CXX_EXCEPTIONS
|
||||
static struct object ob;
|
||||
__register_frame_info( __eh_frame, &ob );
|
||||
#endif
|
||||
|
||||
void (**p)(void);
|
||||
for (p = &__init_array_end - 1; p >= &__init_array_start; --p) {
|
||||
(*p)();
|
||||
}
|
||||
}
|
||||
|
||||
static void main_task(void* args)
|
||||
{
|
||||
// Now that the application is about to start, disable boot watchdogs
|
||||
REG_CLR_BIT(TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN_S);
|
||||
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN);
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
// Wait for FreeRTOS initialization to finish on APP CPU, before replacing its startup stack
|
||||
while (port_xSchedulerRunning[1] == 0) {
|
||||
;
|
||||
}
|
||||
#endif
|
||||
//Enable allocation in region where the startup stacks were located.
|
||||
heap_caps_enable_nonos_stack_heaps();
|
||||
|
||||
//Initialize task wdt if configured to do so
|
||||
#ifdef CONFIG_TASK_WDT_PANIC
|
||||
//ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_TASK_WDT_TIMEOUT_S, true))
|
||||
#elif CONFIG_TASK_WDT
|
||||
//ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_TASK_WDT_TIMEOUT_S, false))
|
||||
#endif
|
||||
|
||||
//Add IDLE 0 to task wdt
|
||||
#if 0
|
||||
#ifdef CONFIG_TASK_WDT_CHECK_IDLE_TASK_CPU0
|
||||
TaskHandle_t idle_0 = xTaskGetIdleTaskHandleForCPU(0);
|
||||
if(idle_0 != NULL){
|
||||
ESP_ERROR_CHECK(esp_task_wdt_add(idle_0))
|
||||
}
|
||||
#endif
|
||||
//Add IDLE 1 to task wdt
|
||||
#ifdef CONFIG_TASK_WDT_CHECK_IDLE_TASK_CPU1
|
||||
TaskHandle_t idle_1 = xTaskGetIdleTaskHandleForCPU(1);
|
||||
if(idle_1 != NULL){
|
||||
ESP_ERROR_CHECK(esp_task_wdt_add(idle_1))
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
app_main();
|
||||
vTaskDelete(NULL);
|
||||
}
|
||||
|
119
components/esp32s2beta/crosscore_int.c
Normal file
119
components/esp32s2beta/crosscore_int.c
Normal file
@ -0,0 +1,119 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
|
||||
#include "esp32s2beta/rom/ets_sys.h"
|
||||
#include "esp32s2beta/rom/uart.h"
|
||||
|
||||
#include "soc/cpu.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/io_mux_reg.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "freertos/queue.h"
|
||||
#include "freertos/portmacro.h"
|
||||
|
||||
|
||||
#define REASON_YIELD BIT(0)
|
||||
#define REASON_FREQ_SWITCH BIT(1)
|
||||
|
||||
static portMUX_TYPE reason_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
static volatile uint32_t reason[ portNUM_PROCESSORS ];
|
||||
|
||||
/*
|
||||
ToDo: There is a small chance the CPU already has yielded when this ISR is serviced. In that case, it's running the intended task but
|
||||
the ISR will cause it to switch _away_ from it. portYIELD_FROM_ISR will probably just schedule the task again, but have to check that.
|
||||
*/
|
||||
static inline void IRAM_ATTR esp_crosscore_isr_handle_yield()
|
||||
{
|
||||
portYIELD_FROM_ISR();
|
||||
}
|
||||
|
||||
static void IRAM_ATTR esp_crosscore_isr(void *arg) {
|
||||
uint32_t my_reason_val;
|
||||
//A pointer to the correct reason array item is passed to this ISR.
|
||||
volatile uint32_t *my_reason=arg;
|
||||
|
||||
//Clear the interrupt first.
|
||||
if (xPortGetCoreID()==0) {
|
||||
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_0_REG, 0);
|
||||
} else {
|
||||
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_1_REG, 0);
|
||||
}
|
||||
//Grab the reason and clear it.
|
||||
portENTER_CRITICAL_ISR(&reason_spinlock);
|
||||
my_reason_val=*my_reason;
|
||||
*my_reason=0;
|
||||
portEXIT_CRITICAL_ISR(&reason_spinlock);
|
||||
|
||||
//Check what we need to do.
|
||||
if (my_reason_val & REASON_YIELD) {
|
||||
esp_crosscore_isr_handle_yield();
|
||||
}
|
||||
if (my_reason_val & REASON_FREQ_SWITCH) {
|
||||
/* Nothing to do here; the frequency switch event was already
|
||||
* handled by a hook in xtensa_vectors.S. Could be used in the future
|
||||
* to allow DFS features without the extra latency of the ISR hook.
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
//Initialize the crosscore interrupt on this core. Call this once
|
||||
//on each active core.
|
||||
void esp_crosscore_int_init() {
|
||||
portENTER_CRITICAL(&reason_spinlock);
|
||||
reason[xPortGetCoreID()]=0;
|
||||
portEXIT_CRITICAL(&reason_spinlock);
|
||||
esp_err_t err;
|
||||
if (xPortGetCoreID()==0) {
|
||||
err = esp_intr_alloc(ETS_FROM_CPU_INTR0_SOURCE, ESP_INTR_FLAG_IRAM, esp_crosscore_isr, (void*)&reason[0], NULL);
|
||||
} else {
|
||||
err = esp_intr_alloc(ETS_FROM_CPU_INTR1_SOURCE, ESP_INTR_FLAG_IRAM, esp_crosscore_isr, (void*)&reason[1], NULL);
|
||||
}
|
||||
assert(err == ESP_OK);
|
||||
}
|
||||
|
||||
static void IRAM_ATTR esp_crosscore_int_send(int core_id, uint32_t reason_mask) {
|
||||
assert(core_id<portNUM_PROCESSORS);
|
||||
//Mark the reason we interrupt the other CPU
|
||||
portENTER_CRITICAL(&reason_spinlock);
|
||||
reason[core_id] |= reason_mask;
|
||||
portEXIT_CRITICAL(&reason_spinlock);
|
||||
//Poke the other CPU.
|
||||
if (core_id==0) {
|
||||
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_0_REG, DPORT_CPU_INTR_FROM_CPU_0);
|
||||
} else {
|
||||
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_1_REG, DPORT_CPU_INTR_FROM_CPU_1);
|
||||
}
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_crosscore_int_send_yield(int core_id)
|
||||
{
|
||||
esp_crosscore_int_send(core_id, REASON_YIELD);
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_crosscore_int_send_freq_switch(int core_id)
|
||||
{
|
||||
esp_crosscore_int_send(core_id, REASON_FREQ_SWITCH);
|
||||
}
|
||||
|
312
components/esp32s2beta/dport_access.c
Normal file
312
components/esp32s2beta/dport_access.c
Normal file
@ -0,0 +1,312 @@
|
||||
// Copyright 2010-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/*
|
||||
* DPORT access is used for do protection when dual core access DPORT internal register and APB register via DPORT simultaneously
|
||||
* This function will be initialize after FreeRTOS startup.
|
||||
* When cpu0 want to access DPORT register, it should notify cpu1 enter in high-priority interrupt for be mute. When cpu1 already in high-priority interrupt,
|
||||
* cpu0 can access DPORT register. Currently, cpu1 will wait for cpu0 finish access and exit high-priority interrupt.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <sdkconfig.h>
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp32s2beta/rom/ets_sys.h"
|
||||
#include "esp32s2beta/rom/uart.h"
|
||||
|
||||
#include "soc/cpu.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/spi_mem_reg.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "freertos/queue.h"
|
||||
#include "freertos/portmacro.h"
|
||||
|
||||
#include "xtensa/core-macros.h"
|
||||
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
static portMUX_TYPE g_dport_mux = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
#define DPORT_CORE_STATE_IDLE 0
|
||||
#define DPORT_CORE_STATE_RUNNING 1
|
||||
static uint32_t volatile dport_core_state[portNUM_PROCESSORS]; //cpu is already run
|
||||
|
||||
/* these global variables are accessed from interrupt vector, hence not declared as static */
|
||||
uint32_t volatile dport_access_start[portNUM_PROCESSORS]; //dport register could be accessed
|
||||
uint32_t volatile dport_access_end[portNUM_PROCESSORS]; //dport register is accessed over
|
||||
|
||||
static uint32_t volatile dport_access_ref[portNUM_PROCESSORS]; //dport access reference
|
||||
|
||||
#ifdef DPORT_ACCESS_BENCHMARK
|
||||
#define DPORT_ACCESS_BENCHMARK_STORE_NUM
|
||||
static uint32_t ccount_start[portNUM_PROCESSORS];
|
||||
static uint32_t ccount_end[portNUM_PROCESSORS];
|
||||
static uint32_t ccount_margin[portNUM_PROCESSORS][DPORT_ACCESS_BENCHMARK_STORE_NUM];
|
||||
static uint32_t ccount_margin_cnt;
|
||||
#endif
|
||||
|
||||
|
||||
static BaseType_t oldInterruptLevel[2];
|
||||
#endif // CONFIG_FREERTOS_UNICORE
|
||||
|
||||
/* stall other cpu that this cpu is pending to access dport register start */
|
||||
void IRAM_ATTR esp_dport_access_stall_other_cpu_start(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
if (dport_core_state[0] == DPORT_CORE_STATE_IDLE
|
||||
|| dport_core_state[1] == DPORT_CORE_STATE_IDLE) {
|
||||
return;
|
||||
}
|
||||
|
||||
BaseType_t intLvl = portENTER_CRITICAL_NESTED();
|
||||
|
||||
int cpu_id = xPortGetCoreID();
|
||||
|
||||
#ifdef DPORT_ACCESS_BENCHMARK
|
||||
ccount_start[cpu_id] = XTHAL_GET_CCOUNT();
|
||||
#endif
|
||||
|
||||
if (dport_access_ref[cpu_id] == 0) {
|
||||
portENTER_CRITICAL_ISR(&g_dport_mux);
|
||||
|
||||
oldInterruptLevel[cpu_id]=intLvl;
|
||||
|
||||
dport_access_start[cpu_id] = 0;
|
||||
dport_access_end[cpu_id] = 0;
|
||||
|
||||
if (cpu_id == 0) {
|
||||
_DPORT_REG_WRITE(DPORT_CPU_INTR_FROM_CPU_3_REG, DPORT_CPU_INTR_FROM_CPU_3); //interrupt on cpu1
|
||||
} else {
|
||||
_DPORT_REG_WRITE(DPORT_CPU_INTR_FROM_CPU_2_REG, DPORT_CPU_INTR_FROM_CPU_2); //interrupt on cpu0
|
||||
}
|
||||
|
||||
while (!dport_access_start[cpu_id]) {};
|
||||
|
||||
REG_READ(SPI_DATE_REG(3)); //just read a APB register sure that the APB-bus is idle
|
||||
}
|
||||
|
||||
dport_access_ref[cpu_id]++;
|
||||
|
||||
if (dport_access_ref[cpu_id] > 1) {
|
||||
/* Interrupts are already disabled by the parent, we're nested here. */
|
||||
portEXIT_CRITICAL_NESTED(intLvl);
|
||||
}
|
||||
#endif /* CONFIG_FREERTOS_UNICORE */
|
||||
}
|
||||
|
||||
/* stall other cpu that this cpu is pending to access dport register end */
|
||||
void IRAM_ATTR esp_dport_access_stall_other_cpu_end(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
int cpu_id = xPortGetCoreID();
|
||||
|
||||
if (dport_core_state[0] == DPORT_CORE_STATE_IDLE
|
||||
|| dport_core_state[1] == DPORT_CORE_STATE_IDLE) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (dport_access_ref[cpu_id] == 0) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
dport_access_ref[cpu_id]--;
|
||||
|
||||
if (dport_access_ref[cpu_id] == 0) {
|
||||
dport_access_end[cpu_id] = 1;
|
||||
|
||||
portEXIT_CRITICAL_ISR(&g_dport_mux);
|
||||
|
||||
portEXIT_CRITICAL_NESTED(oldInterruptLevel[cpu_id]);
|
||||
}
|
||||
|
||||
#ifdef DPORT_ACCESS_BENCHMARK
|
||||
ccount_end[cpu_id] = XTHAL_GET_CCOUNT();
|
||||
ccount_margin[cpu_id][ccount_margin_cnt] = ccount_end[cpu_id] - ccount_start[cpu_id];
|
||||
ccount_margin_cnt = (ccount_margin_cnt + 1)&(DPORT_ACCESS_BENCHMARK_STORE_NUM - 1);
|
||||
#endif
|
||||
#endif /* CONFIG_FREERTOS_UNICORE */
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_dport_access_stall_other_cpu_start_wrap(void)
|
||||
{
|
||||
DPORT_STALL_OTHER_CPU_START();
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_dport_access_stall_other_cpu_end_wrap(void)
|
||||
{
|
||||
DPORT_STALL_OTHER_CPU_END();
|
||||
}
|
||||
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
static void dport_access_init_core(void *arg)
|
||||
{
|
||||
int core_id = 0;
|
||||
uint32_t intr_source = ETS_FROM_CPU_INTR2_SOURCE;
|
||||
|
||||
|
||||
core_id = xPortGetCoreID();
|
||||
if (core_id == 1) {
|
||||
intr_source = ETS_FROM_CPU_INTR3_SOURCE;
|
||||
}
|
||||
|
||||
ESP_INTR_DISABLE(ETS_DPORT_INUM);
|
||||
intr_matrix_set(core_id, intr_source, ETS_DPORT_INUM);
|
||||
ESP_INTR_ENABLE(ETS_DPORT_INUM);
|
||||
|
||||
dport_access_ref[core_id] = 0;
|
||||
dport_access_start[core_id] = 0;
|
||||
dport_access_end[core_id] = 0;
|
||||
dport_core_state[core_id] = DPORT_CORE_STATE_RUNNING;
|
||||
|
||||
vTaskDelete(NULL);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Defer initialisation until after scheduler is running */
|
||||
void esp_dport_access_int_init(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
portBASE_TYPE res = xTaskCreatePinnedToCore(&dport_access_init_core, "dport", configMINIMAL_STACK_SIZE, NULL, 5, NULL, xPortGetCoreID());
|
||||
assert(res == pdTRUE);
|
||||
#endif
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_dport_access_int_pause(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
portENTER_CRITICAL_ISR(&g_dport_mux);
|
||||
dport_core_state[0] = DPORT_CORE_STATE_IDLE;
|
||||
dport_core_state[1] = DPORT_CORE_STATE_IDLE;
|
||||
portEXIT_CRITICAL_ISR(&g_dport_mux);
|
||||
#endif
|
||||
}
|
||||
|
||||
//Used in panic code: the enter_critical stuff may be messed up so we just stop everything without checking the mux.
|
||||
void IRAM_ATTR esp_dport_access_int_abort(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
dport_core_state[0] = DPORT_CORE_STATE_IDLE;
|
||||
dport_core_state[1] = DPORT_CORE_STATE_IDLE;
|
||||
#endif
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_dport_access_int_resume(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
portENTER_CRITICAL_ISR(&g_dport_mux);
|
||||
dport_core_state[0] = DPORT_CORE_STATE_RUNNING;
|
||||
dport_core_state[1] = DPORT_CORE_STATE_RUNNING;
|
||||
portEXIT_CRITICAL_ISR(&g_dport_mux);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read a sequence of DPORT registers to the buffer, SMP-safe version.
|
||||
*
|
||||
* This implementation uses a method of the pre-reading of the APB register
|
||||
* before reading the register of the DPORT, without stall other CPU.
|
||||
* There is disable/enable interrupt.
|
||||
*
|
||||
* @param[out] buff_out Contains the read data.
|
||||
* @param[in] address Initial address for reading registers.
|
||||
* @param[in] num_words The number of words.
|
||||
*/
|
||||
void IRAM_ATTR esp_dport_access_read_buffer(uint32_t *buff_out, uint32_t address, uint32_t num_words)
|
||||
{
|
||||
DPORT_INTERRUPT_DISABLE();
|
||||
for (uint32_t i = 0; i < num_words; ++i) {
|
||||
buff_out[i] = DPORT_SEQUENCE_REG_READ(address + i * 4);
|
||||
}
|
||||
DPORT_INTERRUPT_RESTORE();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read value from register, SMP-safe version.
|
||||
*
|
||||
* This method uses the pre-reading of the APB register before reading the register of the DPORT.
|
||||
* This implementation is useful for reading DORT registers for single reading without stall other CPU.
|
||||
* There is disable/enable interrupt.
|
||||
*
|
||||
* @param reg Register address
|
||||
* @return Value
|
||||
*/
|
||||
uint32_t IRAM_ATTR esp_dport_access_reg_read(uint32_t reg)
|
||||
{
|
||||
#if defined(BOOTLOADER_BUILD) || defined(CONFIG_FREERTOS_UNICORE) || !defined(ESP_PLATFORM)
|
||||
return _DPORT_REG_READ(reg);
|
||||
#else
|
||||
uint32_t apb;
|
||||
unsigned int intLvl;
|
||||
__asm__ __volatile__ (\
|
||||
"movi %[APB], "XTSTR(0x3f400078)"\n"\
|
||||
"rsil %[LVL], "XTSTR(3)"\n"\
|
||||
"l32i %[APB], %[APB], 0\n"\
|
||||
"l32i %[REG], %[REG], 0\n"\
|
||||
"wsr %[LVL], "XTSTR(PS)"\n"\
|
||||
"rsync\n"\
|
||||
: [APB]"=a"(apb), [REG]"+a"(reg), [LVL]"=a"(intLvl)\
|
||||
: \
|
||||
: "memory" \
|
||||
);
|
||||
return reg;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read value from register, NOT SMP-safe version.
|
||||
*
|
||||
* This method uses the pre-reading of the APB register before reading the register of the DPORT.
|
||||
* There is not disable/enable interrupt.
|
||||
* The difference from DPORT_REG_READ() is that the user himself must disable interrupts while DPORT reading.
|
||||
* This implementation is useful for reading DORT registers in loop without stall other CPU. Note the usage example.
|
||||
* The recommended way to read registers sequentially without stall other CPU
|
||||
* is to use the method esp_dport_read_buffer(buff_out, address, num_words). It allows you to read registers in the buffer.
|
||||
*
|
||||
* \code{c}
|
||||
* // This example shows how to use it.
|
||||
* { // Use curly brackets to limit the visibility of variables in macros DPORT_INTERRUPT_DISABLE/RESTORE.
|
||||
* DPORT_INTERRUPT_DISABLE(); // Disable interrupt only on current CPU.
|
||||
* for (i = 0; i < max; ++i) {
|
||||
* array[i] = esp_dport_access_sequence_reg_read(Address + i * 4); // reading DPORT registers
|
||||
* }
|
||||
* DPORT_INTERRUPT_RESTORE(); // restore the previous interrupt level
|
||||
* }
|
||||
* \endcode
|
||||
*
|
||||
* @param reg Register address
|
||||
* @return Value
|
||||
*/
|
||||
uint32_t IRAM_ATTR esp_dport_access_sequence_reg_read(uint32_t reg)
|
||||
{
|
||||
#if defined(BOOTLOADER_BUILD) || defined(CONFIG_FREERTOS_UNICORE) || !defined(ESP_PLATFORM)
|
||||
return _DPORT_REG_READ(reg);
|
||||
#else
|
||||
uint32_t apb;
|
||||
__asm__ __volatile__ (\
|
||||
"movi %[APB], "XTSTR(0x3f400078)"\n"\
|
||||
"l32i %[APB], %[APB], 0\n"\
|
||||
"l32i %[REG], %[REG], 0\n"\
|
||||
: [APB]"=a"(apb), [REG]"+a"(reg)\
|
||||
: \
|
||||
: "memory" \
|
||||
);
|
||||
return reg;
|
||||
#endif
|
||||
}
|
203
components/esp32s2beta/dport_panic_highint_hdl.S
Normal file
203
components/esp32s2beta/dport_panic_highint_hdl.S
Normal file
@ -0,0 +1,203 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#include <xtensa/coreasm.h>
|
||||
#include <xtensa/corebits.h>
|
||||
#include <xtensa/config/system.h>
|
||||
#include "freertos/xtensa_context.h"
|
||||
#include "esp_private/panic_reason.h"
|
||||
#include "sdkconfig.h"
|
||||
#include "soc/soc.h"
|
||||
#include "soc/dport_reg.h"
|
||||
|
||||
/*
|
||||
|
||||
Interrupt , a high-priority interrupt, is used for several things:
|
||||
- Dport access mediation
|
||||
- Cache error panic handler
|
||||
- Interrupt watchdog panic handler
|
||||
|
||||
*/
|
||||
|
||||
#define L4_INTR_STACK_SIZE 8
|
||||
#define L4_INTR_A2_OFFSET 0
|
||||
#define L4_INTR_A3_OFFSET 4
|
||||
.data
|
||||
_l4_intr_stack:
|
||||
.space L4_INTR_STACK_SIZE
|
||||
|
||||
.section .iram1,"ax"
|
||||
.global xt_highint4
|
||||
.type xt_highint4,@function
|
||||
.align 4
|
||||
xt_highint4:
|
||||
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
/* See if we're here for the dport access interrupt */
|
||||
rsr a0, INTERRUPT
|
||||
extui a0, a0, ETS_DPORT_INUM, 1
|
||||
bnez a0, .handle_dport_access_int
|
||||
#endif // CONFIG_FREERTOS_UNICORE
|
||||
|
||||
/* Allocate exception frame and save minimal context. */
|
||||
mov a0, sp
|
||||
addi sp, sp, -XT_STK_FRMSZ
|
||||
s32i a0, sp, XT_STK_A1
|
||||
#if XCHAL_HAVE_WINDOWED
|
||||
s32e a0, sp, -12 /* for debug backtrace */
|
||||
#endif
|
||||
rsr a0, PS /* save interruptee's PS */
|
||||
s32i a0, sp, XT_STK_PS
|
||||
rsr a0, EPC_4 /* save interruptee's PC */
|
||||
s32i a0, sp, XT_STK_PC
|
||||
#if XCHAL_HAVE_WINDOWED
|
||||
s32e a0, sp, -16 /* for debug backtrace */
|
||||
#endif
|
||||
s32i a12, sp, XT_STK_A12 /* _xt_context_save requires A12- */
|
||||
s32i a13, sp, XT_STK_A13 /* A13 to have already been saved */
|
||||
call0 _xt_context_save
|
||||
|
||||
/* Save vaddr into exception frame */
|
||||
rsr a0, EXCVADDR
|
||||
s32i a0, sp, XT_STK_EXCVADDR
|
||||
|
||||
/* Figure out reason, save into EXCCAUSE reg */
|
||||
|
||||
rsr a0, INTERRUPT
|
||||
extui a0, a0, ETS_CACHEERR_INUM, 1 /* get cacheerr int bit */
|
||||
beqz a0, 1f
|
||||
/* Kill this interrupt; we cannot reset it. */
|
||||
rsr a0, INTENABLE
|
||||
movi a4, ~(1<<ETS_CACHEERR_INUM)
|
||||
and a0, a4, a0
|
||||
wsr a0, INTENABLE
|
||||
movi a0, PANIC_RSN_CACHEERR
|
||||
j 9f
|
||||
1:
|
||||
#if CONFIG_INT_WDT_CHECK_CPU1
|
||||
/* Check if the cause is the app cpu failing to tick.*/
|
||||
movi a0, int_wdt_app_cpu_ticked
|
||||
l32i a0, a0, 0
|
||||
bnez a0, 2f
|
||||
/* It is. Modify cause. */
|
||||
movi a0,PANIC_RSN_INTWDT_CPU1
|
||||
j 9f
|
||||
2:
|
||||
#endif
|
||||
/* Set EXCCAUSE to reflect cause of the wdt int trigger */
|
||||
movi a0,PANIC_RSN_INTWDT_CPU0
|
||||
9:
|
||||
/* Found the reason, now save it. */
|
||||
s32i a0, sp, XT_STK_EXCCAUSE
|
||||
|
||||
/* _xt_context_save seems to save the current a0, but we need the interuptees a0. Fix this. */
|
||||
rsr a0, EXCSAVE_4 /* save interruptee's a0 */
|
||||
|
||||
s32i a0, sp, XT_STK_A0
|
||||
|
||||
/* Set up PS for C, disable all interrupts except NMI and debug, and clear EXCM. */
|
||||
movi a0, PS_INTLEVEL(5) | PS_UM | PS_WOE
|
||||
wsr a0, PS
|
||||
|
||||
//Call panic handler
|
||||
mov a6,sp
|
||||
call4 panicHandler
|
||||
|
||||
call0 _xt_context_restore
|
||||
l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */
|
||||
wsr a0, PS
|
||||
l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */
|
||||
wsr a0, EPC_4
|
||||
l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */
|
||||
l32i sp, sp, XT_STK_A1 /* remove exception frame */
|
||||
rsync /* ensure PS and EPC written */
|
||||
|
||||
rsr a0, EXCSAVE_4 /* restore a0 */
|
||||
rfi 4
|
||||
|
||||
|
||||
|
||||
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
|
||||
.align 4
|
||||
.handle_dport_access_int:
|
||||
/* This section is for dport access register protection */
|
||||
/* Allocate exception frame and save minimal context. */
|
||||
/* Because the interrupt cause code has protection that only
|
||||
allows one cpu to enter in the dport section of the L4
|
||||
interrupt at one time, there's no need to have two
|
||||
_l4_intr_stack for each cpu */
|
||||
|
||||
/* This int is edge-triggered and needs clearing. */
|
||||
movi a0, (1<<ETS_DPORT_INUM)
|
||||
wsr a0, INTCLEAR
|
||||
|
||||
/* Save A2, A3 so we can use those registers */
|
||||
movi a0, _l4_intr_stack
|
||||
s32i a2, a0, L4_INTR_A2_OFFSET
|
||||
s32i a3, a0, L4_INTR_A3_OFFSET
|
||||
|
||||
/* handle dport interrupt */
|
||||
/* get CORE_ID */
|
||||
getcoreid a0
|
||||
beqz a0, 2f
|
||||
|
||||
/* current cpu is 1 */
|
||||
movi a0, DPORT_CPU_INTR_FROM_CPU_3_REG
|
||||
movi a2, 0
|
||||
s32i a2, a0, 0 /* clear intr */
|
||||
movi a0, 0 /* other cpu id */
|
||||
j 3f
|
||||
2:
|
||||
/* current cpu is 0 */
|
||||
movi a0, DPORT_CPU_INTR_FROM_CPU_2_REG
|
||||
movi a2, 0
|
||||
s32i a2, a0, 0 /* clear intr */
|
||||
movi a0, 1 /* other cpu id */
|
||||
3:
|
||||
/* set and wait flag */
|
||||
movi a2, dport_access_start
|
||||
addx4 a2, a0, a2
|
||||
movi a3, 1
|
||||
s32i a3, a2, 0
|
||||
memw
|
||||
movi a2, dport_access_end
|
||||
addx4 a2, a0, a2
|
||||
.check_dport_access_end:
|
||||
l32i a3, a2, 0
|
||||
beqz a3, .check_dport_access_end
|
||||
|
||||
/* Done. Restore registers and return. */
|
||||
movi a0, _l4_intr_stack
|
||||
l32i a2, a0, L4_INTR_A2_OFFSET
|
||||
l32i a3, a0, L4_INTR_A3_OFFSET
|
||||
rsync /* ensure register restored */
|
||||
|
||||
rsr a0, EXCSAVE_4 /* restore a0 */
|
||||
rfi 4
|
||||
|
||||
#endif // CONFIG_FREERTOS_UNICORE
|
||||
|
||||
/* The linker has no reason to link in this file; all symbols it exports are already defined
|
||||
(weakly!) in the default int handler. Define a symbol here so we can use it to have the
|
||||
linker inspect this anyway. */
|
||||
|
||||
.global ld_include_panic_highint_hdl
|
||||
ld_include_panic_highint_hdl:
|
||||
|
||||
|
||||
|
||||
|
44
components/esp32s2beta/esp_clk_internal.h
Normal file
44
components/esp32s2beta/esp_clk_internal.h
Normal file
@ -0,0 +1,44 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
/**
|
||||
* @file esp_clk_internal.h
|
||||
*
|
||||
* Private clock-related functions
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize clock-related settings
|
||||
*
|
||||
* Called from cpu_start.c, not intended to be called from other places.
|
||||
* This function configures the CPU clock, RTC slow and fast clocks, and
|
||||
* performs RTC slow clock calibration.
|
||||
*/
|
||||
void esp_clk_init(void);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Disables clock of some peripherals
|
||||
*
|
||||
* Called from cpu_start.c, not intended to be called from other places.
|
||||
* This function disables clock of useless peripherals when cpu starts.
|
||||
*/
|
||||
void esp_perip_clk_init(void);
|
||||
|
||||
/* Selects an external clock source (32 kHz) for RTC.
|
||||
* Only internal use in unit test.
|
||||
*/
|
||||
void rtc_clk_select_rtc_slow_clk();
|
407
components/esp32s2beta/esp_timer_esp32s2beta.c
Normal file
407
components/esp32s2beta/esp_timer_esp32s2beta.c
Normal file
@ -0,0 +1,407 @@
|
||||
// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "esp_err.h"
|
||||
#include "esp_timer.h"
|
||||
#include "esp_system.h"
|
||||
#include "esp_task.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp32s2beta/clk.h"
|
||||
#include "esp_private/esp_timer_impl.h"
|
||||
#include "soc/frc_timer_reg.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
|
||||
/**
|
||||
* @file esp_timer_esp32.c
|
||||
* @brief Implementation of chip-specific part of esp_timer
|
||||
*
|
||||
* This implementation uses FRC2 (legacy) timer of the ESP32. This timer is
|
||||
* a 32-bit up-counting timer, with a programmable compare value (called 'alarm'
|
||||
* hereafter). When the timer reaches compare value, interrupt is raised.
|
||||
* The timer can be configured to produce an edge or a level interrupt.
|
||||
*
|
||||
* In this implementation the timer is used for two purposes:
|
||||
* 1. To generate interrupts at certain moments — the upper layer of esp_timer
|
||||
* uses this to trigger callbacks of esp_timer objects.
|
||||
*
|
||||
* 2. To keep track of time relative to application start. This facility is
|
||||
* used both by the upper layer of esp_timer and by time functions, such as
|
||||
* gettimeofday.
|
||||
*
|
||||
* Whenever an esp_timer timer is armed (configured to fire once or
|
||||
* periodically), timer_insert function of the upper layer calls
|
||||
* esp_timer_impl_set_alarm to enable the interrupt at the required moment.
|
||||
* This implementation sets up the timer interrupt to fire at the earliest of
|
||||
* two moments:
|
||||
* a) the time requested by upper layer
|
||||
* b) the time when the timer count reaches 0xffffffff (i.e. is about to overflow)
|
||||
*
|
||||
* Whenever the interrupt fires and timer overflow is detected, interrupt hander
|
||||
* increments s_time_base_us variable, which is used for timekeeping.
|
||||
*
|
||||
* When the interrupt fires, the upper layer is notified, and it dispatches
|
||||
* the callbacks (if any timers have expired) and sets new alarm value (if any
|
||||
* timers are still active).
|
||||
*
|
||||
* At any point in time, esp_timer_impl_get_time will return the current timer
|
||||
* value (expressed in microseconds) plus s_time_base_us. To account for the
|
||||
* case when the timer counter has overflown, but the interrupt has not fired
|
||||
* yet (for example, because interupts are temporarily disabled),
|
||||
* esp_timer_impl_get_time will also check timer overflow flag, and will add
|
||||
* s_timer_us_per_overflow to the returned value.
|
||||
*
|
||||
*/
|
||||
|
||||
/* Timer is clocked from APB. To allow for integer scaling factor between ticks
|
||||
* and microseconds, divider 1 is used. 16 or 256 would not work for APB
|
||||
* frequencies such as 40 or 26 or 2 MHz.
|
||||
*/
|
||||
#define TIMER_DIV 1
|
||||
#define TIMER_DIV_CFG FRC_TIMER_PRESCALER_1
|
||||
|
||||
/* ALARM_OVERFLOW_VAL is used as timer alarm value when there are not timers
|
||||
* enabled which need to fire within the next timer overflow period. This alarm
|
||||
* is used to perform timekeeping (i.e. to track timer overflows).
|
||||
* Due to the 0xffffffff cannot recognize the real overflow or the scenario that
|
||||
* ISR happens follow set_alarm, so change the ALARM_OVERFLOW_VAL to resolve this problem.
|
||||
* Set it to 0xefffffffUL. The remain 0x10000000UL(about 3 second) is enough to handle ISR.
|
||||
*/
|
||||
#define DEFAULT_ALARM_OVERFLOW_VAL 0xefffffffUL
|
||||
|
||||
/* Provision to set lower overflow value for unit testing. Lowering the
|
||||
* overflow value helps check for race conditions which occur near overflow
|
||||
* moment.
|
||||
*/
|
||||
#ifndef ESP_TIMER_DYNAMIC_OVERFLOW_VAL
|
||||
#define ALARM_OVERFLOW_VAL DEFAULT_ALARM_OVERFLOW_VAL
|
||||
#else
|
||||
static uint32_t s_alarm_overflow_val = DEFAULT_ALARM_OVERFLOW_VAL;
|
||||
#define ALARM_OVERFLOW_VAL (s_alarm_overflow_val)
|
||||
#endif
|
||||
|
||||
static const char* TAG = "esp_timer_impl";
|
||||
|
||||
// Interrupt handle returned by the interrupt allocator
|
||||
static intr_handle_t s_timer_interrupt_handle;
|
||||
|
||||
// Function from the upper layer to be called when the interrupt happens.
|
||||
// Registered in esp_timer_impl_init.
|
||||
static intr_handler_t s_alarm_handler;
|
||||
|
||||
// Time in microseconds from startup to the moment
|
||||
// when timer counter was last equal to 0. This variable is updated each time
|
||||
// when timer overflows, and when APB frequency switch is performed.
|
||||
static uint64_t s_time_base_us;
|
||||
|
||||
// Number of timer ticks per microsecond. Calculated from APB frequency.
|
||||
static uint32_t s_timer_ticks_per_us;
|
||||
|
||||
// Period between timer overflows, in microseconds.
|
||||
// Equal to 2^32 / s_timer_ticks_per_us.
|
||||
static uint32_t s_timer_us_per_overflow;
|
||||
|
||||
// When frequency switch happens, timer counter is reset to 0, s_time_base_us
|
||||
// is updated, and alarm value is re-calculated based on the new APB frequency.
|
||||
// However because the frequency switch can happen before the final
|
||||
// interrupt handler is invoked, interrupt handler may see a different alarm
|
||||
// value than the one which caused an interrupt. This can cause interrupt handler
|
||||
// to consider that the interrupt has happened due to timer overflow, incrementing
|
||||
// s_time_base_us. To avoid this, frequency switch hook sets this flag if
|
||||
// it needs to set timer alarm value to ALARM_OVERFLOW_VAL. Interrupt handler
|
||||
// will not increment s_time_base_us if this flag is set.
|
||||
static bool s_mask_overflow;
|
||||
|
||||
//The timer_overflow_happened read alarm register to tell if overflow happened.
|
||||
//However, there is a monent that overflow happens, and before ISR function called
|
||||
//alarm register is set to another value, then you call timer_overflow_happened,
|
||||
//it will return false.
|
||||
//So we store the overflow value when new alarm is to be set.
|
||||
static bool s_overflow_happened;
|
||||
|
||||
#ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
|
||||
// If DFS is enabled, upon the first frequency change this value is set to the
|
||||
// difference between esp_timer value and RTC timer value. On every subsequent
|
||||
// frequency change, s_time_base_us is adjusted to maintain the same difference
|
||||
// between esp_timer and RTC timer. (All mentioned values are in microseconds.)
|
||||
static uint64_t s_rtc_time_diff = 0;
|
||||
#endif
|
||||
|
||||
// Spinlock used to protect access to static variables above and to the hardware
|
||||
// registers.
|
||||
portMUX_TYPE s_time_update_lock = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
//Use FRC_TIMER_LOAD_VALUE(1) instead of UINT32_MAX, convenience to change FRC TIMER for future
|
||||
#define TIMER_IS_AFTER_OVERFLOW(a) (ALARM_OVERFLOW_VAL < (a) && (a) <= FRC_TIMER_LOAD_VALUE(1))
|
||||
|
||||
// Check if timer overflow has happened (but was not handled by ISR yet)
|
||||
static inline bool IRAM_ATTR timer_overflow_happened()
|
||||
{
|
||||
if (s_overflow_happened) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return ((REG_READ(FRC_TIMER_CTRL_REG(1)) & FRC_TIMER_INT_STATUS) != 0 &&
|
||||
((REG_READ(FRC_TIMER_ALARM_REG(1)) == ALARM_OVERFLOW_VAL && TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))) && !s_mask_overflow) ||
|
||||
(!TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_ALARM_REG(1))) && TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))))));
|
||||
}
|
||||
|
||||
static inline void IRAM_ATTR timer_count_reload(void)
|
||||
{
|
||||
//this function should be only called the real overflow happened. And the count cannot be very approach to 0xffffffff.
|
||||
assert(TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))));
|
||||
|
||||
/* Restart the timer count by current time count minus ALARM_OVERFLOW_VAL(0xefffffff), it may cause error, if current tick is near boundary.
|
||||
* But even if the error happen 100% per overflow(the distance of each real overflow is about 50 second),
|
||||
* the error is 0.0125us*N per 50s(the FRC time clock is 80MHz), the N is the ticks run by the line following,
|
||||
* Normally, N is less than 10, assume N is 10, so the error accumulation is only 6.48ms per month.
|
||||
* In fact, if the CPU frequency is large than 80MHz. The error accumulation will be more less than 6.48ms per month.
|
||||
* so It can be adopted.
|
||||
*/
|
||||
REG_WRITE(FRC_TIMER_LOAD_REG(1), REG_READ(FRC_TIMER_COUNT_REG(1)) - ALARM_OVERFLOW_VAL);
|
||||
}
|
||||
|
||||
void esp_timer_impl_lock()
|
||||
{
|
||||
portENTER_CRITICAL(&s_time_update_lock);
|
||||
}
|
||||
|
||||
void esp_timer_impl_unlock()
|
||||
{
|
||||
portEXIT_CRITICAL(&s_time_update_lock);
|
||||
}
|
||||
|
||||
uint64_t IRAM_ATTR esp_timer_impl_get_time()
|
||||
{
|
||||
uint32_t timer_val;
|
||||
uint64_t time_base;
|
||||
uint32_t ticks_per_us;
|
||||
bool overflow;
|
||||
|
||||
do {
|
||||
/* Read all values needed to calculate current time */
|
||||
timer_val = REG_READ(FRC_TIMER_COUNT_REG(1));
|
||||
time_base = s_time_base_us;
|
||||
overflow = timer_overflow_happened();
|
||||
ticks_per_us = s_timer_ticks_per_us;
|
||||
|
||||
/* Read them again and compare */
|
||||
/* In this function, do not call timer_count_reload() when overflow is true.
|
||||
* Because there's remain count enough to allow FRC_TIMER_COUNT_REG grow
|
||||
*/
|
||||
if (REG_READ(FRC_TIMER_COUNT_REG(1)) > timer_val &&
|
||||
time_base == *((volatile uint64_t*) &s_time_base_us) &&
|
||||
ticks_per_us == *((volatile uint32_t*) &s_timer_ticks_per_us) &&
|
||||
overflow == timer_overflow_happened()) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* If any value has changed (other than the counter increasing), read again */
|
||||
} while(true);
|
||||
|
||||
uint64_t result = time_base
|
||||
+ timer_val / ticks_per_us;
|
||||
return result;
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_timer_impl_set_alarm(uint64_t timestamp)
|
||||
{
|
||||
portENTER_CRITICAL(&s_time_update_lock);
|
||||
// Alarm time relative to the moment when counter was 0
|
||||
uint64_t time_after_timebase_us = timestamp - s_time_base_us;
|
||||
// Adjust current time if overflow has happened
|
||||
bool overflow = timer_overflow_happened();
|
||||
uint64_t cur_count = REG_READ(FRC_TIMER_COUNT_REG(1));
|
||||
|
||||
if (overflow) {
|
||||
assert(time_after_timebase_us > s_timer_us_per_overflow);
|
||||
time_after_timebase_us -= s_timer_us_per_overflow;
|
||||
s_overflow_happened = true;
|
||||
}
|
||||
// Calculate desired timer compare value (may exceed 2^32-1)
|
||||
uint64_t compare_val = time_after_timebase_us * s_timer_ticks_per_us;
|
||||
uint32_t alarm_reg_val = ALARM_OVERFLOW_VAL;
|
||||
// Use calculated alarm value if it is less than ALARM_OVERFLOW_VAL.
|
||||
// Note that if by the time we update ALARM_REG, COUNT_REG value is higher,
|
||||
// interrupt will not happen for another ALARM_OVERFLOW_VAL timer ticks,
|
||||
// so need to check if alarm value is too close in the future (e.g. <2 us away).
|
||||
const uint32_t offset = s_timer_ticks_per_us * 2;
|
||||
if (compare_val < ALARM_OVERFLOW_VAL) {
|
||||
if (compare_val < cur_count + offset) {
|
||||
compare_val = cur_count + offset;
|
||||
if (compare_val > ALARM_OVERFLOW_VAL) {
|
||||
compare_val = ALARM_OVERFLOW_VAL;
|
||||
}
|
||||
}
|
||||
alarm_reg_val = (uint32_t) compare_val;
|
||||
}
|
||||
REG_WRITE(FRC_TIMER_ALARM_REG(1), alarm_reg_val);
|
||||
portEXIT_CRITICAL(&s_time_update_lock);
|
||||
}
|
||||
|
||||
static void IRAM_ATTR timer_alarm_isr(void *arg)
|
||||
{
|
||||
portENTER_CRITICAL_ISR(&s_time_update_lock);
|
||||
// Timekeeping: adjust s_time_base_us if counter has passed ALARM_OVERFLOW_VAL
|
||||
if (timer_overflow_happened()) {
|
||||
timer_count_reload();
|
||||
s_time_base_us += s_timer_us_per_overflow;
|
||||
s_overflow_happened = false;
|
||||
}
|
||||
s_mask_overflow = false;
|
||||
// Clear interrupt status
|
||||
REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
|
||||
// Set alarm to the next overflow moment. Later, upper layer function may
|
||||
// call esp_timer_impl_set_alarm to change this to an earlier value.
|
||||
REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
|
||||
portEXIT_CRITICAL_ISR(&s_time_update_lock);
|
||||
// Call the upper layer handler
|
||||
(*s_alarm_handler)(arg);
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
|
||||
{
|
||||
portENTER_CRITICAL_ISR(&s_time_update_lock);
|
||||
/* Bail out if the timer is not initialized yet */
|
||||
if (s_timer_interrupt_handle == NULL) {
|
||||
portEXIT_CRITICAL_ISR(&s_time_update_lock);
|
||||
return;
|
||||
}
|
||||
|
||||
uint32_t new_ticks_per_us = apb_ticks_per_us / TIMER_DIV;
|
||||
uint32_t alarm = REG_READ(FRC_TIMER_ALARM_REG(1));
|
||||
uint32_t count = REG_READ(FRC_TIMER_COUNT_REG(1));
|
||||
uint64_t ticks_to_alarm = alarm - count;
|
||||
uint64_t new_ticks = (ticks_to_alarm * new_ticks_per_us) / s_timer_ticks_per_us;
|
||||
uint32_t new_alarm_val;
|
||||
if (alarm > count && new_ticks <= ALARM_OVERFLOW_VAL) {
|
||||
new_alarm_val = new_ticks;
|
||||
} else {
|
||||
new_alarm_val = ALARM_OVERFLOW_VAL;
|
||||
if (alarm != ALARM_OVERFLOW_VAL) {
|
||||
s_mask_overflow = true;
|
||||
}
|
||||
}
|
||||
REG_WRITE(FRC_TIMER_ALARM_REG(1), new_alarm_val);
|
||||
REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
|
||||
|
||||
s_time_base_us += count / s_timer_ticks_per_us;
|
||||
|
||||
#ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
|
||||
// Due to the extra time required to read RTC time, don't attempt this
|
||||
// adjustment when switching to a higher frequency (which usually
|
||||
// happens in an interrupt).
|
||||
if (new_ticks_per_us < s_timer_ticks_per_us) {
|
||||
uint64_t rtc_time = esp_clk_rtc_time();
|
||||
uint64_t new_rtc_time_diff = s_time_base_us - rtc_time;
|
||||
if (s_rtc_time_diff != 0) {
|
||||
uint64_t correction = new_rtc_time_diff - s_rtc_time_diff;
|
||||
s_time_base_us -= correction;
|
||||
} else {
|
||||
s_rtc_time_diff = new_rtc_time_diff;
|
||||
}
|
||||
}
|
||||
#endif // CONFIG_PM_DFS_USE_RTC_TIMER_REF
|
||||
|
||||
s_timer_ticks_per_us = new_ticks_per_us;
|
||||
s_timer_us_per_overflow = ALARM_OVERFLOW_VAL / new_ticks_per_us;
|
||||
|
||||
portEXIT_CRITICAL_ISR(&s_time_update_lock);
|
||||
}
|
||||
|
||||
void esp_timer_impl_advance(int64_t time_us)
|
||||
{
|
||||
assert(time_us > 0 && "negative adjustments not supported yet");
|
||||
|
||||
portENTER_CRITICAL(&s_time_update_lock);
|
||||
uint64_t count = REG_READ(FRC_TIMER_COUNT_REG(1));
|
||||
/* Trigger an ISR to handle past alarms and set new one.
|
||||
* ISR handler will run once we exit the critical section.
|
||||
*/
|
||||
REG_WRITE(FRC_TIMER_ALARM_REG(1), 0);
|
||||
REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
|
||||
s_time_base_us += count / s_timer_ticks_per_us + time_us;
|
||||
s_overflow_happened = false;
|
||||
portEXIT_CRITICAL(&s_time_update_lock);
|
||||
}
|
||||
|
||||
esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
|
||||
{
|
||||
s_alarm_handler = alarm_handler;
|
||||
|
||||
esp_err_t err = esp_intr_alloc(ETS_TIMER2_INTR_SOURCE,
|
||||
ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_IRAM,
|
||||
&timer_alarm_isr, NULL, &s_timer_interrupt_handle);
|
||||
|
||||
if (err != ESP_OK) {
|
||||
ESP_EARLY_LOGE(TAG, "esp_intr_alloc failed (0x%0x)", err);
|
||||
return err;
|
||||
}
|
||||
|
||||
uint32_t apb_freq = rtc_clk_apb_freq_get();
|
||||
s_timer_ticks_per_us = apb_freq / 1000000 / TIMER_DIV;
|
||||
assert(s_timer_ticks_per_us > 0
|
||||
&& apb_freq % TIMER_DIV == 0
|
||||
&& "APB frequency does not result in a valid ticks_per_us value");
|
||||
s_timer_us_per_overflow = ALARM_OVERFLOW_VAL / s_timer_ticks_per_us;
|
||||
s_time_base_us = 0;
|
||||
|
||||
REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
|
||||
REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
|
||||
REG_WRITE(FRC_TIMER_CTRL_REG(1),
|
||||
TIMER_DIV_CFG | FRC_TIMER_ENABLE | FRC_TIMER_LEVEL_INT);
|
||||
REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
|
||||
ESP_ERROR_CHECK( esp_intr_enable(s_timer_interrupt_handle) );
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
void esp_timer_impl_deinit()
|
||||
{
|
||||
esp_intr_disable(s_timer_interrupt_handle);
|
||||
|
||||
REG_WRITE(FRC_TIMER_CTRL_REG(1), 0);
|
||||
REG_WRITE(FRC_TIMER_ALARM_REG(1), 0);
|
||||
REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
|
||||
|
||||
esp_intr_free(s_timer_interrupt_handle);
|
||||
s_timer_interrupt_handle = NULL;
|
||||
}
|
||||
|
||||
// FIXME: This value is safe for 80MHz APB frequency.
|
||||
// Should be modified to depend on clock frequency.
|
||||
|
||||
uint64_t IRAM_ATTR esp_timer_impl_get_min_period_us()
|
||||
{
|
||||
return 50;
|
||||
}
|
||||
|
||||
#ifdef ESP_TIMER_DYNAMIC_OVERFLOW_VAL
|
||||
uint32_t esp_timer_impl_get_overflow_val()
|
||||
{
|
||||
return s_alarm_overflow_val;
|
||||
}
|
||||
|
||||
void esp_timer_impl_set_overflow_val(uint32_t overflow_val)
|
||||
{
|
||||
s_alarm_overflow_val = overflow_val;
|
||||
/* update alarm value */
|
||||
esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
|
||||
}
|
||||
#endif // ESP_TIMER_DYNAMIC_OVERFLOW_VAL
|
356
components/esp32s2beta/gdbstub.c
Normal file
356
components/esp32s2beta/gdbstub.c
Normal file
@ -0,0 +1,356 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/******************************************************************************
|
||||
* Description: A stub to make the ESP32 debuggable by GDB over the serial
|
||||
* port, at least enough to do a backtrace on panic. This gdbstub is read-only:
|
||||
* it allows inspecting the ESP32 state
|
||||
*******************************************************************************/
|
||||
|
||||
#include "esp32s2beta/rom/ets_sys.h"
|
||||
#include "soc/uart_reg.h"
|
||||
#include "soc/io_mux_reg.h"
|
||||
#include "esp_private/gdbstub.h"
|
||||
#include "driver/gpio.h"
|
||||
|
||||
//Length of buffer used to reserve GDB commands. Has to be at least able to fit the G command, which
|
||||
//implies a minimum size of about 320 bytes.
|
||||
#define PBUFLEN 512
|
||||
|
||||
static unsigned char cmd[PBUFLEN]; //GDB command input buffer
|
||||
static char chsum; //Running checksum of the output packet
|
||||
|
||||
#define ATTR_GDBFN
|
||||
|
||||
//Receive a char from the uart. Uses polling and feeds the watchdog.
|
||||
static int ATTR_GDBFN gdbRecvChar() {
|
||||
int i;
|
||||
while (((READ_PERI_REG(UART_STATUS_REG(0))>>UART_RXFIFO_CNT_S)&UART_RXFIFO_CNT)==0) ;
|
||||
i=READ_PERI_REG(UART_FIFO_AHB_REG(0));
|
||||
return i;
|
||||
}
|
||||
|
||||
//Send a char to the uart.
|
||||
static void ATTR_GDBFN gdbSendChar(char c) {
|
||||
while (((READ_PERI_REG(UART_STATUS_REG(0))>>UART_TXFIFO_CNT_S)&UART_TXFIFO_CNT)>=126) ;
|
||||
WRITE_PERI_REG(UART_FIFO_AHB_REG(0), c);
|
||||
}
|
||||
|
||||
//Send the start of a packet; reset checksum calculation.
|
||||
static void ATTR_GDBFN gdbPacketStart() {
|
||||
chsum=0;
|
||||
gdbSendChar('$');
|
||||
}
|
||||
|
||||
//Send a char as part of a packet
|
||||
static void ATTR_GDBFN gdbPacketChar(char c) {
|
||||
if (c=='#' || c=='$' || c=='}' || c=='*') {
|
||||
gdbSendChar('}');
|
||||
gdbSendChar(c^0x20);
|
||||
chsum+=(c^0x20)+'}';
|
||||
} else {
|
||||
gdbSendChar(c);
|
||||
chsum+=c;
|
||||
}
|
||||
}
|
||||
|
||||
//Send a string as part of a packet
|
||||
static void ATTR_GDBFN gdbPacketStr(const char *c) {
|
||||
while (*c!=0) {
|
||||
gdbPacketChar(*c);
|
||||
c++;
|
||||
}
|
||||
}
|
||||
|
||||
//Send a hex val as part of a packet. 'bits'/4 dictates the number of hex chars sent.
|
||||
static void ATTR_GDBFN gdbPacketHex(int val, int bits) {
|
||||
char hexChars[]="0123456789abcdef";
|
||||
int i;
|
||||
for (i=bits; i>0; i-=4) {
|
||||
gdbPacketChar(hexChars[(val>>(i-4))&0xf]);
|
||||
}
|
||||
}
|
||||
|
||||
//Finish sending a packet.
|
||||
static void ATTR_GDBFN gdbPacketEnd() {
|
||||
gdbSendChar('#');
|
||||
gdbPacketHex(chsum, 8);
|
||||
}
|
||||
|
||||
//Error states used by the routines that grab stuff from the incoming gdb packet
|
||||
#define ST_ENDPACKET -1
|
||||
#define ST_ERR -2
|
||||
#define ST_OK -3
|
||||
#define ST_CONT -4
|
||||
|
||||
//Grab a hex value from the gdb packet. Ptr will get positioned on the end
|
||||
//of the hex string, as far as the routine has read into it. Bits/4 indicates
|
||||
//the max amount of hex chars it gobbles up. Bits can be -1 to eat up as much
|
||||
//hex chars as possible.
|
||||
static long ATTR_GDBFN gdbGetHexVal(unsigned char **ptr, int bits) {
|
||||
int i;
|
||||
int no;
|
||||
unsigned int v=0;
|
||||
char c;
|
||||
no=bits/4;
|
||||
if (bits==-1) no=64;
|
||||
for (i=0; i<no; i++) {
|
||||
c=**ptr;
|
||||
(*ptr)++;
|
||||
if (c>='0' && c<='9') {
|
||||
v<<=4;
|
||||
v|=(c-'0');
|
||||
} else if (c>='A' && c<='F') {
|
||||
v<<=4;
|
||||
v|=(c-'A')+10;
|
||||
} else if (c>='a' && c<='f') {
|
||||
v<<=4;
|
||||
v|=(c-'a')+10;
|
||||
} else if (c=='#') {
|
||||
if (bits==-1) {
|
||||
(*ptr)--;
|
||||
return v;
|
||||
}
|
||||
return ST_ENDPACKET;
|
||||
} else {
|
||||
if (bits==-1) {
|
||||
(*ptr)--;
|
||||
return v;
|
||||
}
|
||||
return ST_ERR;
|
||||
}
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
//Swap an int into the form gdb wants it
|
||||
static int ATTR_GDBFN iswap(int i) {
|
||||
int r;
|
||||
r=((i>>24)&0xff);
|
||||
r|=((i>>16)&0xff)<<8;
|
||||
r|=((i>>8)&0xff)<<16;
|
||||
r|=((i>>0)&0xff)<<24;
|
||||
return r;
|
||||
}
|
||||
|
||||
//Read a byte from ESP32 memory.
|
||||
static unsigned char ATTR_GDBFN readbyte(unsigned int p) {
|
||||
int *i=(int*)(p&(~3));
|
||||
if (p<0x20000000 || p>=0x80000000) return -1;
|
||||
return *i>>((p&3)*8);
|
||||
}
|
||||
|
||||
|
||||
//Register file in the format exp108 gdb port expects it.
|
||||
//Inspired by gdb/regformats/reg-xtensa.dat
|
||||
typedef struct {
|
||||
uint32_t pc;
|
||||
uint32_t a[64];
|
||||
uint32_t lbeg;
|
||||
uint32_t lend;
|
||||
uint32_t lcount;
|
||||
uint32_t sar;
|
||||
uint32_t windowbase;
|
||||
uint32_t windowstart;
|
||||
uint32_t configid0;
|
||||
uint32_t configid1;
|
||||
uint32_t ps;
|
||||
uint32_t threadptr;
|
||||
uint32_t br;
|
||||
uint32_t scompare1;
|
||||
uint32_t acclo;
|
||||
uint32_t acchi;
|
||||
uint32_t m0;
|
||||
uint32_t m1;
|
||||
uint32_t m2;
|
||||
uint32_t m3;
|
||||
uint32_t expstate; //I'm going to assume this is exccause...
|
||||
uint32_t f64r_lo;
|
||||
uint32_t f64r_hi;
|
||||
uint32_t f64s;
|
||||
uint32_t f[16];
|
||||
uint32_t fcr;
|
||||
uint32_t fsr;
|
||||
} GdbRegFile;
|
||||
|
||||
|
||||
GdbRegFile gdbRegFile;
|
||||
|
||||
/*
|
||||
//Register format as the Xtensa HAL has it:
|
||||
STRUCT_FIELD (long, 4, XT_STK_EXIT, exit)
|
||||
STRUCT_FIELD (long, 4, XT_STK_PC, pc)
|
||||
STRUCT_FIELD (long, 4, XT_STK_PS, ps)
|
||||
STRUCT_FIELD (long, 4, XT_STK_A0, a0)
|
||||
[..]
|
||||
STRUCT_FIELD (long, 4, XT_STK_A15, a15)
|
||||
STRUCT_FIELD (long, 4, XT_STK_SAR, sar)
|
||||
STRUCT_FIELD (long, 4, XT_STK_EXCCAUSE, exccause)
|
||||
STRUCT_FIELD (long, 4, XT_STK_EXCVADDR, excvaddr)
|
||||
STRUCT_FIELD (long, 4, XT_STK_LBEG, lbeg)
|
||||
STRUCT_FIELD (long, 4, XT_STK_LEND, lend)
|
||||
STRUCT_FIELD (long, 4, XT_STK_LCOUNT, lcount)
|
||||
// Temporary space for saving stuff during window spill
|
||||
STRUCT_FIELD (long, 4, XT_STK_TMP0, tmp0)
|
||||
STRUCT_FIELD (long, 4, XT_STK_TMP1, tmp1)
|
||||
STRUCT_FIELD (long, 4, XT_STK_TMP2, tmp2)
|
||||
STRUCT_FIELD (long, 4, XT_STK_VPRI, vpri)
|
||||
STRUCT_FIELD (long, 4, XT_STK_OVLY, ovly)
|
||||
#endif
|
||||
STRUCT_END(XtExcFrame)
|
||||
*/
|
||||
|
||||
|
||||
static void dumpHwToRegfile(XtExcFrame *frame) {
|
||||
int i;
|
||||
long *frameAregs=&frame->a0;
|
||||
gdbRegFile.pc=frame->pc;
|
||||
for (i=0; i<16; i++) gdbRegFile.a[i]=frameAregs[i];
|
||||
for (i=16; i<64; i++) gdbRegFile.a[i]=0xDEADBEEF;
|
||||
gdbRegFile.sar=frame->sar;
|
||||
//All windows have been spilled to the stack by the ISR routines. The following values should indicate that.
|
||||
gdbRegFile.sar=frame->sar;
|
||||
gdbRegFile.windowbase=0; //0
|
||||
gdbRegFile.windowstart=0x1; //1
|
||||
gdbRegFile.configid0=0xdeadbeef; //ToDo
|
||||
gdbRegFile.configid1=0xdeadbeef; //ToDo
|
||||
gdbRegFile.ps=frame->ps-PS_EXCM_MASK;
|
||||
gdbRegFile.threadptr=0xdeadbeef; //ToDo
|
||||
gdbRegFile.br=0xdeadbeef; //ToDo
|
||||
gdbRegFile.scompare1=0xdeadbeef; //ToDo
|
||||
gdbRegFile.acclo=0xdeadbeef; //ToDo
|
||||
gdbRegFile.acchi=0xdeadbeef; //ToDo
|
||||
gdbRegFile.m0=0xdeadbeef; //ToDo
|
||||
gdbRegFile.m1=0xdeadbeef; //ToDo
|
||||
gdbRegFile.m2=0xdeadbeef; //ToDo
|
||||
gdbRegFile.m3=0xdeadbeef; //ToDo
|
||||
gdbRegFile.expstate=frame->exccause; //ToDo
|
||||
}
|
||||
|
||||
|
||||
//Send the reason execution is stopped to GDB.
|
||||
static void sendReason() {
|
||||
//exception-to-signal mapping
|
||||
char exceptionSignal[]={4,31,11,11,2,6,8,0,6,7,0,0,7,7,7,7};
|
||||
int i=0;
|
||||
gdbPacketStart();
|
||||
gdbPacketChar('T');
|
||||
i=gdbRegFile.expstate&0x7f;
|
||||
if (i<sizeof(exceptionSignal)) {
|
||||
gdbPacketHex(exceptionSignal[i], 8);
|
||||
} else {
|
||||
gdbPacketHex(11, 8);
|
||||
}
|
||||
gdbPacketEnd();
|
||||
}
|
||||
|
||||
//Handle a command as received from GDB.
|
||||
static int gdbHandleCommand(unsigned char *cmd, int len) {
|
||||
//Handle a command
|
||||
int i, j, k;
|
||||
unsigned char *data=cmd+1;
|
||||
if (cmd[0]=='g') { //send all registers to gdb
|
||||
int *p=(int*)&gdbRegFile;
|
||||
gdbPacketStart();
|
||||
for (i=0; i<sizeof(GdbRegFile)/4; i++) gdbPacketHex(iswap(*p++), 32);
|
||||
gdbPacketEnd();
|
||||
} else if (cmd[0]=='G') { //receive content for all registers from gdb
|
||||
int *p=(int*)&gdbRegFile;
|
||||
for (i=0; i<sizeof(GdbRegFile)/4; i++) *p++=iswap(gdbGetHexVal(&data, 32));;
|
||||
gdbPacketStart();
|
||||
gdbPacketStr("OK");
|
||||
gdbPacketEnd();
|
||||
} else if (cmd[0]=='m') { //read memory to gdb
|
||||
i=gdbGetHexVal(&data, -1);
|
||||
data++;
|
||||
j=gdbGetHexVal(&data, -1);
|
||||
gdbPacketStart();
|
||||
for (k=0; k<j; k++) {
|
||||
gdbPacketHex(readbyte(i++), 8);
|
||||
}
|
||||
gdbPacketEnd();
|
||||
} else if (cmd[0]=='?') { //Reply with stop reason
|
||||
sendReason();
|
||||
} else {
|
||||
//We don't recognize or support whatever GDB just sent us.
|
||||
gdbPacketStart();
|
||||
gdbPacketEnd();
|
||||
return ST_ERR;
|
||||
}
|
||||
return ST_OK;
|
||||
}
|
||||
|
||||
|
||||
//Lower layer: grab a command packet and check the checksum
|
||||
//Calls gdbHandleCommand on the packet if the checksum is OK
|
||||
//Returns ST_OK on success, ST_ERR when checksum fails, a
|
||||
//character if it is received instead of the GDB packet
|
||||
//start char.
|
||||
static int gdbReadCommand() {
|
||||
unsigned char c;
|
||||
unsigned char chsum=0, rchsum;
|
||||
unsigned char sentchs[2];
|
||||
int p=0;
|
||||
unsigned char *ptr;
|
||||
c=gdbRecvChar();
|
||||
if (c!='$') return c;
|
||||
while(1) {
|
||||
c=gdbRecvChar();
|
||||
if (c=='#') { //end of packet, checksum follows
|
||||
cmd[p]=0;
|
||||
break;
|
||||
}
|
||||
chsum+=c;
|
||||
if (c=='$') {
|
||||
//Wut, restart packet?
|
||||
chsum=0;
|
||||
p=0;
|
||||
continue;
|
||||
}
|
||||
if (c=='}') { //escape the next char
|
||||
c=gdbRecvChar();
|
||||
chsum+=c;
|
||||
c^=0x20;
|
||||
}
|
||||
cmd[p++]=c;
|
||||
if (p>=PBUFLEN) return ST_ERR;
|
||||
}
|
||||
//A # has been received. Get and check the received chsum.
|
||||
sentchs[0]=gdbRecvChar();
|
||||
sentchs[1]=gdbRecvChar();
|
||||
ptr=&sentchs[0];
|
||||
rchsum=gdbGetHexVal(&ptr, 8);
|
||||
if (rchsum!=chsum) {
|
||||
gdbSendChar('-');
|
||||
return ST_ERR;
|
||||
} else {
|
||||
gdbSendChar('+');
|
||||
return gdbHandleCommand(cmd, p);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void esp_gdbstub_panic_handler(XtExcFrame *frame) {
|
||||
dumpHwToRegfile(frame);
|
||||
//Make sure txd/rxd are enabled
|
||||
gpio_pullup_dis(1);
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
|
||||
|
||||
sendReason();
|
||||
while(gdbReadCommand()!=ST_CONT);
|
||||
while(1);
|
||||
}
|
||||
|
70
components/esp32s2beta/hw_random.c
Normal file
70
components/esp32s2beta/hw_random.c
Normal file
@ -0,0 +1,70 @@
|
||||
// Copyright 2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
#include <sys/param.h>
|
||||
#include "esp_attr.h"
|
||||
#include "esp32s2beta/clk.h"
|
||||
#include "soc/wdev_reg.h"
|
||||
#include "freertos/FreeRTOSConfig.h"
|
||||
#include "xtensa/core-macros.h"
|
||||
|
||||
uint32_t IRAM_ATTR esp_random(void)
|
||||
{
|
||||
/* The PRNG which implements WDEV_RANDOM register gets 2 bits
|
||||
* of extra entropy from a hardware randomness source every APB clock cycle
|
||||
* (provided WiFi or BT are enabled). To make sure entropy is not drained
|
||||
* faster than it is added, this function needs to wait for at least 16 APB
|
||||
* clock cycles after reading previous word. This implementation may actually
|
||||
* wait a bit longer due to extra time spent in arithmetic and branch statements.
|
||||
*
|
||||
* As a (probably unncessary) precaution to avoid returning the
|
||||
* RNG state as-is, the result is XORed with additional
|
||||
* WDEV_RND_REG reads while waiting.
|
||||
*/
|
||||
|
||||
/* This code does not run in a critical section, so CPU frequency switch may
|
||||
* happens while this code runs (this will not happen in the current
|
||||
* implementation, but possible in the future). However if that happens,
|
||||
* the number of cycles spent on frequency switching will certainly be more
|
||||
* than the number of cycles we need to wait here.
|
||||
*/
|
||||
uint32_t cpu_to_apb_freq_ratio = esp_clk_cpu_freq() / esp_clk_apb_freq();
|
||||
|
||||
static uint32_t last_ccount = 0;
|
||||
uint32_t ccount;
|
||||
uint32_t result = 0;
|
||||
do {
|
||||
ccount = XTHAL_GET_CCOUNT();
|
||||
result ^= REG_READ(WDEV_RND_REG);
|
||||
} while (ccount - last_ccount < cpu_to_apb_freq_ratio * 16);
|
||||
last_ccount = ccount;
|
||||
return result ^ REG_READ(WDEV_RND_REG);
|
||||
}
|
||||
|
||||
void esp_fill_random(void *buf, size_t len)
|
||||
{
|
||||
assert(buf != NULL);
|
||||
uint8_t *buf_bytes = (uint8_t *)buf;
|
||||
while (len > 0) {
|
||||
uint32_t word = esp_random();
|
||||
uint32_t to_copy = MIN(sizeof(word), len);
|
||||
memcpy(buf_bytes, &word, to_copy);
|
||||
buf_bytes += to_copy;
|
||||
len -= to_copy;
|
||||
}
|
||||
}
|
21
components/esp32s2beta/include/esp32s2beta/brownout.h
Normal file
21
components/esp32s2beta/include/esp32s2beta/brownout.h
Normal file
@ -0,0 +1,21 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#ifndef __ESP_BROWNOUT_H
|
||||
#define __ESP_BROWNOUT_H
|
||||
|
||||
void esp_brownout_init();
|
||||
|
||||
#endif
|
33
components/esp32s2beta/include/esp32s2beta/cache_err_int.h
Normal file
33
components/esp32s2beta/include/esp32s2beta/cache_err_int.h
Normal file
@ -0,0 +1,33 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
/**
|
||||
* @brief initialize cache invalid access interrupt
|
||||
*
|
||||
* This function enables cache invalid access interrupt source and connects it
|
||||
* to interrupt input number ETS_CACHEERR_INUM (see soc/soc.h). It is called
|
||||
* from the startup code.
|
||||
*/
|
||||
void esp_cache_err_int_init();
|
||||
|
||||
|
||||
/**
|
||||
* @brief get the CPU which caused cache invalid access interrupt
|
||||
* @return
|
||||
* - PRO_CPU_NUM, if PRO_CPU has caused cache IA interrupt
|
||||
* - APP_CPU_NUM, if APP_CPU has caused cache IA interrupt
|
||||
* - (-1) otherwise
|
||||
*/
|
||||
int esp_cache_err_get_cpuid();
|
75
components/esp32s2beta/include/esp32s2beta/clk.h
Normal file
75
components/esp32s2beta/include/esp32s2beta/clk.h
Normal file
@ -0,0 +1,75 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
/**
|
||||
* @file esp_clk.h
|
||||
*
|
||||
* This file contains declarations of clock related functions.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Get the calibration value of RTC slow clock
|
||||
*
|
||||
* The value is in the same format as returned by rtc_clk_cal (microseconds,
|
||||
* in Q13.19 fixed-point format).
|
||||
*
|
||||
* @return the calibration value obtained using rtc_clk_cal, at startup time
|
||||
*/
|
||||
uint32_t esp_clk_slowclk_cal_get();
|
||||
|
||||
/**
|
||||
* @brief Update the calibration value of RTC slow clock
|
||||
*
|
||||
* The value has to be in the same format as returned by rtc_clk_cal (microseconds,
|
||||
* in Q13.19 fixed-point format).
|
||||
* This value is used by timekeeping functions (such as gettimeofday) to
|
||||
* calculate current time based on RTC counter value.
|
||||
* @param value calibration value obtained using rtc_clk_cal
|
||||
*/
|
||||
void esp_clk_slowclk_cal_set(uint32_t value);
|
||||
|
||||
/**
|
||||
* @brief Return current CPU clock frequency
|
||||
* When frequency switching is performed, this frequency may change.
|
||||
* However it is guaranteed that the frequency never changes with a critical
|
||||
* section.
|
||||
*
|
||||
* @return CPU clock frequency, in Hz
|
||||
*/
|
||||
int esp_clk_cpu_freq(void);
|
||||
|
||||
/**
|
||||
* @brief Return current APB clock frequency
|
||||
*
|
||||
* When frequency switching is performed, this frequency may change.
|
||||
* However it is guaranteed that the frequency never changes with a critical
|
||||
* section.
|
||||
*
|
||||
* @return APB clock frequency, in Hz
|
||||
*/
|
||||
int esp_clk_apb_freq(void);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Read value of RTC counter, converting it to microseconds
|
||||
* @attention The value returned by this function may change abruptly when
|
||||
* calibration value of RTC counter is updated via esp_clk_slowclk_cal_set
|
||||
* function. This should not happen unless application calls esp_clk_slowclk_cal_set.
|
||||
* In ESP-IDF, esp_clk_slowclk_cal_set is only called in startup code.
|
||||
*
|
||||
* @return Value or RTC counter, expressed in microseconds
|
||||
*/
|
||||
uint64_t esp_clk_rtc_time();
|
52
components/esp32s2beta/include/esp32s2beta/dport_access.h
Normal file
52
components/esp32s2beta/include/esp32s2beta/dport_access.h
Normal file
@ -0,0 +1,52 @@
|
||||
// Copyright 2010-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <sdkconfig.h>
|
||||
|
||||
#ifndef _ESP_DPORT_ACCESS_H_
|
||||
#define _ESP_DPORT_ACCESS_H_
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void esp_dport_access_stall_other_cpu_start(void);
|
||||
void esp_dport_access_stall_other_cpu_end(void);
|
||||
void esp_dport_access_int_init(void);
|
||||
void esp_dport_access_int_pause(void);
|
||||
void esp_dport_access_int_resume(void);
|
||||
void esp_dport_access_read_buffer(uint32_t *buff_out, uint32_t address, uint32_t num_words);
|
||||
uint32_t esp_dport_access_reg_read(uint32_t reg);
|
||||
uint32_t esp_dport_access_sequence_reg_read(uint32_t reg);
|
||||
//This routine does not stop the dport routines in any way that is recoverable. Please
|
||||
//only call in case of panic().
|
||||
void esp_dport_access_int_abort(void);
|
||||
|
||||
#if defined(BOOTLOADER_BUILD) || defined(CONFIG_FREERTOS_UNICORE) || !defined(ESP_PLATFORM) || !defined(CONFIG_CHIP_IS_ESP32)
|
||||
#define DPORT_STALL_OTHER_CPU_START()
|
||||
#define DPORT_STALL_OTHER_CPU_END()
|
||||
#define DPORT_INTERRUPT_DISABLE()
|
||||
#define DPORT_INTERRUPT_RESTORE()
|
||||
#else
|
||||
#define DPORT_STALL_OTHER_CPU_START() esp_dport_access_stall_other_cpu_start()
|
||||
#define DPORT_STALL_OTHER_CPU_END() esp_dport_access_stall_other_cpu_end()
|
||||
#define DPORT_INTERRUPT_DISABLE() unsigned int intLvl = XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL)
|
||||
#define DPORT_INTERRUPT_RESTORE() XTOS_RESTORE_JUST_INTLEVEL(intLvl)
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _ESP_DPORT_ACCESS_H_ */
|
42
components/esp32s2beta/include/esp32s2beta/pm.h
Normal file
42
components/esp32s2beta/include/esp32s2beta/pm.h
Normal file
@ -0,0 +1,42 @@
|
||||
// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
#include "soc/rtc.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* @brief Power management config for ESP32
|
||||
*
|
||||
* Pass a pointer to this structure as an argument to esp_pm_configure function.
|
||||
*/
|
||||
typedef struct {
|
||||
rtc_cpu_freq_t max_cpu_freq; /*!< Maximum CPU frequency to use */
|
||||
rtc_cpu_freq_t min_cpu_freq; /*!< Minimum CPU frequency to use when no frequency locks are taken */
|
||||
bool light_sleep_enable; /*!< Enter light sleep when no locks are taken */
|
||||
} esp_pm_config_esp32_t;
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
90
components/esp32s2beta/include/esp32s2beta/spiram.h
Normal file
90
components/esp32s2beta/include/esp32s2beta/spiram.h
Normal file
@ -0,0 +1,90 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#ifndef __ESP_SPIRAM_H
|
||||
#define __ESP_SPIRAM_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
/**
|
||||
* @brief Initialize spiram interface/hardware. Normally called from cpu_start.c.
|
||||
*
|
||||
* @return ESP_OK on success
|
||||
*/
|
||||
esp_err_t esp_spiram_init();
|
||||
|
||||
/**
|
||||
* @brief Configure Cache/MMU for access to external SPI RAM.
|
||||
*
|
||||
* Normally this function is called from cpu_start, if CONFIG_SPIRAM_BOOT_INIT
|
||||
* option is enabled. Applications which need to enable SPI RAM at run time
|
||||
* can disable CONFIG_SPIRAM_BOOT_INIT, and call this function later.
|
||||
*
|
||||
* @attention this function must be called with flash cache disabled.
|
||||
*/
|
||||
void esp_spiram_init_cache();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Memory test for SPI RAM. Should be called after SPI RAM is initialized and
|
||||
* (in case of a dual-core system) the app CPU is online. This test overwrites the
|
||||
* memory with crap, so do not call after e.g. the heap allocator has stored important
|
||||
* stuff in SPI RAM.
|
||||
*
|
||||
* @return true on success, false on failed memory test
|
||||
*/
|
||||
bool esp_spiram_test();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Add the initialized SPI RAM to the heap allocator.
|
||||
*/
|
||||
esp_err_t esp_spiram_add_to_heapalloc();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get the size of the attached SPI RAM chip selected in menuconfig
|
||||
*
|
||||
* @return Size in bytes, or 0 if no external RAM chip support compiled in.
|
||||
*/
|
||||
size_t esp_spiram_get_size();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Force a writeback of the data in the SPI RAM cache. This is to be called whenever
|
||||
* cache is disabled, because disabling cache on the ESP32 discards the data in the SPI
|
||||
* RAM cache.
|
||||
*
|
||||
* This is meant for use from within the SPI flash code.
|
||||
*/
|
||||
void esp_spiram_writeback_cache();
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Reserve a pool of internal memory for specific DMA/internal allocations
|
||||
*
|
||||
* @param size Size of reserved pool in bytes
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_NO_MEM when no memory available for pool
|
||||
*/
|
||||
esp_err_t esp_spiram_reserve_dma_pool(size_t size);
|
||||
|
||||
|
||||
#endif
|
58
components/esp32s2beta/include/esp_attr.h
Normal file
58
components/esp32s2beta/include/esp_attr.h
Normal file
@ -0,0 +1,58 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef __ESP_ATTR_H__
|
||||
#define __ESP_ATTR_H__
|
||||
|
||||
#define ROMFN_ATTR
|
||||
|
||||
//Normally, the linker script will put all code and rodata in flash,
|
||||
//and all variables in shared RAM. These macros can be used to redirect
|
||||
//particular functions/variables to other memory regions.
|
||||
|
||||
// Forces code into IRAM instead of flash.
|
||||
#define IRAM_ATTR __attribute__((section(".iram1")))
|
||||
|
||||
// Forces data into DRAM instead of flash
|
||||
#define DRAM_ATTR __attribute__((section(".dram1")))
|
||||
|
||||
// Forces data to be 4 bytes aligned
|
||||
#define WORD_ALIGNED_ATTR __attribute__((aligned(4)))
|
||||
|
||||
// Forces data to be placed to DMA-capable places
|
||||
#define DMA_ATTR WORD_ALIGNED_ATTR DRAM_ATTR
|
||||
|
||||
// Forces a string into DRAM instead of flash
|
||||
// Use as ets_printf(DRAM_STR("Hello world!\n"));
|
||||
#define DRAM_STR(str) (__extension__({static const DRAM_ATTR char __c[] = (str); (const char *)&__c;}))
|
||||
|
||||
// Forces code into RTC fast memory. See "docs/deep-sleep-stub.rst"
|
||||
#define RTC_IRAM_ATTR __attribute__((section(".rtc.text")))
|
||||
|
||||
// Forces data into RTC slow memory. See "docs/deep-sleep-stub.rst"
|
||||
// Any variable marked with this attribute will keep its value
|
||||
// during a deep sleep / wake cycle.
|
||||
#define RTC_DATA_ATTR __attribute__((section(".rtc.data")))
|
||||
|
||||
// Forces read-only data into RTC slow memory. See "docs/deep-sleep-stub.rst"
|
||||
#define RTC_RODATA_ATTR __attribute__((section(".rtc.rodata")))
|
||||
|
||||
// Forces data into noinit section to avoid initialization after restart.
|
||||
#define __NOINIT_ATTR __attribute__((section(".noinit")))
|
||||
|
||||
// Forces data into RTC slow memory of .noinit section.
|
||||
// Any variable marked with this attribute will keep its value
|
||||
// after restart or during a deep sleep / wake cycle.
|
||||
#define RTC_NOINIT_ATTR __attribute__((section(".rtc_noinit")))
|
||||
|
||||
#endif /* __ESP_ATTR_H__ */
|
75
components/esp32s2beta/include/esp_clk.h
Normal file
75
components/esp32s2beta/include/esp_clk.h
Normal file
@ -0,0 +1,75 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
/**
|
||||
* @file esp_clk.h
|
||||
*
|
||||
* This file contains declarations of clock related functions.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Get the calibration value of RTC slow clock
|
||||
*
|
||||
* The value is in the same format as returned by rtc_clk_cal (microseconds,
|
||||
* in Q13.19 fixed-point format).
|
||||
*
|
||||
* @return the calibration value obtained using rtc_clk_cal, at startup time
|
||||
*/
|
||||
uint32_t esp_clk_slowclk_cal_get();
|
||||
|
||||
/**
|
||||
* @brief Update the calibration value of RTC slow clock
|
||||
*
|
||||
* The value has to be in the same format as returned by rtc_clk_cal (microseconds,
|
||||
* in Q13.19 fixed-point format).
|
||||
* This value is used by timekeeping functions (such as gettimeofday) to
|
||||
* calculate current time based on RTC counter value.
|
||||
* @param value calibration value obtained using rtc_clk_cal
|
||||
*/
|
||||
void esp_clk_slowclk_cal_set(uint32_t value);
|
||||
|
||||
/**
|
||||
* @brief Return current CPU clock frequency
|
||||
* When frequency switching is performed, this frequency may change.
|
||||
* However it is guaranteed that the frequency never changes with a critical
|
||||
* section.
|
||||
*
|
||||
* @return CPU clock frequency, in Hz
|
||||
*/
|
||||
int esp_clk_cpu_freq(void);
|
||||
|
||||
/**
|
||||
* @brief Return current APB clock frequency
|
||||
*
|
||||
* When frequency switching is performed, this frequency may change.
|
||||
* However it is guaranteed that the frequency never changes with a critical
|
||||
* section.
|
||||
*
|
||||
* @return APB clock frequency, in Hz
|
||||
*/
|
||||
int esp_clk_apb_freq(void);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Read value of RTC counter, converting it to microseconds
|
||||
* @attention The value returned by this function may change abruptly when
|
||||
* calibration value of RTC counter is updated via esp_clk_slowclk_cal_set
|
||||
* function. This should not happen unless application calls esp_clk_slowclk_cal_set.
|
||||
* In ESP-IDF, esp_clk_slowclk_cal_set is only called in startup code.
|
||||
*
|
||||
* @return Value or RTC counter, expressed in microseconds
|
||||
*/
|
||||
uint64_t esp_clk_rtc_time();
|
89
components/esp32s2beta/include/esp_intr.h
Normal file
89
components/esp32s2beta/include/esp_intr.h
Normal file
@ -0,0 +1,89 @@
|
||||
// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef __ESP_INTR_H__
|
||||
#define __ESP_INTR_H__
|
||||
|
||||
#include "rom/ets_sys.h"
|
||||
#include "freertos/xtensa_api.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ESP_CCOMPARE_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_CCOMPARE_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_EPWM_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_EPWM_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_MPWM_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_MPWM_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_SPI1_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_SPI1_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_SPI2_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_SPI2_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_SPI3_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_SPI3_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_I2S0_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_I2S0_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_PCNT_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_PCNT_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_LEDC_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_LEDC_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_WMAC_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_WMAC_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_FRC_TIMER1_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_FRC_TIMER1_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_FRC_TIMER2_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_FRC_TIMER2_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_GPIO_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_GPIO_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_UART0_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_UART0_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_WDT_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_WDT_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_RTC_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_RTC_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_SLC_INTR_ATTACH(func, arg) \
|
||||
xt_set_interrupt_handler(ETS_SLC_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_RMT_CTRL_INTRL(func,arg)\
|
||||
xt_set_interrupt_handler(ETS_RMT_CTRL_INUM, (func), (void *)(arg))
|
||||
|
||||
#define ESP_INTR_ENABLE(inum) \
|
||||
xt_ints_on((1<<inum))
|
||||
|
||||
#define ESP_INTR_DISABLE(inum) \
|
||||
xt_ints_off((1<<inum))
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __ESP_INTR_H__ */
|
295
components/esp32s2beta/include/esp_intr_alloc.h
Normal file
295
components/esp32s2beta/include/esp_intr_alloc.h
Normal file
@ -0,0 +1,295 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef __ESP_INTR_ALLOC_H__
|
||||
#define __ESP_INTR_ALLOC_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/** @addtogroup Intr_Alloc
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/** @brief Interrupt allocation flags
|
||||
*
|
||||
* These flags can be used to specify which interrupt qualities the
|
||||
* code calling esp_intr_alloc* needs.
|
||||
*
|
||||
*/
|
||||
|
||||
//Keep the LEVELx values as they are here; they match up with (1<<level)
|
||||
#define ESP_INTR_FLAG_LEVEL1 (1<<1) ///< Accept a Level 1 interrupt vector (lowest priority)
|
||||
#define ESP_INTR_FLAG_LEVEL2 (1<<2) ///< Accept a Level 2 interrupt vector
|
||||
#define ESP_INTR_FLAG_LEVEL3 (1<<3) ///< Accept a Level 3 interrupt vector
|
||||
#define ESP_INTR_FLAG_LEVEL4 (1<<4) ///< Accept a Level 4 interrupt vector
|
||||
#define ESP_INTR_FLAG_LEVEL5 (1<<5) ///< Accept a Level 5 interrupt vector
|
||||
#define ESP_INTR_FLAG_LEVEL6 (1<<6) ///< Accept a Level 6 interrupt vector
|
||||
#define ESP_INTR_FLAG_NMI (1<<7) ///< Accept a Level 7 interrupt vector (highest priority)
|
||||
#define ESP_INTR_FLAG_SHARED (1<<8) ///< Interrupt can be shared between ISRs
|
||||
#define ESP_INTR_FLAG_EDGE (1<<9) ///< Edge-triggered interrupt
|
||||
#define ESP_INTR_FLAG_IRAM (1<<10) ///< ISR can be called if cache is disabled
|
||||
#define ESP_INTR_FLAG_INTRDISABLED (1<<11) ///< Return with this interrupt disabled
|
||||
|
||||
#define ESP_INTR_FLAG_LOWMED (ESP_INTR_FLAG_LEVEL1|ESP_INTR_FLAG_LEVEL2|ESP_INTR_FLAG_LEVEL3) ///< Low and medium prio interrupts. These can be handled in C.
|
||||
#define ESP_INTR_FLAG_HIGH (ESP_INTR_FLAG_LEVEL4|ESP_INTR_FLAG_LEVEL5|ESP_INTR_FLAG_LEVEL6|ESP_INTR_FLAG_NMI) ///< High level interrupts. Need to be handled in assembly.
|
||||
|
||||
#define ESP_INTR_FLAG_LEVELMASK (ESP_INTR_FLAG_LEVEL1|ESP_INTR_FLAG_LEVEL2|ESP_INTR_FLAG_LEVEL3| \
|
||||
ESP_INTR_FLAG_LEVEL4|ESP_INTR_FLAG_LEVEL5|ESP_INTR_FLAG_LEVEL6| \
|
||||
ESP_INTR_FLAG_NMI) ///< Mask for all level flags
|
||||
/**@}*/
|
||||
|
||||
|
||||
/** @addtogroup Intr_Alloc_Pseudo_Src
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* The esp_intr_alloc* functions can allocate an int for all ETS_*_INTR_SOURCE interrupt sources that
|
||||
* are routed through the interrupt mux. Apart from these sources, each core also has some internal
|
||||
* sources that do not pass through the interrupt mux. To allocate an interrupt for these sources,
|
||||
* pass these pseudo-sources to the functions.
|
||||
*/
|
||||
#define ETS_INTERNAL_TIMER0_INTR_SOURCE -1 ///< Xtensa timer 0 interrupt source
|
||||
#define ETS_INTERNAL_TIMER1_INTR_SOURCE -2 ///< Xtensa timer 1 interrupt source
|
||||
#define ETS_INTERNAL_TIMER2_INTR_SOURCE -3 ///< Xtensa timer 2 interrupt source
|
||||
#define ETS_INTERNAL_SW0_INTR_SOURCE -4 ///< Software int source 1
|
||||
#define ETS_INTERNAL_SW1_INTR_SOURCE -5 ///< Software int source 2
|
||||
#define ETS_INTERNAL_PROFILING_INTR_SOURCE -6 ///< Int source for profiling
|
||||
|
||||
/**@}*/
|
||||
|
||||
// This is used to provide SystemView with positive IRQ IDs, otherwise sheduler events are not shown properly
|
||||
#define ETS_INTERNAL_INTR_SOURCE_OFF (-ETS_INTERNAL_PROFILING_INTR_SOURCE)
|
||||
|
||||
typedef void (*intr_handler_t)(void *arg);
|
||||
|
||||
|
||||
typedef struct intr_handle_data_t intr_handle_data_t;
|
||||
typedef intr_handle_data_t* intr_handle_t ;
|
||||
|
||||
/**
|
||||
* @brief Mark an interrupt as a shared interrupt
|
||||
*
|
||||
* This will mark a certain interrupt on the specified CPU as
|
||||
* an interrupt that can be used to hook shared interrupt handlers
|
||||
* to.
|
||||
*
|
||||
* @param intno The number of the interrupt (0-31)
|
||||
* @param cpu CPU on which the interrupt should be marked as shared (0 or 1)
|
||||
* @param is_in_iram Shared interrupt is for handlers that reside in IRAM and
|
||||
* the int can be left enabled while the flash cache is disabled.
|
||||
*
|
||||
* @return ESP_ERR_INVALID_ARG if cpu or intno is invalid
|
||||
* ESP_OK otherwise
|
||||
*/
|
||||
esp_err_t esp_intr_mark_shared(int intno, int cpu, bool is_in_iram);
|
||||
|
||||
/**
|
||||
* @brief Reserve an interrupt to be used outside of this framework
|
||||
*
|
||||
* This will mark a certain interrupt on the specified CPU as
|
||||
* reserved, not to be allocated for any reason.
|
||||
*
|
||||
* @param intno The number of the interrupt (0-31)
|
||||
* @param cpu CPU on which the interrupt should be marked as shared (0 or 1)
|
||||
*
|
||||
* @return ESP_ERR_INVALID_ARG if cpu or intno is invalid
|
||||
* ESP_OK otherwise
|
||||
*/
|
||||
esp_err_t esp_intr_reserve(int intno, int cpu);
|
||||
|
||||
/**
|
||||
* @brief Allocate an interrupt with the given parameters.
|
||||
*
|
||||
* This finds an interrupt that matches the restrictions as given in the flags
|
||||
* parameter, maps the given interrupt source to it and hooks up the given
|
||||
* interrupt handler (with optional argument) as well. If needed, it can return
|
||||
* a handle for the interrupt as well.
|
||||
*
|
||||
* The interrupt will always be allocated on the core that runs this function.
|
||||
*
|
||||
* If ESP_INTR_FLAG_IRAM flag is used, and handler address is not in IRAM or
|
||||
* RTC_FAST_MEM, then ESP_ERR_INVALID_ARG is returned.
|
||||
*
|
||||
* @param source The interrupt source. One of the ETS_*_INTR_SOURCE interrupt mux
|
||||
* sources, as defined in soc/soc.h, or one of the internal
|
||||
* ETS_INTERNAL_*_INTR_SOURCE sources as defined in this header.
|
||||
* @param flags An ORred mask of the ESP_INTR_FLAG_* defines. These restrict the
|
||||
* choice of interrupts that this routine can choose from. If this value
|
||||
* is 0, it will default to allocating a non-shared interrupt of level
|
||||
* 1, 2 or 3. If this is ESP_INTR_FLAG_SHARED, it will allocate a shared
|
||||
* interrupt of level 1. Setting ESP_INTR_FLAG_INTRDISABLED will return
|
||||
* from this function with the interrupt disabled.
|
||||
* @param handler The interrupt handler. Must be NULL when an interrupt of level >3
|
||||
* is requested, because these types of interrupts aren't C-callable.
|
||||
* @param arg Optional argument for passed to the interrupt handler
|
||||
* @param ret_handle Pointer to an intr_handle_t to store a handle that can later be
|
||||
* used to request details or free the interrupt. Can be NULL if no handle
|
||||
* is required.
|
||||
*
|
||||
* @return ESP_ERR_INVALID_ARG if the combination of arguments is invalid.
|
||||
* ESP_ERR_NOT_FOUND No free interrupt found with the specified flags
|
||||
* ESP_OK otherwise
|
||||
*/
|
||||
esp_err_t esp_intr_alloc(int source, int flags, intr_handler_t handler, void *arg, intr_handle_t *ret_handle);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Allocate an interrupt with the given parameters.
|
||||
*
|
||||
*
|
||||
* This essentially does the same as esp_intr_alloc, but allows specifying a register and mask
|
||||
* combo. For shared interrupts, the handler is only called if a read from the specified
|
||||
* register, ANDed with the mask, returns non-zero. By passing an interrupt status register
|
||||
* address and a fitting mask, this can be used to accelerate interrupt handling in the case
|
||||
* a shared interrupt is triggered; by checking the interrupt statuses first, the code can
|
||||
* decide which ISRs can be skipped
|
||||
*
|
||||
* @param source The interrupt source. One of the ETS_*_INTR_SOURCE interrupt mux
|
||||
* sources, as defined in soc/soc.h, or one of the internal
|
||||
* ETS_INTERNAL_*_INTR_SOURCE sources as defined in this header.
|
||||
* @param flags An ORred mask of the ESP_INTR_FLAG_* defines. These restrict the
|
||||
* choice of interrupts that this routine can choose from. If this value
|
||||
* is 0, it will default to allocating a non-shared interrupt of level
|
||||
* 1, 2 or 3. If this is ESP_INTR_FLAG_SHARED, it will allocate a shared
|
||||
* interrupt of level 1. Setting ESP_INTR_FLAG_INTRDISABLED will return
|
||||
* from this function with the interrupt disabled.
|
||||
* @param intrstatusreg The address of an interrupt status register
|
||||
* @param intrstatusmask A mask. If a read of address intrstatusreg has any of the bits
|
||||
* that are 1 in the mask set, the ISR will be called. If not, it will be
|
||||
* skipped.
|
||||
* @param handler The interrupt handler. Must be NULL when an interrupt of level >3
|
||||
* is requested, because these types of interrupts aren't C-callable.
|
||||
* @param arg Optional argument for passed to the interrupt handler
|
||||
* @param ret_handle Pointer to an intr_handle_t to store a handle that can later be
|
||||
* used to request details or free the interrupt. Can be NULL if no handle
|
||||
* is required.
|
||||
*
|
||||
* @return ESP_ERR_INVALID_ARG if the combination of arguments is invalid.
|
||||
* ESP_ERR_NOT_FOUND No free interrupt found with the specified flags
|
||||
* ESP_OK otherwise
|
||||
*/
|
||||
esp_err_t esp_intr_alloc_intrstatus(int source, int flags, uint32_t intrstatusreg, uint32_t intrstatusmask, intr_handler_t handler, void *arg, intr_handle_t *ret_handle);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Disable and free an interrupt.
|
||||
*
|
||||
* Use an interrupt handle to disable the interrupt and release the resources
|
||||
* associated with it.
|
||||
*
|
||||
* @note
|
||||
* When the handler shares its source with other handlers, the interrupt status
|
||||
* bits it's responsible for should be managed properly before freeing it. see
|
||||
* ``esp_intr_disable`` for more details.
|
||||
*
|
||||
* @param handle The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
|
||||
*
|
||||
* @return ESP_ERR_INVALID_ARG if handle is invalid, or esp_intr_free runs on another core than
|
||||
* where the interrupt is allocated on.
|
||||
* ESP_OK otherwise
|
||||
*/
|
||||
esp_err_t esp_intr_free(intr_handle_t handle);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get CPU number an interrupt is tied to
|
||||
*
|
||||
* @param handle The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
|
||||
*
|
||||
* @return The core number where the interrupt is allocated
|
||||
*/
|
||||
int esp_intr_get_cpu(intr_handle_t handle);
|
||||
|
||||
/**
|
||||
* @brief Get the allocated interrupt for a certain handle
|
||||
*
|
||||
* @param handle The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
|
||||
*
|
||||
* @return The interrupt number
|
||||
*/
|
||||
int esp_intr_get_intno(intr_handle_t handle);
|
||||
|
||||
/**
|
||||
* @brief Disable the interrupt associated with the handle
|
||||
*
|
||||
* @note
|
||||
* 1. For local interrupts (ESP_INTERNAL_* sources), this function has to be called on the
|
||||
* CPU the interrupt is allocated on. Other interrupts have no such restriction.
|
||||
* 2. When several handlers sharing a same interrupt source, interrupt status bits, which are
|
||||
* handled in the handler to be disabled, should be masked before the disabling, or handled
|
||||
* in other enabled interrupts properly. Miss of interrupt status handling will cause infinite
|
||||
* interrupt calls and finally system crash.
|
||||
*
|
||||
* @param handle The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
|
||||
*
|
||||
* @return ESP_ERR_INVALID_ARG if the combination of arguments is invalid.
|
||||
* ESP_OK otherwise
|
||||
*/
|
||||
esp_err_t esp_intr_disable(intr_handle_t handle);
|
||||
|
||||
/**
|
||||
* @brief Enable the interrupt associated with the handle
|
||||
*
|
||||
* @note For local interrupts (ESP_INTERNAL_* sources), this function has to be called on the
|
||||
* CPU the interrupt is allocated on. Other interrupts have no such restriction.
|
||||
*
|
||||
* @param handle The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
|
||||
*
|
||||
* @return ESP_ERR_INVALID_ARG if the combination of arguments is invalid.
|
||||
* ESP_OK otherwise
|
||||
*/
|
||||
esp_err_t esp_intr_enable(intr_handle_t handle);
|
||||
|
||||
/**
|
||||
* @brief Set the "in IRAM" status of the handler.
|
||||
*
|
||||
* @note Does not work on shared interrupts.
|
||||
*
|
||||
* @param handle The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
|
||||
* @param is_in_iram Whether the handler associated with this handle resides in IRAM.
|
||||
* Handlers residing in IRAM can be called when cache is disabled.
|
||||
*
|
||||
* @return ESP_ERR_INVALID_ARG if the combination of arguments is invalid.
|
||||
* ESP_OK otherwise
|
||||
*/
|
||||
esp_err_t esp_intr_set_in_iram(intr_handle_t handle, bool is_in_iram);
|
||||
|
||||
/**
|
||||
* @brief Disable interrupts that aren't specifically marked as running from IRAM
|
||||
*/
|
||||
void esp_intr_noniram_disable();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Re-enable interrupts disabled by esp_intr_noniram_disable
|
||||
*/
|
||||
void esp_intr_noniram_enable();
|
||||
|
||||
/**@}*/
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
325
components/esp32s2beta/include/esp_sleep.h
Normal file
325
components/esp32s2beta/include/esp_sleep.h
Normal file
@ -0,0 +1,325 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include "esp_err.h"
|
||||
#include "driver/gpio.h"
|
||||
#include "driver/touch_pad.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Logic function used for EXT1 wakeup mode.
|
||||
*/
|
||||
typedef enum {
|
||||
ESP_EXT1_WAKEUP_ALL_LOW = 0, //!< Wake the chip when all selected GPIOs go low
|
||||
ESP_EXT1_WAKEUP_ANY_HIGH = 1 //!< Wake the chip when any of the selected GPIOs go high
|
||||
} esp_sleep_ext1_wakeup_mode_t;
|
||||
|
||||
/**
|
||||
* @brief Power domains which can be powered down in sleep mode
|
||||
*/
|
||||
typedef enum {
|
||||
ESP_PD_DOMAIN_RTC_PERIPH, //!< RTC IO, sensors and ULP co-processor
|
||||
ESP_PD_DOMAIN_RTC_SLOW_MEM, //!< RTC slow memory
|
||||
ESP_PD_DOMAIN_RTC_FAST_MEM, //!< RTC fast memory
|
||||
ESP_PD_DOMAIN_XTAL, //!< XTAL oscillator
|
||||
ESP_PD_DOMAIN_MAX //!< Number of domains
|
||||
} esp_sleep_pd_domain_t;
|
||||
|
||||
/**
|
||||
* @brief Power down options
|
||||
*/
|
||||
typedef enum {
|
||||
ESP_PD_OPTION_OFF, //!< Power down the power domain in sleep mode
|
||||
ESP_PD_OPTION_ON, //!< Keep power domain enabled during sleep mode
|
||||
ESP_PD_OPTION_AUTO //!< Keep power domain enabled in sleep mode, if it is needed by one of the wakeup options. Otherwise power it down.
|
||||
} esp_sleep_pd_option_t;
|
||||
|
||||
/**
|
||||
* @brief Sleep wakeup cause
|
||||
*/
|
||||
typedef enum {
|
||||
ESP_SLEEP_WAKEUP_UNDEFINED, //!< In case of deep sleep, reset was not caused by exit from deep sleep
|
||||
ESP_SLEEP_WAKEUP_EXT0, //!< Wakeup caused by external signal using RTC_IO
|
||||
ESP_SLEEP_WAKEUP_EXT1, //!< Wakeup caused by external signal using RTC_CNTL
|
||||
ESP_SLEEP_WAKEUP_TIMER, //!< Wakeup caused by timer
|
||||
ESP_SLEEP_WAKEUP_TOUCHPAD, //!< Wakeup caused by touchpad
|
||||
ESP_SLEEP_WAKEUP_ULP, //!< Wakeup caused by ULP program
|
||||
} esp_sleep_source_t;
|
||||
|
||||
/* Leave this type define for compatibility */
|
||||
typedef esp_sleep_source_t esp_sleep_wakeup_cause_t;
|
||||
|
||||
/**
|
||||
* @brief Disable wakeup source
|
||||
*
|
||||
* This function is used to deactivate wake up trigger for source
|
||||
* defined as parameter of the function.
|
||||
*
|
||||
* @note This function does not modify wake up configuration in RTC.
|
||||
* It will be performed in esp_sleep_start function.
|
||||
*
|
||||
* See docs/sleep-modes.rst for details.
|
||||
*
|
||||
* @param source - number of source to disable of type esp_sleep_source_t
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_INVALID_STATE if trigger was not active
|
||||
*/
|
||||
esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source);
|
||||
|
||||
/**
|
||||
* @brief Enable wakeup by ULP coprocessor
|
||||
* @note In revisions 0 and 1 of the ESP32, ULP wakeup source
|
||||
* can not be used when RTC_PERIPH power domain is forced
|
||||
* to be powered on (ESP_PD_OPTION_ON) or when ext0 wakeup
|
||||
* source is used.
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_INVALID_STATE if ULP co-processor is not enabled or if wakeup triggers conflict
|
||||
*/
|
||||
esp_err_t esp_sleep_enable_ulp_wakeup();
|
||||
|
||||
/**
|
||||
* @brief Enable wakeup by timer
|
||||
* @param time_in_us time before wakeup, in microseconds
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_INVALID_ARG if value is out of range (TBD)
|
||||
*/
|
||||
esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us);
|
||||
|
||||
/**
|
||||
* @brief Enable wakeup by touch sensor
|
||||
*
|
||||
* @note In revisions 0 and 1 of the ESP32, touch wakeup source
|
||||
* can not be used when RTC_PERIPH power domain is forced
|
||||
* to be powered on (ESP_PD_OPTION_ON) or when ext0 wakeup
|
||||
* source is used.
|
||||
*
|
||||
* @note The FSM mode of the touch button should be configured
|
||||
* as the timer trigger mode.
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_INVALID_STATE if wakeup triggers conflict
|
||||
*/
|
||||
esp_err_t esp_sleep_enable_touchpad_wakeup();
|
||||
|
||||
/**
|
||||
* @brief Get the touch pad which caused wakeup
|
||||
*
|
||||
* If wakeup was caused by another source, this function will return TOUCH_PAD_MAX;
|
||||
*
|
||||
* @return touch pad which caused wakeup
|
||||
*/
|
||||
touch_pad_t esp_sleep_get_touchpad_wakeup_status();
|
||||
|
||||
/**
|
||||
* @brief Enable wakeup using a pin
|
||||
*
|
||||
* This function uses external wakeup feature of RTC_IO peripheral.
|
||||
* It will work only if RTC peripherals are kept on during sleep.
|
||||
*
|
||||
* This feature can monitor any pin which is an RTC IO. Once the pin transitions
|
||||
* into the state given by level argument, the chip will be woken up.
|
||||
*
|
||||
* @note This function does not modify pin configuration. The pin is
|
||||
* configured in esp_sleep_start, immediately before entering sleep mode.
|
||||
*
|
||||
* @note In revisions 0 and 1 of the ESP32, ext0 wakeup source
|
||||
* can not be used together with touch or ULP wakeup sources.
|
||||
*
|
||||
* @param gpio_num GPIO number used as wakeup source. Only GPIOs which are have RTC
|
||||
* functionality can be used: 0,2,4,12-15,25-27,32-39.
|
||||
* @param level input level which will trigger wakeup (0=low, 1=high)
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_INVALID_ARG if the selected GPIO is not an RTC GPIO,
|
||||
* or the mode is invalid
|
||||
* - ESP_ERR_INVALID_STATE if wakeup triggers conflict
|
||||
*/
|
||||
esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level);
|
||||
|
||||
/**
|
||||
* @brief Enable wakeup using multiple pins
|
||||
*
|
||||
* This function uses external wakeup feature of RTC controller.
|
||||
* It will work even if RTC peripherals are shut down during sleep.
|
||||
*
|
||||
* This feature can monitor any number of pins which are in RTC IOs.
|
||||
* Once any of the selected pins goes into the state given by mode argument,
|
||||
* the chip will be woken up.
|
||||
*
|
||||
* @note This function does not modify pin configuration. The pins are
|
||||
* configured in esp_sleep_start, immediately before
|
||||
* entering sleep mode.
|
||||
*
|
||||
* @note internal pullups and pulldowns don't work when RTC peripherals are
|
||||
* shut down. In this case, external resistors need to be added.
|
||||
* Alternatively, RTC peripherals (and pullups/pulldowns) may be
|
||||
* kept enabled using esp_sleep_pd_config function.
|
||||
*
|
||||
* @param mask bit mask of GPIO numbers which will cause wakeup. Only GPIOs
|
||||
* which are have RTC functionality can be used in this bit map:
|
||||
* 0,2,4,12-15,25-27,32-39.
|
||||
* @param mode select logic function used to determine wakeup condition:
|
||||
* - ESP_EXT1_WAKEUP_ALL_LOW: wake up when all selected GPIOs are low
|
||||
* - ESP_EXT1_WAKEUP_ANY_HIGH: wake up when any of the selected GPIOs is high
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_INVALID_ARG if any of the selected GPIOs is not an RTC GPIO,
|
||||
* or mode is invalid
|
||||
*/
|
||||
esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t mask, esp_sleep_ext1_wakeup_mode_t mode);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get the bit mask of GPIOs which caused wakeup (ext1)
|
||||
*
|
||||
* If wakeup was caused by another source, this function will return 0.
|
||||
*
|
||||
* @return bit mask, if GPIOn caused wakeup, BIT(n) will be set
|
||||
*/
|
||||
uint64_t esp_sleep_get_ext1_wakeup_status();
|
||||
|
||||
/**
|
||||
* @brief Set power down mode for an RTC power domain in sleep mode
|
||||
*
|
||||
* If not set set using this API, all power domains default to ESP_PD_OPTION_AUTO.
|
||||
*
|
||||
* @param domain power domain to configure
|
||||
* @param option power down option (ESP_PD_OPTION_OFF, ESP_PD_OPTION_ON, or ESP_PD_OPTION_AUTO)
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_INVALID_ARG if either of the arguments is out of range
|
||||
*/
|
||||
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain,
|
||||
esp_sleep_pd_option_t option);
|
||||
|
||||
/**
|
||||
* @brief Enter deep sleep with the configured wakeup options
|
||||
*
|
||||
* This function does not return.
|
||||
*/
|
||||
void esp_deep_sleep_start() __attribute__((noreturn));
|
||||
|
||||
/**
|
||||
* @brief Enter light sleep with the configured wakeup options
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK on success (returned after wakeup)
|
||||
* - ESP_ERR_INVALID_STATE if WiFi or BT is not stopped
|
||||
*/
|
||||
esp_err_t esp_light_sleep_start();
|
||||
|
||||
/**
|
||||
* @brief Enter deep-sleep mode
|
||||
*
|
||||
* The device will automatically wake up after the deep-sleep time
|
||||
* Upon waking up, the device calls deep sleep wake stub, and then proceeds
|
||||
* to load application.
|
||||
*
|
||||
* Call to this function is equivalent to a call to esp_deep_sleep_enable_timer_wakeup
|
||||
* followed by a call to esp_deep_sleep_start.
|
||||
*
|
||||
* esp_deep_sleep does not shut down WiFi, BT, and higher level protocol
|
||||
* connections gracefully.
|
||||
* Make sure relevant WiFi and BT stack functions are called to close any
|
||||
* connections and deinitialize the peripherals. These include:
|
||||
* - esp_bluedroid_disable
|
||||
* - esp_bt_controller_disable
|
||||
* - esp_wifi_stop
|
||||
*
|
||||
* This function does not return.
|
||||
*
|
||||
* @param time_in_us deep-sleep time, unit: microsecond
|
||||
*/
|
||||
void esp_deep_sleep(uint64_t time_in_us) __attribute__((noreturn));
|
||||
|
||||
/**
|
||||
* @brief Enter deep-sleep mode
|
||||
*
|
||||
* Function has been renamed to esp_deep_sleep.
|
||||
* This name is deprecated and will be removed in a future version.
|
||||
*
|
||||
* @param time_in_us deep-sleep time, unit: microsecond
|
||||
*/
|
||||
void system_deep_sleep(uint64_t time_in_us) __attribute__((noreturn, deprecated));
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get the source which caused wakeup from sleep
|
||||
*
|
||||
* @return wakeup cause, or ESP_DEEP_SLEEP_WAKEUP_UNDEFINED if reset happened for reason other than deep sleep wakeup
|
||||
*/
|
||||
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Default stub to run on wake from deep sleep.
|
||||
*
|
||||
* Allows for executing code immediately on wake from sleep, before
|
||||
* the software bootloader or ESP-IDF app has started up.
|
||||
*
|
||||
* This function is weak-linked, so you can implement your own version
|
||||
* to run code immediately when the chip wakes from
|
||||
* sleep.
|
||||
*
|
||||
* See docs/deep-sleep-stub.rst for details.
|
||||
*/
|
||||
void esp_wake_deep_sleep(void);
|
||||
|
||||
/**
|
||||
* @brief Function type for stub to run on wake from sleep.
|
||||
*
|
||||
*/
|
||||
typedef void (*esp_deep_sleep_wake_stub_fn_t)(void);
|
||||
|
||||
/**
|
||||
* @brief Install a new stub at runtime to run on wake from deep sleep
|
||||
*
|
||||
* If implementing esp_wake_deep_sleep() then it is not necessary to
|
||||
* call this function.
|
||||
*
|
||||
* However, it is possible to call this function to substitute a
|
||||
* different deep sleep stub. Any function used as a deep sleep stub
|
||||
* must be marked RTC_IRAM_ATTR, and must obey the same rules given
|
||||
* for esp_wake_deep_sleep().
|
||||
*/
|
||||
void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub);
|
||||
|
||||
/**
|
||||
* @brief Get current wake from deep sleep stub
|
||||
* @return Return current wake from deep sleep stub, or NULL if
|
||||
* no stub is installed.
|
||||
*/
|
||||
esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void);
|
||||
|
||||
/**
|
||||
* @brief The default esp-idf-provided esp_wake_deep_sleep() stub.
|
||||
*
|
||||
* See docs/deep-sleep-stub.rst for details.
|
||||
*/
|
||||
void esp_default_wake_deep_sleep(void);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
90
components/esp32s2beta/include/esp_spiram.h
Normal file
90
components/esp32s2beta/include/esp_spiram.h
Normal file
@ -0,0 +1,90 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#ifndef __ESP_SPIRAM_H
|
||||
#define __ESP_SPIRAM_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
/**
|
||||
* @brief Initialize spiram interface/hardware. Normally called from cpu_start.c.
|
||||
*
|
||||
* @return ESP_OK on success
|
||||
*/
|
||||
esp_err_t esp_spiram_init();
|
||||
|
||||
/**
|
||||
* @brief Configure Cache/MMU for access to external SPI RAM.
|
||||
*
|
||||
* Normally this function is called from cpu_start, if CONFIG_SPIRAM_BOOT_INIT
|
||||
* option is enabled. Applications which need to enable SPI RAM at run time
|
||||
* can disable CONFIG_SPIRAM_BOOT_INIT, and call this function later.
|
||||
*
|
||||
* @attention this function must be called with flash cache disabled.
|
||||
*/
|
||||
void esp_spiram_init_cache();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Memory test for SPI RAM. Should be called after SPI RAM is initialized and
|
||||
* (in case of a dual-core system) the app CPU is online. This test overwrites the
|
||||
* memory with crap, so do not call after e.g. the heap allocator has stored important
|
||||
* stuff in SPI RAM.
|
||||
*
|
||||
* @return true on success, false on failed memory test
|
||||
*/
|
||||
bool esp_spiram_test();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Add the initialized SPI RAM to the heap allocator.
|
||||
*/
|
||||
esp_err_t esp_spiram_add_to_heapalloc();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get the size of the attached SPI RAM chip selected in menuconfig
|
||||
*
|
||||
* @return Size in bytes, or 0 if no external RAM chip support compiled in.
|
||||
*/
|
||||
size_t esp_spiram_get_size();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Force a writeback of the data in the SPI RAM cache. This is to be called whenever
|
||||
* cache is disabled, because disabling cache on the ESP32 discards the data in the SPI
|
||||
* RAM cache.
|
||||
*
|
||||
* This is meant for use from within the SPI flash code.
|
||||
*/
|
||||
void esp_spiram_writeback_cache();
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Reserve a pool of internal memory for specific DMA/internal allocations
|
||||
*
|
||||
* @param size Size of reserved pool in bytes
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_NO_MEM when no memory available for pool
|
||||
*/
|
||||
esp_err_t esp_spiram_reserve_dma_pool(size_t size);
|
||||
|
||||
|
||||
#endif
|
119
components/esp32s2beta/include/esp_ssc.h
Normal file
119
components/esp32s2beta/include/esp_ssc.h
Normal file
@ -0,0 +1,119 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef __ESP_SSC_H__
|
||||
#define __ESP_SSC_H__
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define CMD_T_ASYNC 0x01
|
||||
#define CMD_T_SYNC 0x02
|
||||
|
||||
typedef struct cmd_s {
|
||||
char *cmd_str;
|
||||
uint8_t flag;
|
||||
uint8_t id;
|
||||
void (* cmd_func)(void);
|
||||
void (* cmd_callback)(void *arg);
|
||||
} ssc_cmd_t;
|
||||
|
||||
#define MAX_LINE_N 127
|
||||
|
||||
typedef enum {
|
||||
SSC_BR_9600 = 9600,
|
||||
SSC_BR_19200 = 19200,
|
||||
SSC_BR_38400 = 38400,
|
||||
SSC_BR_57600 = 57600,
|
||||
SSC_BR_74880 = 74880,
|
||||
SSC_BR_115200 = 115200,
|
||||
SSC_BR_230400 = 230400,
|
||||
SSC_BR_460800 = 460800,
|
||||
SSC_BR_921600 = 921600
|
||||
} SscBaudRate;
|
||||
|
||||
/** \defgroup SSC_APIs SSC APIs
|
||||
* @brief SSC APIs
|
||||
*
|
||||
* SSC means simple serial command.
|
||||
* SSC APIs allows users to define their own command, users can refer to spiffs_test/test_main.c.
|
||||
*
|
||||
*/
|
||||
|
||||
/** @addtogroup SSC_APIs
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initial the ssc function.
|
||||
*
|
||||
* @attention param is no use, just compatible with ESP8266, default bandrate is 115200
|
||||
*
|
||||
* @param SscBaudRate bandrate : baud rate
|
||||
*
|
||||
* @return null
|
||||
*/
|
||||
void ssc_attach(SscBaudRate bandrate);
|
||||
|
||||
/**
|
||||
* @brief Get the length of the simple serial command.
|
||||
*
|
||||
* @param null
|
||||
*
|
||||
* @return length of the command.
|
||||
*/
|
||||
int ssc_param_len(void);
|
||||
|
||||
/**
|
||||
* @brief Get the simple serial command string.
|
||||
*
|
||||
* @param null
|
||||
*
|
||||
* @return the command.
|
||||
*/
|
||||
char *ssc_param_str(void);
|
||||
|
||||
/**
|
||||
* @brief Parse the simple serial command (ssc).
|
||||
*
|
||||
* @param char *pLine : [input] the ssc string
|
||||
* @param char *argv[] : [output] parameters of the ssc
|
||||
*
|
||||
* @return the number of parameters.
|
||||
*/
|
||||
int ssc_parse_param(char *pLine, char *argv[]);
|
||||
|
||||
/**
|
||||
* @brief Register the user-defined simple serial command (ssc) set.
|
||||
*
|
||||
* @param ssc_cmd_t *cmdset : the ssc set
|
||||
* @param uint8 cmdnum : number of commands
|
||||
* @param void (* help)(void) : callback of user-guide
|
||||
*
|
||||
* @return null
|
||||
*/
|
||||
void ssc_register(ssc_cmd_t *cmdset, uint8_t cmdnum, void (* help)(void));
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __ESP_SSC_H__ */
|
106
components/esp32s2beta/int_wdt.c
Normal file
106
components/esp32s2beta/int_wdt.c
Normal file
@ -0,0 +1,106 @@
|
||||
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
|
||||
#include "sdkconfig.h"
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include <esp_types.h>
|
||||
#include "esp_err.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_freertos_hooks.h"
|
||||
#include "soc/timer_group_struct.h"
|
||||
#include "soc/timer_group_reg.h"
|
||||
#include "driver/timer.h"
|
||||
#include "driver/periph_ctrl.h"
|
||||
#include "esp_int_wdt.h"
|
||||
|
||||
#if CONFIG_INT_WDT
|
||||
|
||||
|
||||
#define WDT_INT_NUM 24
|
||||
|
||||
|
||||
//Take care: the tick hook can also be called before esp_int_wdt_init() is called.
|
||||
#if CONFIG_INT_WDT_CHECK_CPU1
|
||||
//Not static; the ISR assembly checks this.
|
||||
bool int_wdt_app_cpu_ticked=false;
|
||||
|
||||
static void IRAM_ATTR tick_hook(void) {
|
||||
if (xPortGetCoreID()!=0) {
|
||||
int_wdt_app_cpu_ticked=true;
|
||||
} else {
|
||||
//Only feed wdt if app cpu also ticked.
|
||||
if (int_wdt_app_cpu_ticked) {
|
||||
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG1.wdt_config2=CONFIG_INT_WDT_TIMEOUT_MS*2; //Set timeout before interrupt
|
||||
TIMERG1.wdt_config3=CONFIG_INT_WDT_TIMEOUT_MS*4; //Set timeout before reset
|
||||
TIMERG1.wdt_feed=1;
|
||||
TIMERG1.wdt_wprotect=0;
|
||||
int_wdt_app_cpu_ticked=false;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
static void IRAM_ATTR tick_hook(void) {
|
||||
if (xPortGetCoreID()!=0) return;
|
||||
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG1.wdt_config2=CONFIG_INT_WDT_TIMEOUT_MS*2; //Set timeout before interrupt
|
||||
TIMERG1.wdt_config3=CONFIG_INT_WDT_TIMEOUT_MS*4; //Set timeout before reset
|
||||
TIMERG1.wdt_feed=1;
|
||||
TIMERG1.wdt_wprotect=0;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
void esp_int_wdt_init() {
|
||||
periph_module_enable(PERIPH_TIMG1_MODULE);
|
||||
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG1.wdt_config0.sys_reset_length=7; //3.2uS
|
||||
TIMERG1.wdt_config0.cpu_reset_length=7; //3.2uS
|
||||
TIMERG1.wdt_config0.level_int_en=1;
|
||||
TIMERG1.wdt_config0.stg0=TIMG_WDT_STG_SEL_INT; //1st stage timeout: interrupt
|
||||
TIMERG1.wdt_config0.stg1=TIMG_WDT_STG_SEL_RESET_SYSTEM; //2nd stage timeout: reset system
|
||||
TIMERG1.wdt_config1.clk_prescale=80*500; //Prescaler: wdt counts in ticks of 0.5mS
|
||||
//The timer configs initially are set to 5 seconds, to make sure the CPU can start up. The tick hook sets
|
||||
//it to their actual value.
|
||||
TIMERG1.wdt_config2=10000;
|
||||
TIMERG1.wdt_config3=10000;
|
||||
TIMERG1.wdt_config0.en=1;
|
||||
TIMERG1.wdt_feed=1;
|
||||
TIMERG1.wdt_wprotect=0;
|
||||
TIMERG1.int_clr.wdt=1;
|
||||
timer_group_intr_enable(TIMER_GROUP_1, TIMG_WDT_INT_ENA_M);
|
||||
}
|
||||
|
||||
void esp_int_wdt_cpu_init()
|
||||
{
|
||||
esp_register_freertos_tick_hook_for_cpu(tick_hook, xPortGetCoreID());
|
||||
ESP_INTR_DISABLE(WDT_INT_NUM);
|
||||
intr_matrix_set(xPortGetCoreID(), ETS_TG1_WDT_LEVEL_INTR_SOURCE, WDT_INT_NUM);
|
||||
//We do not register a handler for the interrupt because it is interrupt level 4 which
|
||||
//is not servicable from C. Instead, xtensa_vectors.S has a call to the panic handler for
|
||||
//this interrupt.
|
||||
ESP_INTR_ENABLE(WDT_INT_NUM);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif
|
900
components/esp32s2beta/intr_alloc.c
Normal file
900
components/esp32s2beta/intr_alloc.c
Normal file
@ -0,0 +1,900 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
|
||||
#include "sdkconfig.h"
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include <esp_types.h>
|
||||
#include "esp_err.h"
|
||||
//#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
|
||||
#include "esp_log.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include <limits.h>
|
||||
#include <assert.h>
|
||||
|
||||
static const char* TAG = "intr_alloc";
|
||||
|
||||
#define ETS_INTERNAL_TIMER0_INTR_NO 6
|
||||
#define ETS_INTERNAL_TIMER1_INTR_NO 15
|
||||
#define ETS_INTERNAL_TIMER2_INTR_NO 16
|
||||
#define ETS_INTERNAL_SW0_INTR_NO 7
|
||||
#define ETS_INTERNAL_SW1_INTR_NO 29
|
||||
#define ETS_INTERNAL_PROFILING_INTR_NO 11
|
||||
|
||||
|
||||
/*
|
||||
Define this to debug the choices made when allocating the interrupt. This leads to much debugging
|
||||
output within a critical region, which can lead to weird effects like e.g. the interrupt watchdog
|
||||
being triggered, that is why it is separate from the normal LOG* scheme.
|
||||
*/
|
||||
//define DEBUG_INT_ALLOC_DECISIONS
|
||||
#ifdef DEBUG_INT_ALLOC_DECISIONS
|
||||
# define ALCHLOG(...) ESP_EARLY_LOGD(TAG, __VA_ARGS__)
|
||||
#else
|
||||
# define ALCHLOG(...) do {} while (0)
|
||||
#endif
|
||||
|
||||
|
||||
typedef enum {
|
||||
INTDESC_NORMAL=0,
|
||||
INTDESC_RESVD,
|
||||
INTDESC_SPECIAL //for xtensa timers / software ints
|
||||
} int_desc_flag_t;
|
||||
|
||||
typedef enum {
|
||||
INTTP_LEVEL=0,
|
||||
INTTP_EDGE,
|
||||
INTTP_NA
|
||||
} int_type_t;
|
||||
|
||||
typedef struct {
|
||||
int level;
|
||||
int_type_t type;
|
||||
int_desc_flag_t cpuflags[2];
|
||||
} int_desc_t;
|
||||
|
||||
|
||||
//We should mark the interrupt for the timer used by FreeRTOS as reserved. The specific timer
|
||||
//is selectable using menuconfig; we use these cpp bits to convert that into something we can use in
|
||||
//the table below.
|
||||
#if CONFIG_FREERTOS_CORETIMER_0
|
||||
#define INT6RES INTDESC_RESVD
|
||||
#else
|
||||
#define INT6RES INTDESC_SPECIAL
|
||||
#endif
|
||||
|
||||
#if CONFIG_FREERTOS_CORETIMER_1
|
||||
#define INT15RES INTDESC_RESVD
|
||||
#else
|
||||
#define INT15RES INTDESC_SPECIAL
|
||||
#endif
|
||||
|
||||
//This is basically a software-readable version of the interrupt usage table in include/soc/soc.h
|
||||
const static int_desc_t int_desc[32]={
|
||||
{ 1, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_RESVD } }, //0
|
||||
{ 1, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_RESVD } }, //1
|
||||
{ 1, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //2
|
||||
{ 1, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //3
|
||||
{ 1, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_NORMAL} }, //4
|
||||
{ 1, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_RESVD } }, //5
|
||||
{ 1, INTTP_NA, {INT6RES, INT6RES } }, //6
|
||||
{ 1, INTTP_NA, {INTDESC_SPECIAL,INTDESC_SPECIAL}}, //7
|
||||
{ 1, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_RESVD } }, //8
|
||||
{ 1, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //9
|
||||
{ 1, INTTP_EDGE , {INTDESC_NORMAL, INTDESC_NORMAL} }, //10
|
||||
{ 3, INTTP_NA, {INTDESC_SPECIAL,INTDESC_SPECIAL}}, //11
|
||||
{ 1, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //12
|
||||
{ 1, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //13
|
||||
{ 7, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_RESVD } }, //14, NMI
|
||||
{ 3, INTTP_NA, {INT15RES, INT15RES } }, //15
|
||||
{ 5, INTTP_NA, {INTDESC_SPECIAL,INTDESC_SPECIAL} }, //16
|
||||
{ 1, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //17
|
||||
{ 1, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //18
|
||||
{ 2, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //19
|
||||
{ 2, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //20
|
||||
{ 2, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //21
|
||||
{ 3, INTTP_EDGE, {INTDESC_RESVD, INTDESC_NORMAL} }, //22
|
||||
{ 3, INTTP_LEVEL, {INTDESC_NORMAL, INTDESC_NORMAL} }, //23
|
||||
{ 4, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_NORMAL} }, //24
|
||||
{ 4, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_RESVD } }, //25
|
||||
{ 5, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_RESVD } }, //26
|
||||
{ 3, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_RESVD } }, //27
|
||||
{ 4, INTTP_EDGE, {INTDESC_NORMAL, INTDESC_NORMAL} }, //28
|
||||
{ 3, INTTP_NA, {INTDESC_SPECIAL,INTDESC_SPECIAL}}, //29
|
||||
{ 4, INTTP_EDGE, {INTDESC_RESVD, INTDESC_RESVD } }, //30
|
||||
{ 5, INTTP_LEVEL, {INTDESC_RESVD, INTDESC_RESVD } }, //31
|
||||
};
|
||||
|
||||
typedef struct shared_vector_desc_t shared_vector_desc_t;
|
||||
typedef struct vector_desc_t vector_desc_t;
|
||||
|
||||
struct shared_vector_desc_t {
|
||||
int disabled: 1;
|
||||
int source: 8;
|
||||
volatile uint32_t *statusreg;
|
||||
uint32_t statusmask;
|
||||
intr_handler_t isr;
|
||||
void *arg;
|
||||
shared_vector_desc_t *next;
|
||||
};
|
||||
|
||||
|
||||
#define VECDESC_FL_RESERVED (1<<0)
|
||||
#define VECDESC_FL_INIRAM (1<<1)
|
||||
#define VECDESC_FL_SHARED (1<<2)
|
||||
#define VECDESC_FL_NONSHARED (1<<3)
|
||||
|
||||
//Pack using bitfields for better memory use
|
||||
struct vector_desc_t {
|
||||
int flags: 16; //OR of VECDESC_FLAG_* defines
|
||||
unsigned int cpu: 1;
|
||||
unsigned int intno: 5;
|
||||
int source: 8; //Interrupt mux flags, used when not shared
|
||||
shared_vector_desc_t *shared_vec_info; //used when VECDESC_FL_SHARED
|
||||
vector_desc_t *next;
|
||||
};
|
||||
|
||||
struct intr_handle_data_t {
|
||||
vector_desc_t *vector_desc;
|
||||
shared_vector_desc_t *shared_vector_desc;
|
||||
};
|
||||
|
||||
typedef struct non_shared_isr_arg_t non_shared_isr_arg_t;
|
||||
|
||||
struct non_shared_isr_arg_t {
|
||||
intr_handler_t isr;
|
||||
void *isr_arg;
|
||||
int source;
|
||||
};
|
||||
|
||||
//Linked list of vector descriptions, sorted by cpu.intno value
|
||||
static vector_desc_t *vector_desc_head = NULL;
|
||||
|
||||
//This bitmask has an 1 if the int should be disabled when the flash is disabled.
|
||||
static uint32_t non_iram_int_mask[portNUM_PROCESSORS];
|
||||
//This bitmask has 1 in it if the int was disabled using esp_intr_noniram_disable.
|
||||
static uint32_t non_iram_int_disabled[portNUM_PROCESSORS];
|
||||
static bool non_iram_int_disabled_flag[portNUM_PROCESSORS];
|
||||
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
extern uint32_t port_switch_flag[];
|
||||
#endif
|
||||
|
||||
static portMUX_TYPE spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
//Inserts an item into vector_desc list so that the list is sorted
|
||||
//with an incrementing cpu.intno value.
|
||||
static void insert_vector_desc(vector_desc_t *to_insert)
|
||||
{
|
||||
vector_desc_t *vd=vector_desc_head;
|
||||
vector_desc_t *prev=NULL;
|
||||
while(vd!=NULL) {
|
||||
if (vd->cpu > to_insert->cpu) break;
|
||||
if (vd->cpu == to_insert->cpu && vd->intno >= to_insert->intno) break;
|
||||
prev=vd;
|
||||
vd=vd->next;
|
||||
}
|
||||
if ((vector_desc_head==NULL) || (prev==NULL)) {
|
||||
//First item
|
||||
to_insert->next = vd;
|
||||
vector_desc_head=to_insert;
|
||||
} else {
|
||||
prev->next=to_insert;
|
||||
to_insert->next=vd;
|
||||
}
|
||||
}
|
||||
|
||||
//Returns a vector_desc entry for an intno/cpu, or NULL if none exists.
|
||||
static vector_desc_t *find_desc_for_int(int intno, int cpu)
|
||||
{
|
||||
vector_desc_t *vd=vector_desc_head;
|
||||
while(vd!=NULL) {
|
||||
if (vd->cpu==cpu && vd->intno==intno) break;
|
||||
vd=vd->next;
|
||||
}
|
||||
return vd;
|
||||
}
|
||||
|
||||
//Returns a vector_desc entry for an intno/cpu.
|
||||
//Either returns a preexisting one or allocates a new one and inserts
|
||||
//it into the list. Returns NULL on malloc fail.
|
||||
static vector_desc_t *get_desc_for_int(int intno, int cpu)
|
||||
{
|
||||
vector_desc_t *vd=find_desc_for_int(intno, cpu);
|
||||
if (vd==NULL) {
|
||||
vector_desc_t *newvd=heap_caps_malloc(sizeof(vector_desc_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
|
||||
if (newvd==NULL) return NULL;
|
||||
memset(newvd, 0, sizeof(vector_desc_t));
|
||||
newvd->intno=intno;
|
||||
newvd->cpu=cpu;
|
||||
insert_vector_desc(newvd);
|
||||
return newvd;
|
||||
} else {
|
||||
return vd;
|
||||
}
|
||||
}
|
||||
|
||||
//Returns a vector_desc entry for an source, the cpu parameter is used to tell GPIO_INT and GPIO_NMI from different CPUs
|
||||
static vector_desc_t * find_desc_for_source(int source, int cpu)
|
||||
{
|
||||
vector_desc_t *vd=vector_desc_head;
|
||||
while(vd!=NULL) {
|
||||
if ( !(vd->flags & VECDESC_FL_SHARED) ) {
|
||||
if ( vd->source == source && cpu == vd->cpu ) break;
|
||||
} else if ( vd->cpu == cpu ) {
|
||||
// check only shared vds for the correct cpu, otherwise skip
|
||||
bool found = false;
|
||||
shared_vector_desc_t *svd = vd->shared_vec_info;
|
||||
assert(svd != NULL );
|
||||
while(svd) {
|
||||
if ( svd->source == source ) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
svd = svd->next;
|
||||
}
|
||||
if ( found ) break;
|
||||
}
|
||||
vd=vd->next;
|
||||
}
|
||||
return vd;
|
||||
}
|
||||
|
||||
esp_err_t esp_intr_mark_shared(int intno, int cpu, bool is_int_ram)
|
||||
{
|
||||
if (intno>31) return ESP_ERR_INVALID_ARG;
|
||||
if (cpu>=portNUM_PROCESSORS) return ESP_ERR_INVALID_ARG;
|
||||
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
vector_desc_t *vd=get_desc_for_int(intno, cpu);
|
||||
if (vd==NULL) {
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
vd->flags=VECDESC_FL_SHARED;
|
||||
if (is_int_ram) vd->flags|=VECDESC_FL_INIRAM;
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_intr_reserve(int intno, int cpu)
|
||||
{
|
||||
if (intno>31) return ESP_ERR_INVALID_ARG;
|
||||
if (cpu>=portNUM_PROCESSORS) return ESP_ERR_INVALID_ARG;
|
||||
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
vector_desc_t *vd=get_desc_for_int(intno, cpu);
|
||||
if (vd==NULL) {
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
vd->flags=VECDESC_FL_RESERVED;
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
//Interrupt handler table and unhandled uinterrupt routine. Duplicated
|
||||
//from xtensa_intr.c... it's supposed to be private, but we need to look
|
||||
//into it in order to see if someone allocated an int using
|
||||
//xt_set_interrupt_handler.
|
||||
typedef struct xt_handler_table_entry {
|
||||
void * handler;
|
||||
void * arg;
|
||||
} xt_handler_table_entry;
|
||||
extern xt_handler_table_entry _xt_interrupt_table[XCHAL_NUM_INTERRUPTS*portNUM_PROCESSORS];
|
||||
extern void xt_unhandled_interrupt(void * arg);
|
||||
|
||||
//Returns true if handler for interrupt is not the default unhandled interrupt handler
|
||||
static bool int_has_handler(int intr, int cpu)
|
||||
{
|
||||
return (_xt_interrupt_table[intr*portNUM_PROCESSORS+cpu].handler != xt_unhandled_interrupt);
|
||||
}
|
||||
|
||||
static bool is_vect_desc_usable(vector_desc_t *vd, int flags, int cpu, int force)
|
||||
{
|
||||
//Check if interrupt is not reserved by design
|
||||
int x = vd->intno;
|
||||
if (int_desc[x].cpuflags[cpu]==INTDESC_RESVD) {
|
||||
ALCHLOG("....Unusable: reserved");
|
||||
return false;
|
||||
}
|
||||
if (int_desc[x].cpuflags[cpu]==INTDESC_SPECIAL && force==-1) {
|
||||
ALCHLOG("....Unusable: special-purpose int");
|
||||
return false;
|
||||
}
|
||||
//Check if the interrupt level is acceptable
|
||||
if (!(flags&(1<<int_desc[x].level))) {
|
||||
ALCHLOG("....Unusable: incompatible level");
|
||||
return false;
|
||||
}
|
||||
//check if edge/level type matches what we want
|
||||
if (((flags&ESP_INTR_FLAG_EDGE) && (int_desc[x].type==INTTP_LEVEL)) ||
|
||||
(((!(flags&ESP_INTR_FLAG_EDGE)) && (int_desc[x].type==INTTP_EDGE)))) {
|
||||
ALCHLOG("....Unusable: incompatible trigger type");
|
||||
return false;
|
||||
}
|
||||
//check if interrupt is reserved at runtime
|
||||
if (vd->flags&VECDESC_FL_RESERVED) {
|
||||
ALCHLOG("....Unusable: reserved at runtime.");
|
||||
return false;
|
||||
}
|
||||
|
||||
//Ints can't be both shared and non-shared.
|
||||
assert(!((vd->flags&VECDESC_FL_SHARED)&&(vd->flags&VECDESC_FL_NONSHARED)));
|
||||
//check if interrupt already is in use by a non-shared interrupt
|
||||
if (vd->flags&VECDESC_FL_NONSHARED) {
|
||||
ALCHLOG("....Unusable: already in (non-shared) use.");
|
||||
return false;
|
||||
}
|
||||
// check shared interrupt flags
|
||||
if (vd->flags&VECDESC_FL_SHARED ) {
|
||||
if (flags&ESP_INTR_FLAG_SHARED) {
|
||||
bool in_iram_flag=((flags&ESP_INTR_FLAG_IRAM)!=0);
|
||||
bool desc_in_iram_flag=((vd->flags&VECDESC_FL_INIRAM)!=0);
|
||||
//Bail out if int is shared, but iram property doesn't match what we want.
|
||||
if ((vd->flags&VECDESC_FL_SHARED) && (desc_in_iram_flag!=in_iram_flag)) {
|
||||
ALCHLOG("....Unusable: shared but iram prop doesn't match");
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
//We need an unshared IRQ; can't use shared ones; bail out if this is shared.
|
||||
ALCHLOG("...Unusable: int is shared, we need non-shared.");
|
||||
return false;
|
||||
}
|
||||
} else if (int_has_handler(x, cpu)) {
|
||||
//Check if interrupt already is allocated by xt_set_interrupt_handler
|
||||
ALCHLOG("....Unusable: already allocated");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
//Locate a free interrupt compatible with the flags given.
|
||||
//The 'force' argument can be -1, or 0-31 to force checking a certain interrupt.
|
||||
//When a CPU is forced, the INTDESC_SPECIAL marked interrupts are also accepted.
|
||||
static int get_available_int(int flags, int cpu, int force, int source)
|
||||
{
|
||||
int x;
|
||||
int best=-1;
|
||||
int bestLevel=9;
|
||||
int bestSharedCt=INT_MAX;
|
||||
//Default vector desc, for vectors not in the linked list
|
||||
vector_desc_t empty_vect_desc;
|
||||
memset(&empty_vect_desc, 0, sizeof(vector_desc_t));
|
||||
|
||||
|
||||
//Level defaults to any low/med interrupt
|
||||
if (!(flags&ESP_INTR_FLAG_LEVELMASK)) flags|=ESP_INTR_FLAG_LOWMED;
|
||||
|
||||
ALCHLOG("get_available_int: try to find existing. Cpu: %d, Source: %d", cpu, source);
|
||||
vector_desc_t *vd = find_desc_for_source(source, cpu);
|
||||
if ( vd ) {
|
||||
// if existing vd found, don't need to search any more.
|
||||
ALCHLOG("get_avalible_int: existing vd found. intno: %d", vd->intno);
|
||||
if ( force != -1 && force != vd->intno ) {
|
||||
ALCHLOG("get_avalible_int: intr forced but not matach existing. existing intno: %d, force: %d", vd->intno, force);
|
||||
} else if ( !is_vect_desc_usable(vd, flags, cpu, force) ) {
|
||||
ALCHLOG("get_avalible_int: existing vd invalid.");
|
||||
} else {
|
||||
best = vd->intno;
|
||||
}
|
||||
return best;
|
||||
}
|
||||
if (force!=-1) {
|
||||
ALCHLOG("get_available_int: try to find force. Cpu: %d, Source: %d, Force: %d", cpu, source, force);
|
||||
//if force assigned, don't need to search any more.
|
||||
vd = find_desc_for_int(force, cpu);
|
||||
if (vd == NULL ) {
|
||||
//if existing vd not found, just check the default state for the intr.
|
||||
empty_vect_desc.intno = force;
|
||||
vd = &empty_vect_desc;
|
||||
}
|
||||
if ( is_vect_desc_usable(vd, flags, cpu, force) ) {
|
||||
best = vd->intno;
|
||||
} else {
|
||||
ALCHLOG("get_avalible_int: forced vd invalid.");
|
||||
}
|
||||
return best;
|
||||
}
|
||||
|
||||
ALCHLOG("get_free_int: start looking. Current cpu: %d", cpu);
|
||||
//No allocated handlers as well as forced intr, iterate over the 32 possible interrupts
|
||||
for (x=0; x<32; x++) {
|
||||
//Grab the vector_desc for this vector.
|
||||
vd=find_desc_for_int(x, cpu);
|
||||
if (vd==NULL) {
|
||||
empty_vect_desc.intno = x;
|
||||
vd=&empty_vect_desc;
|
||||
}
|
||||
|
||||
ALCHLOG("Int %d reserved %d level %d %s hasIsr %d",
|
||||
x, int_desc[x].cpuflags[cpu]==INTDESC_RESVD, int_desc[x].level,
|
||||
int_desc[x].type==INTTP_LEVEL?"LEVEL":"EDGE", int_has_handler(x, cpu));
|
||||
|
||||
if ( !is_vect_desc_usable(vd, flags, cpu, force) ) continue;
|
||||
|
||||
if (flags&ESP_INTR_FLAG_SHARED) {
|
||||
//We're allocating a shared int.
|
||||
|
||||
//See if int already is used as a shared interrupt.
|
||||
if (vd->flags&VECDESC_FL_SHARED) {
|
||||
//We can use this already-marked-as-shared interrupt. Count the already attached isrs in order to see
|
||||
//how useful it is.
|
||||
int no=0;
|
||||
shared_vector_desc_t *svdesc=vd->shared_vec_info;
|
||||
while (svdesc!=NULL) {
|
||||
no++;
|
||||
svdesc=svdesc->next;
|
||||
}
|
||||
if (no<bestSharedCt || bestLevel>int_desc[x].level) {
|
||||
//Seems like this shared vector is both okay and has the least amount of ISRs already attached to it.
|
||||
best=x;
|
||||
bestSharedCt=no;
|
||||
bestLevel=int_desc[x].level;
|
||||
ALCHLOG("...int %d more usable as a shared int: has %d existing vectors", x, no);
|
||||
} else {
|
||||
ALCHLOG("...worse than int %d", best);
|
||||
}
|
||||
} else {
|
||||
if (best==-1) {
|
||||
//We haven't found a feasible shared interrupt yet. This one is still free and usable, even if
|
||||
//not marked as shared.
|
||||
//Remember it in case we don't find any other shared interrupt that qualifies.
|
||||
if (bestLevel>int_desc[x].level) {
|
||||
best=x;
|
||||
bestLevel=int_desc[x].level;
|
||||
ALCHLOG("...int %d usable as a new shared int", x);
|
||||
}
|
||||
} else {
|
||||
ALCHLOG("...already have a shared int");
|
||||
}
|
||||
}
|
||||
} else {
|
||||
//Seems this interrupt is feasible. Select it and break out of the loop; no need to search further.
|
||||
if (bestLevel>int_desc[x].level) {
|
||||
best=x;
|
||||
bestLevel=int_desc[x].level;
|
||||
} else {
|
||||
ALCHLOG("...worse than int %d", best);
|
||||
}
|
||||
}
|
||||
}
|
||||
ALCHLOG("get_available_int: using int %d", best);
|
||||
|
||||
//Okay, by now we have looked at all potential interrupts and hopefully have selected the best one in best.
|
||||
return best;
|
||||
}
|
||||
|
||||
//Common shared isr handler. Chain-call all ISRs.
|
||||
static void IRAM_ATTR shared_intr_isr(void *arg)
|
||||
{
|
||||
vector_desc_t *vd=(vector_desc_t*)arg;
|
||||
shared_vector_desc_t *sh_vec=vd->shared_vec_info;
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
while(sh_vec) {
|
||||
if (!sh_vec->disabled) {
|
||||
if ((sh_vec->statusreg == NULL) || (*sh_vec->statusreg & sh_vec->statusmask)) {
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
traceISR_ENTER(sh_vec->source+ETS_INTERNAL_INTR_SOURCE_OFF);
|
||||
#endif
|
||||
sh_vec->isr(sh_vec->arg);
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
// check if we will return to scheduler or to interrupted task after ISR
|
||||
if (!port_switch_flag[xPortGetCoreID()]) {
|
||||
traceISR_EXIT();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
sh_vec=sh_vec->next;
|
||||
}
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
}
|
||||
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
//Common non-shared isr handler wrapper.
|
||||
static void IRAM_ATTR non_shared_intr_isr(void *arg)
|
||||
{
|
||||
non_shared_isr_arg_t *ns_isr_arg=(non_shared_isr_arg_t*)arg;
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
traceISR_ENTER(ns_isr_arg->source+ETS_INTERNAL_INTR_SOURCE_OFF);
|
||||
// FIXME: can we call ISR and check port_switch_flag after releasing spinlock?
|
||||
// when CONFIG_SYSVIEW_ENABLE = 0 ISRs for non-shared IRQs are called without spinlock
|
||||
ns_isr_arg->isr(ns_isr_arg->isr_arg);
|
||||
// check if we will return to scheduler or to interrupted task after ISR
|
||||
if (!port_switch_flag[xPortGetCoreID()]) {
|
||||
traceISR_EXIT();
|
||||
}
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
}
|
||||
#endif
|
||||
|
||||
//We use ESP_EARLY_LOG* here because this can be called before the scheduler is running.
|
||||
esp_err_t esp_intr_alloc_intrstatus(int source, int flags, uint32_t intrstatusreg, uint32_t intrstatusmask, intr_handler_t handler,
|
||||
void *arg, intr_handle_t *ret_handle)
|
||||
{
|
||||
intr_handle_data_t *ret=NULL;
|
||||
int force=-1;
|
||||
ESP_EARLY_LOGV(TAG, "esp_intr_alloc_intrstatus (cpu %d): checking args", xPortGetCoreID());
|
||||
//Shared interrupts should be level-triggered.
|
||||
if ((flags&ESP_INTR_FLAG_SHARED) && (flags&ESP_INTR_FLAG_EDGE)) return ESP_ERR_INVALID_ARG;
|
||||
//You can't set an handler / arg for a non-C-callable interrupt.
|
||||
if ((flags&ESP_INTR_FLAG_HIGH) && (handler)) return ESP_ERR_INVALID_ARG;
|
||||
//Shared ints should have handler and non-processor-local source
|
||||
if ((flags&ESP_INTR_FLAG_SHARED) && (!handler || source<0)) return ESP_ERR_INVALID_ARG;
|
||||
//Statusreg should have a mask
|
||||
if (intrstatusreg && !intrstatusmask) return ESP_ERR_INVALID_ARG;
|
||||
//If the ISR is marked to be IRAM-resident, the handler must not be in the cached region
|
||||
if ((flags&ESP_INTR_FLAG_IRAM) &&
|
||||
(ptrdiff_t) handler >= SOC_RTC_IRAM_HIGH &&
|
||||
(ptrdiff_t) handler < SOC_RTC_DATA_LOW ) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
//Default to prio 1 for shared interrupts. Default to prio 1, 2 or 3 for non-shared interrupts.
|
||||
if ((flags&ESP_INTR_FLAG_LEVELMASK)==0) {
|
||||
if (flags&ESP_INTR_FLAG_SHARED) {
|
||||
flags|=ESP_INTR_FLAG_LEVEL1;
|
||||
} else {
|
||||
flags|=ESP_INTR_FLAG_LOWMED;
|
||||
}
|
||||
}
|
||||
ESP_EARLY_LOGV(TAG, "esp_intr_alloc_intrstatus (cpu %d): Args okay. Resulting flags 0x%X", xPortGetCoreID(), flags);
|
||||
|
||||
//Check 'special' interrupt sources. These are tied to one specific interrupt, so we
|
||||
//have to force get_free_int to only look at that.
|
||||
if (source==ETS_INTERNAL_TIMER0_INTR_SOURCE) force=ETS_INTERNAL_TIMER0_INTR_NO;
|
||||
if (source==ETS_INTERNAL_TIMER1_INTR_SOURCE) force=ETS_INTERNAL_TIMER1_INTR_NO;
|
||||
if (source==ETS_INTERNAL_TIMER2_INTR_SOURCE) force=ETS_INTERNAL_TIMER2_INTR_NO;
|
||||
if (source==ETS_INTERNAL_SW0_INTR_SOURCE) force=ETS_INTERNAL_SW0_INTR_NO;
|
||||
if (source==ETS_INTERNAL_SW1_INTR_SOURCE) force=ETS_INTERNAL_SW1_INTR_NO;
|
||||
if (source==ETS_INTERNAL_PROFILING_INTR_SOURCE) force=ETS_INTERNAL_PROFILING_INTR_NO;
|
||||
|
||||
//Allocate a return handle. If we end up not needing it, we'll free it later on.
|
||||
ret=heap_caps_malloc(sizeof(intr_handle_data_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
|
||||
if (ret==NULL) return ESP_ERR_NO_MEM;
|
||||
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
int cpu=xPortGetCoreID();
|
||||
//See if we can find an interrupt that matches the flags.
|
||||
int intr=get_available_int(flags, cpu, force, source);
|
||||
if (intr==-1) {
|
||||
//None found. Bail out.
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
free(ret);
|
||||
return ESP_ERR_NOT_FOUND;
|
||||
}
|
||||
//Get an int vector desc for int.
|
||||
vector_desc_t *vd=get_desc_for_int(intr, cpu);
|
||||
if (vd==NULL) {
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
free(ret);
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
|
||||
//Allocate that int!
|
||||
if (flags&ESP_INTR_FLAG_SHARED) {
|
||||
//Populate vector entry and add to linked list.
|
||||
shared_vector_desc_t *sh_vec=malloc(sizeof(shared_vector_desc_t));
|
||||
if (sh_vec==NULL) {
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
free(ret);
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
memset(sh_vec, 0, sizeof(shared_vector_desc_t));
|
||||
sh_vec->statusreg=(uint32_t*)intrstatusreg;
|
||||
sh_vec->statusmask=intrstatusmask;
|
||||
sh_vec->isr=handler;
|
||||
sh_vec->arg=arg;
|
||||
sh_vec->next=vd->shared_vec_info;
|
||||
sh_vec->source=source;
|
||||
sh_vec->disabled=0;
|
||||
vd->shared_vec_info=sh_vec;
|
||||
vd->flags|=VECDESC_FL_SHARED;
|
||||
//(Re-)set shared isr handler to new value.
|
||||
xt_set_interrupt_handler(intr, shared_intr_isr, vd);
|
||||
} else {
|
||||
//Mark as unusable for other interrupt sources. This is ours now!
|
||||
vd->flags=VECDESC_FL_NONSHARED;
|
||||
if (handler) {
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
non_shared_isr_arg_t *ns_isr_arg=malloc(sizeof(non_shared_isr_arg_t));
|
||||
if (!ns_isr_arg) {
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
free(ret);
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
ns_isr_arg->isr=handler;
|
||||
ns_isr_arg->isr_arg=arg;
|
||||
ns_isr_arg->source=source;
|
||||
xt_set_interrupt_handler(intr, non_shared_intr_isr, ns_isr_arg);
|
||||
#else
|
||||
xt_set_interrupt_handler(intr, handler, arg);
|
||||
#endif
|
||||
}
|
||||
if (flags&ESP_INTR_FLAG_EDGE) xthal_set_intclear(1 << intr);
|
||||
vd->source=source;
|
||||
}
|
||||
if (flags&ESP_INTR_FLAG_IRAM) {
|
||||
vd->flags|=VECDESC_FL_INIRAM;
|
||||
non_iram_int_mask[cpu]&=~(1<<intr);
|
||||
} else {
|
||||
vd->flags&=~VECDESC_FL_INIRAM;
|
||||
non_iram_int_mask[cpu]|=(1<<intr);
|
||||
}
|
||||
if (source>=0) {
|
||||
intr_matrix_set(cpu, source, intr);
|
||||
}
|
||||
|
||||
//Fill return handle data.
|
||||
ret->vector_desc=vd;
|
||||
ret->shared_vector_desc=vd->shared_vec_info;
|
||||
|
||||
//Enable int at CPU-level;
|
||||
ESP_INTR_ENABLE(intr);
|
||||
|
||||
//If interrupt has to be started disabled, do that now; ints won't be enabled for real until the end
|
||||
//of the critical section.
|
||||
if (flags&ESP_INTR_FLAG_INTRDISABLED) {
|
||||
esp_intr_disable(ret);
|
||||
}
|
||||
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
|
||||
//Fill return handle if needed, otherwise free handle.
|
||||
if (ret_handle!=NULL) {
|
||||
*ret_handle=ret;
|
||||
} else {
|
||||
free(ret);
|
||||
}
|
||||
|
||||
ESP_EARLY_LOGD(TAG, "Connected src %d to int %d (cpu %d)", source, intr, cpu);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_intr_alloc(int source, int flags, intr_handler_t handler, void *arg, intr_handle_t *ret_handle)
|
||||
{
|
||||
/*
|
||||
As an optimization, we can create a table with the possible interrupt status registers and masks for every single
|
||||
source there is. We can then add code here to look up an applicable value and pass that to the
|
||||
esp_intr_alloc_intrstatus function.
|
||||
*/
|
||||
return esp_intr_alloc_intrstatus(source, flags, 0, 0, handler, arg, ret_handle);
|
||||
}
|
||||
|
||||
esp_err_t IRAM_ATTR esp_intr_set_in_iram(intr_handle_t handle, bool is_in_iram)
|
||||
{
|
||||
if (!handle) return ESP_ERR_INVALID_ARG;
|
||||
vector_desc_t *vd = handle->vector_desc;
|
||||
if (vd->flags & VECDESC_FL_SHARED) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
uint32_t mask = (1 << vd->intno);
|
||||
if (is_in_iram) {
|
||||
vd->flags |= VECDESC_FL_INIRAM;
|
||||
non_iram_int_mask[vd->cpu] &= ~mask;
|
||||
} else {
|
||||
vd->flags &= ~VECDESC_FL_INIRAM;
|
||||
non_iram_int_mask[vd->cpu] |= mask;
|
||||
}
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_intr_free(intr_handle_t handle)
|
||||
{
|
||||
bool free_shared_vector=false;
|
||||
if (!handle) return ESP_ERR_INVALID_ARG;
|
||||
//This routine should be called from the interrupt the task is scheduled on.
|
||||
if (handle->vector_desc->cpu!=xPortGetCoreID()) return ESP_ERR_INVALID_ARG;
|
||||
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
esp_intr_disable(handle);
|
||||
if (handle->vector_desc->flags&VECDESC_FL_SHARED) {
|
||||
//Find and kill the shared int
|
||||
shared_vector_desc_t *svd=handle->vector_desc->shared_vec_info;
|
||||
shared_vector_desc_t *prevsvd=NULL;
|
||||
assert(svd); //should be something in there for a shared int
|
||||
while (svd!=NULL) {
|
||||
if (svd==handle->shared_vector_desc) {
|
||||
//Found it. Now kill it.
|
||||
if (prevsvd) {
|
||||
prevsvd->next=svd->next;
|
||||
} else {
|
||||
handle->vector_desc->shared_vec_info=svd->next;
|
||||
}
|
||||
free(svd);
|
||||
break;
|
||||
}
|
||||
prevsvd=svd;
|
||||
svd=svd->next;
|
||||
}
|
||||
//If nothing left, disable interrupt.
|
||||
if (handle->vector_desc->shared_vec_info==NULL) free_shared_vector=true;
|
||||
ESP_LOGV(TAG, "esp_intr_free: Deleting shared int: %s. Shared int is %s", svd?"not found or last one":"deleted", free_shared_vector?"empty now.":"still in use");
|
||||
}
|
||||
|
||||
if ((handle->vector_desc->flags&VECDESC_FL_NONSHARED) || free_shared_vector) {
|
||||
ESP_LOGV(TAG, "esp_intr_free: Disabling int, killing handler");
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
if (!free_shared_vector) {
|
||||
void *isr_arg = xt_get_interrupt_handler_arg(handle->vector_desc->intno);
|
||||
if (isr_arg) {
|
||||
free(isr_arg);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
//Reset to normal handler
|
||||
xt_set_interrupt_handler(handle->vector_desc->intno, xt_unhandled_interrupt, (void*)((int)handle->vector_desc->intno));
|
||||
//Theoretically, we could free the vector_desc... not sure if that's worth the few bytes of memory
|
||||
//we save.(We can also not use the same exit path for empty shared ints anymore if we delete
|
||||
//the desc.) For now, just mark it as free.
|
||||
handle->vector_desc->flags&=!(VECDESC_FL_NONSHARED|VECDESC_FL_RESERVED);
|
||||
//Also kill non_iram mask bit.
|
||||
non_iram_int_mask[handle->vector_desc->cpu]&=~(1<<(handle->vector_desc->intno));
|
||||
}
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
free(handle);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
int esp_intr_get_intno(intr_handle_t handle)
|
||||
{
|
||||
return handle->vector_desc->intno;
|
||||
}
|
||||
|
||||
int esp_intr_get_cpu(intr_handle_t handle)
|
||||
{
|
||||
return handle->vector_desc->cpu;
|
||||
}
|
||||
|
||||
/*
|
||||
Interrupt disabling strategy:
|
||||
If the source is >=0 (meaning a muxed interrupt), we disable it by muxing the interrupt to a non-connected
|
||||
interrupt. If the source is <0 (meaning an internal, per-cpu interrupt), we disable it using ESP_INTR_DISABLE.
|
||||
This allows us to, for the muxed CPUs, disable an int from the other core. It also allows disabling shared
|
||||
interrupts.
|
||||
*/
|
||||
|
||||
//Muxing an interrupt source to interrupt 6, 7, 11, 15, 16 or 29 cause the interrupt to effectively be disabled.
|
||||
#define INT_MUX_DISABLED_INTNO 6
|
||||
|
||||
esp_err_t IRAM_ATTR esp_intr_enable(intr_handle_t handle)
|
||||
{
|
||||
if (!handle) return ESP_ERR_INVALID_ARG;
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
int source;
|
||||
if (handle->shared_vector_desc) {
|
||||
handle->shared_vector_desc->disabled=0;
|
||||
source=handle->shared_vector_desc->source;
|
||||
} else {
|
||||
source=handle->vector_desc->source;
|
||||
}
|
||||
if (source >= 0) {
|
||||
//Disabled using int matrix; re-connect to enable
|
||||
intr_matrix_set(handle->vector_desc->cpu, source, handle->vector_desc->intno);
|
||||
} else {
|
||||
//Re-enable using cpu int ena reg
|
||||
if (handle->vector_desc->cpu!=xPortGetCoreID()) return ESP_ERR_INVALID_ARG; //Can only enable these ints on this cpu
|
||||
ESP_INTR_ENABLE(handle->vector_desc->intno);
|
||||
}
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t IRAM_ATTR esp_intr_disable(intr_handle_t handle)
|
||||
{
|
||||
if (!handle) return ESP_ERR_INVALID_ARG;
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
int source;
|
||||
bool disabled = 1;
|
||||
if (handle->shared_vector_desc) {
|
||||
handle->shared_vector_desc->disabled=1;
|
||||
source=handle->shared_vector_desc->source;
|
||||
|
||||
shared_vector_desc_t *svd=handle->vector_desc->shared_vec_info;
|
||||
assert( svd != NULL );
|
||||
while( svd ) {
|
||||
if ( svd->source == source && svd->disabled == 0 ) {
|
||||
disabled = 0;
|
||||
break;
|
||||
}
|
||||
svd = svd->next;
|
||||
}
|
||||
} else {
|
||||
source=handle->vector_desc->source;
|
||||
}
|
||||
|
||||
if (source >= 0) {
|
||||
if ( disabled ) {
|
||||
//Disable using int matrix
|
||||
intr_matrix_set(handle->vector_desc->cpu, source, INT_MUX_DISABLED_INTNO);
|
||||
}
|
||||
} else {
|
||||
//Disable using per-cpu regs
|
||||
if (handle->vector_desc->cpu!=xPortGetCoreID()) {
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
return ESP_ERR_INVALID_ARG; //Can only enable these ints on this cpu
|
||||
}
|
||||
ESP_INTR_DISABLE(handle->vector_desc->intno);
|
||||
}
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
|
||||
void IRAM_ATTR esp_intr_noniram_disable()
|
||||
{
|
||||
int oldint;
|
||||
int cpu=xPortGetCoreID();
|
||||
int intmask=~non_iram_int_mask[cpu];
|
||||
if (non_iram_int_disabled_flag[cpu]) abort();
|
||||
non_iram_int_disabled_flag[cpu]=true;
|
||||
asm volatile (
|
||||
"movi %0,0\n"
|
||||
"xsr %0,INTENABLE\n" //disable all ints first
|
||||
"rsync\n"
|
||||
"and a3,%0,%1\n" //mask ints that need disabling
|
||||
"wsr a3,INTENABLE\n" //write back
|
||||
"rsync\n"
|
||||
:"=&r"(oldint):"r"(intmask):"a3");
|
||||
//Save which ints we did disable
|
||||
non_iram_int_disabled[cpu]=oldint&non_iram_int_mask[cpu];
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_intr_noniram_enable()
|
||||
{
|
||||
int cpu=xPortGetCoreID();
|
||||
int intmask=non_iram_int_disabled[cpu];
|
||||
if (!non_iram_int_disabled_flag[cpu]) abort();
|
||||
non_iram_int_disabled_flag[cpu]=false;
|
||||
asm volatile (
|
||||
"movi a3,0\n"
|
||||
"xsr a3,INTENABLE\n"
|
||||
"rsync\n"
|
||||
"or a3,a3,%0\n"
|
||||
"wsr a3,INTENABLE\n"
|
||||
"rsync\n"
|
||||
::"r"(intmask):"a3");
|
||||
}
|
||||
|
||||
//These functions are provided in ROM, but the ROM-based functions use non-multicore-capable
|
||||
//virtualized interrupt levels. Thus, we disable them in the ld file and provide working
|
||||
//equivalents here.
|
||||
|
||||
|
||||
void IRAM_ATTR ets_isr_unmask(unsigned int mask) {
|
||||
xt_ints_on(mask);
|
||||
}
|
||||
|
||||
void IRAM_ATTR ets_isr_mask(unsigned int mask) {
|
||||
xt_ints_off(mask);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
253
components/esp32s2beta/ld/esp32s2beta.common.ld
Normal file
253
components/esp32s2beta/ld/esp32s2beta.common.ld
Normal file
@ -0,0 +1,253 @@
|
||||
/* Default entry point: */
|
||||
ENTRY(call_start_cpu0);
|
||||
|
||||
SECTIONS
|
||||
{
|
||||
/* RTC fast memory holds RTC wake stub code,
|
||||
including from any source file named rtc_wake_stub*.c
|
||||
*/
|
||||
.rtc.text :
|
||||
{
|
||||
. = ALIGN(4);
|
||||
*(.rtc.literal .rtc.text)
|
||||
*rtc_wake_stub*.o(.literal .text .literal.* .text.*)
|
||||
} > rtc_iram_seg
|
||||
|
||||
/* RTC slow memory holds RTC wake stub
|
||||
data/rodata, including from any source file
|
||||
named rtc_wake_stub*.c
|
||||
*/
|
||||
.rtc.data :
|
||||
{
|
||||
_rtc_data_start = ABSOLUTE(.);
|
||||
*(.rtc.data)
|
||||
*(.rtc.rodata)
|
||||
*rtc_wake_stub*.o(.data .rodata .data.* .rodata.* .bss .bss.*)
|
||||
_rtc_data_end = ABSOLUTE(.);
|
||||
} > rtc_slow_seg
|
||||
|
||||
/* RTC bss, from any source file named rtc_wake_stub*.c */
|
||||
.rtc.bss (NOLOAD) :
|
||||
{
|
||||
_rtc_bss_start = ABSOLUTE(.);
|
||||
*rtc_wake_stub*.o(.bss .bss.*)
|
||||
*rtc_wake_stub*.o(COMMON)
|
||||
_rtc_bss_end = ABSOLUTE(.);
|
||||
} > rtc_slow_seg
|
||||
|
||||
/* This section holds data that should not be initialized at power up
|
||||
and will be retained during deep sleep. The section located in
|
||||
RTC SLOW Memory area. User data marked with RTC_NOINIT_ATTR will be placed
|
||||
into this section. See the file "esp_attr.h" for more information.
|
||||
*/
|
||||
.rtc_noinit (NOLOAD):
|
||||
{
|
||||
. = ALIGN(4);
|
||||
_rtc_noinit_start = ABSOLUTE(.);
|
||||
*(.rtc_noinit .rtc_noinit.*)
|
||||
. = ALIGN(4) ;
|
||||
_rtc_noinit_end = ABSOLUTE(.);
|
||||
} > rtc_slow_seg
|
||||
|
||||
/* Send .iram0 code to iram */
|
||||
.iram0.vectors :
|
||||
{
|
||||
/* Vectors go to IRAM */
|
||||
_init_start = ABSOLUTE(.);
|
||||
/* Vectors according to builds/RF-2015.2-win32/esp108_v1_2_s5_512int_2/config.html */
|
||||
. = 0x0;
|
||||
KEEP(*(.WindowVectors.text));
|
||||
. = 0x180;
|
||||
KEEP(*(.Level2InterruptVector.text));
|
||||
. = 0x1c0;
|
||||
KEEP(*(.Level3InterruptVector.text));
|
||||
. = 0x200;
|
||||
KEEP(*(.Level4InterruptVector.text));
|
||||
. = 0x240;
|
||||
KEEP(*(.Level5InterruptVector.text));
|
||||
. = 0x280;
|
||||
KEEP(*(.DebugExceptionVector.text));
|
||||
. = 0x2c0;
|
||||
KEEP(*(.NMIExceptionVector.text));
|
||||
. = 0x300;
|
||||
KEEP(*(.KernelExceptionVector.text));
|
||||
. = 0x340;
|
||||
KEEP(*(.UserExceptionVector.text));
|
||||
. = 0x3C0;
|
||||
KEEP(*(.DoubleExceptionVector.text));
|
||||
. = 0x400;
|
||||
*(.*Vector.literal)
|
||||
|
||||
*(.UserEnter.literal);
|
||||
*(.UserEnter.text);
|
||||
. = ALIGN (16);
|
||||
*(.entry.text)
|
||||
*(.init.literal)
|
||||
*(.init)
|
||||
_init_end = ABSOLUTE(.);
|
||||
|
||||
/* This goes here, not at top of linker script, so addr2line finds it last,
|
||||
and uses it in preference to the first symbol in IRAM */
|
||||
_iram_start = ABSOLUTE(0);
|
||||
} > iram0_0_seg
|
||||
|
||||
.iram0.text :
|
||||
{
|
||||
/* Code marked as runnning out of IRAM */
|
||||
_iram_text_start = ABSOLUTE(.);
|
||||
*(.iram1 .iram1.*)
|
||||
*libfreertos.a:(.literal .text .literal.* .text.*)
|
||||
*libheap.a:multi_heap.o(.literal .text .literal.* .text.*)
|
||||
*libheap.a:multi_heap_poisoning.o(.literal .text .literal.* .text.*)
|
||||
*libesp32c.a:panic.o(.literal .text .literal.* .text.*)
|
||||
*libesp32c.a:core_dump.o(.literal .text .literal.* .text.*)
|
||||
*libapp_trace.a:(.literal .text .literal.* .text.*)
|
||||
*libxtensa-debug-module.a:eri.o(.literal .text .literal.* .text.*)
|
||||
*librtc.a:(.literal .text .literal.* .text.*)
|
||||
*libsoc.a:(.literal .text .literal.* .text.*)
|
||||
*libhal.a:(.literal .text .literal.* .text.*)
|
||||
*libgcc.a:lib2funcs.o(.literal .text .literal.* .text.*)
|
||||
*libspi_flash.a:spi_flash_rom_patch.o(.literal .text .literal.* .text.*)
|
||||
*libgcov.a:(.literal .text .literal.* .text.*)
|
||||
INCLUDE esp32.spiram.rom-functions-iram.ld
|
||||
_iram_text_end = ABSOLUTE(.);
|
||||
} > iram0_0_seg
|
||||
|
||||
.dram0.data :
|
||||
{
|
||||
_data_start = ABSOLUTE(.);
|
||||
*(.data)
|
||||
*(.data.*)
|
||||
*(.gnu.linkonce.d.*)
|
||||
*(.data1)
|
||||
*(.sdata)
|
||||
*(.sdata.*)
|
||||
*(.gnu.linkonce.s.*)
|
||||
*(.sdata2)
|
||||
*(.sdata2.*)
|
||||
*(.gnu.linkonce.s2.*)
|
||||
*(.jcr)
|
||||
*(.dram1 .dram1.*)
|
||||
*libesp32c.a:panic.o(.rodata .rodata.*)
|
||||
*libphy.a:(.rodata .rodata.*)
|
||||
*libsoc.a:rtc_clk.o(.rodata .rodata.*)
|
||||
*libapp_trace.a:(.rodata .rodata.*)
|
||||
*libgcov.a:(.rodata .rodata.*)
|
||||
*libheap.a:multi_heap.o(.rodata .rodata.*)
|
||||
*libheap.a:multi_heap_poisoning.o(.rodata .rodata.*)
|
||||
INCLUDE esp32.spiram.rom-functions-dram.ld
|
||||
_data_end = ABSOLUTE(.);
|
||||
. = ALIGN(4);
|
||||
} > dram0_0_seg
|
||||
|
||||
/*This section holds data that should not be initialized at power up.
|
||||
The section located in Internal SRAM memory region. The macro _NOINIT
|
||||
can be used as attribute to place data into this section.
|
||||
See the esp_attr.h file for more information.
|
||||
*/
|
||||
.noinit (NOLOAD):
|
||||
{
|
||||
. = ALIGN(4);
|
||||
_noinit_start = ABSOLUTE(.);
|
||||
*(.noinit .noinit.*)
|
||||
. = ALIGN(4) ;
|
||||
_noinit_end = ABSOLUTE(.);
|
||||
} > dram0_0_seg
|
||||
|
||||
/* Shared RAM */
|
||||
.dram0.bss (NOLOAD) :
|
||||
{
|
||||
. = ALIGN (8);
|
||||
_bss_start = ABSOLUTE(.);
|
||||
*(.dynsbss)
|
||||
*(.sbss)
|
||||
*(.sbss.*)
|
||||
*(.gnu.linkonce.sb.*)
|
||||
*(.scommon)
|
||||
*(.sbss2)
|
||||
*(.sbss2.*)
|
||||
*(.gnu.linkonce.sb2.*)
|
||||
*(.dynbss)
|
||||
*(.bss)
|
||||
*(.bss.*)
|
||||
*(.share.mem)
|
||||
*(.gnu.linkonce.b.*)
|
||||
*(COMMON)
|
||||
. = ALIGN (8);
|
||||
_bss_end = ABSOLUTE(.);
|
||||
/* The heap starts right after end of this section */
|
||||
_heap_start = ABSOLUTE(.);
|
||||
} > dram0_0_seg
|
||||
|
||||
.flash.rodata :
|
||||
{
|
||||
_rodata_start = ABSOLUTE(.);
|
||||
*(.rodata)
|
||||
*(.rodata.*)
|
||||
*(.irom1.text) /* catch stray ICACHE_RODATA_ATTR */
|
||||
*(.gnu.linkonce.r.*)
|
||||
*(.rodata1)
|
||||
__XT_EXCEPTION_TABLE_ = ABSOLUTE(.);
|
||||
*(.xt_except_table)
|
||||
*(.gcc_except_table .gcc_except_table.*)
|
||||
*(.gnu.linkonce.e.*)
|
||||
*(.gnu.version_r)
|
||||
. = (. + 3) & ~ 3;
|
||||
__eh_frame = ABSOLUTE(.);
|
||||
KEEP(*(.eh_frame))
|
||||
. = (. + 7) & ~ 3;
|
||||
/* C++ constructor and destructor tables, properly ordered: */
|
||||
__init_array_start = ABSOLUTE(.);
|
||||
KEEP (*crtbegin.o(.ctors))
|
||||
KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
|
||||
KEEP (*(SORT(.ctors.*)))
|
||||
KEEP (*(.ctors))
|
||||
__init_array_end = ABSOLUTE(.);
|
||||
KEEP (*crtbegin.o(.dtors))
|
||||
KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
|
||||
KEEP (*(SORT(.dtors.*)))
|
||||
KEEP (*(.dtors))
|
||||
/* C++ exception handlers table: */
|
||||
__XT_EXCEPTION_DESCS_ = ABSOLUTE(.);
|
||||
*(.xt_except_desc)
|
||||
*(.gnu.linkonce.h.*)
|
||||
__XT_EXCEPTION_DESCS_END__ = ABSOLUTE(.);
|
||||
*(.xt_except_desc_end)
|
||||
*(.dynamic)
|
||||
*(.gnu.version_d)
|
||||
_rodata_end = ABSOLUTE(.);
|
||||
/* Literals are also RO data. */
|
||||
_lit4_start = ABSOLUTE(.);
|
||||
*(*.lit4)
|
||||
*(.lit4.*)
|
||||
*(.gnu.linkonce.lit4.*)
|
||||
_lit4_end = ABSOLUTE(.);
|
||||
. = ALIGN(4);
|
||||
_thread_local_start = ABSOLUTE(.);
|
||||
*(.tdata)
|
||||
*(.tdata.*)
|
||||
*(.tbss)
|
||||
*(.tbss.*)
|
||||
_thread_local_end = ABSOLUTE(.);
|
||||
. = ALIGN(4);
|
||||
} >drom0_0_seg
|
||||
|
||||
.flash.text :
|
||||
{
|
||||
_stext = .;
|
||||
_text_start = ABSOLUTE(.);
|
||||
*(.literal .text .literal.* .text.* .stub .gnu.warning .gnu.linkonce.literal.* .gnu.linkonce.t.*.literal .gnu.linkonce.t.*)
|
||||
*(.irom0.text) /* catch stray ICACHE_RODATA_ATTR */
|
||||
*(.fini.literal)
|
||||
*(.fini)
|
||||
*(.gnu.version)
|
||||
_text_end = ABSOLUTE(.);
|
||||
_etext = .;
|
||||
|
||||
/* Similar to _iram_start, this symbol goes here so it is
|
||||
resolved by addr2line in preference to the first symbol in
|
||||
the flash.text segment.
|
||||
*/
|
||||
_flash_cache_start = ABSOLUTE(0);
|
||||
} >iram0_2_seg
|
||||
}
|
74
components/esp32s2beta/ld/esp32s2beta.ld
Normal file
74
components/esp32s2beta/ld/esp32s2beta.ld
Normal file
@ -0,0 +1,74 @@
|
||||
/* ESP32 Linker Script Memory Layout
|
||||
|
||||
This file describes the memory layout (memory blocks) as virtual
|
||||
memory addresses.
|
||||
|
||||
esp32.common.ld contains output sections to link compiler output
|
||||
into these memory blocks.
|
||||
|
||||
***
|
||||
|
||||
This linker script is passed through the C preprocessor to include
|
||||
configuration options.
|
||||
|
||||
Please use preprocessor features sparingly! Restrict
|
||||
to simple macros with numeric values, and/or #if/#endif blocks.
|
||||
*/
|
||||
#include "sdkconfig.h"
|
||||
|
||||
/* If BT is not built at all */
|
||||
#ifndef CONFIG_BT_RESERVE_DRAM
|
||||
#define CONFIG_BT_RESERVE_DRAM 0
|
||||
#endif
|
||||
|
||||
MEMORY
|
||||
{
|
||||
/* All these values assume the flash cache is on, and have the blocks this uses subtracted from the length
|
||||
of the various regions. The 'data access port' dram/drom regions map to the same iram/irom regions but
|
||||
are connected to the data port of the CPU and eg allow bytewise access. */
|
||||
|
||||
/* IRAM for PRO cpu. Not sure if happy with this, this is MMU area... */
|
||||
iram0_0_seg (RX) : org = 0x40028000, len = 0x18000
|
||||
|
||||
/* Even though the segment name is iram, it is actually mapped to flash
|
||||
*/
|
||||
iram0_2_seg (RX) : org = 0x40080018, len = 0xb80000-0x18
|
||||
|
||||
/*
|
||||
(0x18 offset above is a convenience for the app binary image generation. Flash cache has 64KB pages. The .bin file
|
||||
which is flashed to the chip has a 0x18 byte file header. Setting this offset makes it simple to meet the flash
|
||||
cache MMU's constraint that (paddr % 64KB == vaddr % 64KB).)
|
||||
*/
|
||||
|
||||
|
||||
/* Shared data RAM, excluding memory reserved for ROM bss/data/stack.
|
||||
|
||||
Enabling Bluetooth & Trace Memory features in menuconfig will decrease
|
||||
the amount of RAM available.
|
||||
|
||||
Note: Length of this section *should* be 0x50000, and this extra DRAM is available
|
||||
in heap at runtime. However due to static ROM memory usage at this 176KB mark, the
|
||||
additional static memory temporarily cannot be used.
|
||||
*/
|
||||
dram0_0_seg (RW) : org = 0x3FFD0000 + CONFIG_BT_RESERVE_DRAM,
|
||||
len = 0x28000 - CONFIG_BT_RESERVE_DRAM
|
||||
|
||||
/* Flash mapped constant data */
|
||||
drom0_0_seg (R) : org = 0x3F000018, len = 0x3f0000-0x18
|
||||
|
||||
/* (See iram0_2_seg for meaning of 0x18 offset in the above.) */
|
||||
|
||||
/* RTC fast memory (executable). Persists over deep sleep.
|
||||
*/
|
||||
rtc_iram_seg(RWX) : org = 0x40070000, len = 0x2000
|
||||
|
||||
/* RTC slow memory (data accessible). Persists over deep sleep.
|
||||
|
||||
Start of RTC slow memory is reserved for ULP co-processor code + data, if enabled.
|
||||
*/
|
||||
rtc_slow_seg(RW) : org = 0x50000000 + CONFIG_ULP_COPROC_RESERVE_MEM,
|
||||
len = 0x1000 - CONFIG_ULP_COPROC_RESERVE_MEM
|
||||
}
|
||||
|
||||
/* Heap ends at top of dram0_0_seg */
|
||||
_heap_end = 0x40000000 - CONFIG_TRACEMEM_RESERVE_DRAM;
|
29
components/esp32s2beta/ld/esp32s2beta.peripherals.ld
Normal file
29
components/esp32s2beta/ld/esp32s2beta.peripherals.ld
Normal file
@ -0,0 +1,29 @@
|
||||
PROVIDE ( UART0 = 0x3f400000 );
|
||||
PROVIDE ( SPIMEM1 = 0x3f402000 );
|
||||
PROVIDE ( SPIMEM0 = 0x3f403000 );
|
||||
PROVIDE ( GPIO = 0x3f404000 );
|
||||
PROVIDE ( SIGMADELTA = 0x3f404f00 );
|
||||
PROVIDE ( RTCCNTL = 0x3f408000 );
|
||||
PROVIDE ( RTCIO = 0x3f408400 );
|
||||
PROVIDE ( SENS = 0x3f408800 );
|
||||
PROVIDE ( HINF = 0x3f40B000 );
|
||||
PROVIDE ( I2S0 = 0x3f40F000 );
|
||||
PROVIDE ( UART1 = 0x3f410000 );
|
||||
PROVIDE ( I2C0 = 0x3f413000 );
|
||||
PROVIDE ( UHCI0 = 0x3f414000 );
|
||||
PROVIDE ( HOST = 0x3f415000 );
|
||||
PROVIDE ( RMT = 0x3f416000 );
|
||||
PROVIDE ( RMTMEM = 0x3f416800 );
|
||||
PROVIDE ( PCNT = 0x3f417000 );
|
||||
PROVIDE ( SLC = 0x3f418000 );
|
||||
PROVIDE ( LEDC = 0x3f419000 );
|
||||
PROVIDE ( TIMERG0 = 0x3f41F000 );
|
||||
PROVIDE ( TIMERG1 = 0x3f420000 );
|
||||
PROVIDE ( GPSPI2 = 0x3f424000 );
|
||||
PROVIDE ( GPSPI3 = 0x3f425000 );
|
||||
PROVIDE ( SYSCON = 0x3f426000 );
|
||||
PROVIDE ( I2C1 = 0x3f427000 );
|
||||
PROVIDE ( GPSPI4 = 0x3f437000 );
|
||||
|
||||
PROVIDE ( ToBeCleanedUpBelow = 0x00000000 );
|
||||
PROVIDE ( UART2 = 0x3f410000 );
|
14
components/esp32s2beta/linker.lf
Normal file
14
components/esp32s2beta/linker.lf
Normal file
@ -0,0 +1,14 @@
|
||||
[mapping:esp32s2beta]
|
||||
archive: libesp32s2beta.a
|
||||
entries:
|
||||
panic (noflash)
|
||||
|
||||
[mapping:gcc]
|
||||
archive: libgcc.a
|
||||
entries:
|
||||
lib2funcs (noflash_text)
|
||||
|
||||
[mapping:gcov]
|
||||
archive: libgcov.a
|
||||
entries:
|
||||
* (noflash)
|
672
components/esp32s2beta/panic.c
Normal file
672
components/esp32s2beta/panic.c
Normal file
@ -0,0 +1,672 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <xtensa/config/core.h>
|
||||
|
||||
#include "esp32s2beta/rom/rtc.h"
|
||||
#include "esp32s2beta/rom/uart.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/xtensa_api.h"
|
||||
|
||||
#include "soc/uart_reg.h"
|
||||
#include "soc/io_mux_reg.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/timer_group_struct.h"
|
||||
#include "soc/timer_group_reg.h"
|
||||
#include "soc/cpu.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/rtc_wdt.h"
|
||||
|
||||
#include "esp_private/gdbstub.h"
|
||||
#include "esp_debug_helpers.h"
|
||||
#include "esp_private/panic_reason.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_core_dump.h"
|
||||
#include "esp_spi_flash.h"
|
||||
#include "esp32s2beta/cache_err_int.h"
|
||||
#include "esp_app_trace.h"
|
||||
#include "esp_private/system_internal.h"
|
||||
#include "sdkconfig.h"
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
#include "SEGGER_RTT.h"
|
||||
#endif
|
||||
|
||||
#if CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO == -1
|
||||
#define APPTRACE_ONPANIC_HOST_FLUSH_TMO ESP_APPTRACE_TMO_INFINITE
|
||||
#else
|
||||
#define APPTRACE_ONPANIC_HOST_FLUSH_TMO (1000*CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO)
|
||||
#endif
|
||||
/*
|
||||
Panic handlers; these get called when an unhandled exception occurs or the assembly-level
|
||||
task switching / interrupt code runs into an unrecoverable error. The default task stack
|
||||
overflow handler and abort handler are also in here.
|
||||
*/
|
||||
|
||||
/*
|
||||
Note: The linker script will put everything in this file in IRAM/DRAM, so it also works with flash cache disabled.
|
||||
*/
|
||||
|
||||
#if !CONFIG_ESP32_PANIC_SILENT_REBOOT
|
||||
//printf may be broken, so we fix our own printing fns...
|
||||
static void panicPutChar(char c)
|
||||
{
|
||||
while (((READ_PERI_REG(UART_STATUS_REG(CONFIG_CONSOLE_UART_NUM)) >> UART_TXFIFO_CNT_S)&UART_TXFIFO_CNT) >= 126) ;
|
||||
WRITE_PERI_REG(UART_FIFO_AHB_REG(CONFIG_CONSOLE_UART_NUM), c);
|
||||
}
|
||||
|
||||
static void panicPutStr(const char *c)
|
||||
{
|
||||
int x = 0;
|
||||
while (c[x] != 0) {
|
||||
panicPutChar(c[x]);
|
||||
x++;
|
||||
}
|
||||
}
|
||||
|
||||
static void panicPutHex(int a)
|
||||
{
|
||||
int x;
|
||||
int c;
|
||||
for (x = 0; x < 8; x++) {
|
||||
c = (a >> 28) & 0xf;
|
||||
if (c < 10) {
|
||||
panicPutChar('0' + c);
|
||||
} else {
|
||||
panicPutChar('a' + c - 10);
|
||||
}
|
||||
a <<= 4;
|
||||
}
|
||||
}
|
||||
|
||||
static void panicPutDec(int a)
|
||||
{
|
||||
int n1, n2;
|
||||
n1 = a % 10;
|
||||
n2 = a / 10;
|
||||
if (n2 == 0) {
|
||||
panicPutChar(' ');
|
||||
} else {
|
||||
panicPutChar(n2 + '0');
|
||||
}
|
||||
panicPutChar(n1 + '0');
|
||||
}
|
||||
#else
|
||||
//No printing wanted. Stub out these functions.
|
||||
static void panicPutChar(char c) { }
|
||||
static void panicPutStr(const char *c) { }
|
||||
static void panicPutHex(int a) { }
|
||||
static void panicPutDec(int a) { }
|
||||
#endif
|
||||
|
||||
void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, signed char *pcTaskName )
|
||||
{
|
||||
panicPutStr("***ERROR*** A stack overflow in task ");
|
||||
panicPutStr((char *)pcTaskName);
|
||||
panicPutStr(" has been detected.\r\n");
|
||||
abort();
|
||||
}
|
||||
|
||||
static bool abort_called;
|
||||
|
||||
static __attribute__((noreturn)) inline void invoke_abort()
|
||||
{
|
||||
abort_called = true;
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_RTT_ESP32_FlushNoLock(CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH, APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#else
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH,
|
||||
APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#endif
|
||||
#endif
|
||||
while (1) {
|
||||
if (esp_cpu_in_ocd_debug_mode()) {
|
||||
__asm__ ("break 0,0");
|
||||
}
|
||||
*((int *) 0) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void abort()
|
||||
{
|
||||
#if !CONFIG_ESP32_PANIC_SILENT_REBOOT
|
||||
ets_printf("abort() was called at PC 0x%08x on core %d\r\n", (intptr_t)__builtin_return_address(0) - 3, xPortGetCoreID());
|
||||
#endif
|
||||
invoke_abort();
|
||||
}
|
||||
|
||||
|
||||
static const char *edesc[] = {
|
||||
"IllegalInstruction", "Syscall", "InstructionFetchError", "LoadStoreError",
|
||||
"Level1Interrupt", "Alloca", "IntegerDivideByZero", "PCValue",
|
||||
"Privileged", "LoadStoreAlignment", "res", "res",
|
||||
"InstrPDAddrError", "LoadStorePIFDataError", "InstrPIFAddrError", "LoadStorePIFAddrError",
|
||||
"InstTLBMiss", "InstTLBMultiHit", "InstFetchPrivilege", "res",
|
||||
"InstrFetchProhibited", "res", "res", "res",
|
||||
"LoadStoreTLBMiss", "LoadStoreTLBMultihit", "LoadStorePrivilege", "res",
|
||||
"LoadProhibited", "StoreProhibited", "res", "res",
|
||||
"Cp0Dis", "Cp1Dis", "Cp2Dis", "Cp3Dis",
|
||||
"Cp4Dis", "Cp5Dis", "Cp6Dis", "Cp7Dis"
|
||||
};
|
||||
|
||||
#define NUM_EDESCS (sizeof(edesc) / sizeof(char *))
|
||||
|
||||
static void commonErrorHandler(XtExcFrame *frame);
|
||||
static inline void disableAllWdts();
|
||||
|
||||
//The fact that we've panic'ed probably means the other CPU is now running wild, possibly
|
||||
//messing up the serial output, so we stall it here.
|
||||
static void haltOtherCore()
|
||||
{
|
||||
esp_cpu_stall( xPortGetCoreID() == 0 ? 1 : 0 );
|
||||
}
|
||||
|
||||
|
||||
static void setFirstBreakpoint(uint32_t pc)
|
||||
{
|
||||
asm(
|
||||
"wsr.ibreaka0 %0\n" \
|
||||
"rsr.ibreakenable a3\n" \
|
||||
"movi a4,1\n" \
|
||||
"or a4, a4, a3\n" \
|
||||
"wsr.ibreakenable a4\n" \
|
||||
::"r"(pc):"a3", "a4");
|
||||
}
|
||||
|
||||
//When interrupt watchdog happen in one core, both cores will be interrupted.
|
||||
//The core which doesn't trigger the interrupt watchdog will save the frame and return.
|
||||
//The core which triggers the interrupt watchdog will use the saved frame, and dump frames for both cores.
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
static volatile XtExcFrame * other_core_frame = NULL;
|
||||
#endif //!CONFIG_FREERTOS_UNICORE
|
||||
|
||||
void panicHandler(XtExcFrame *frame)
|
||||
{
|
||||
int core_id = xPortGetCoreID();
|
||||
//Please keep in sync with PANIC_RSN_* defines
|
||||
const char *reasons[] = {
|
||||
"Unknown reason",
|
||||
"Unhandled debug exception",
|
||||
"Double exception",
|
||||
"Unhandled kernel exception",
|
||||
"Coprocessor exception",
|
||||
"Interrupt wdt timeout on CPU0",
|
||||
"Interrupt wdt timeout on CPU1",
|
||||
"Cache disabled but cached memory region accessed",
|
||||
};
|
||||
const char *reason = reasons[0];
|
||||
//The panic reason is stored in the EXCCAUSE register.
|
||||
if (frame->exccause <= PANIC_RSN_MAX) {
|
||||
reason = reasons[frame->exccause];
|
||||
}
|
||||
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
//Save frame for other core.
|
||||
if ((frame->exccause == PANIC_RSN_INTWDT_CPU0 && core_id == 1) || (frame->exccause == PANIC_RSN_INTWDT_CPU1 && core_id == 0)) {
|
||||
other_core_frame = frame;
|
||||
while (1);
|
||||
}
|
||||
|
||||
//The core which triggers the interrupt watchdog will delay 1 us, so the other core can save its frame.
|
||||
if (frame->exccause == PANIC_RSN_INTWDT_CPU0 || frame->exccause == PANIC_RSN_INTWDT_CPU1) {
|
||||
ets_delay_us(1);
|
||||
}
|
||||
|
||||
if (frame->exccause == PANIC_RSN_CACHEERR && esp_cache_err_get_cpuid() != core_id) {
|
||||
// Cache error interrupt will be handled by the panic handler
|
||||
// on the other CPU.
|
||||
while (1);
|
||||
}
|
||||
#endif //!CONFIG_FREERTOS_UNICORE
|
||||
|
||||
haltOtherCore();
|
||||
esp_dport_access_int_abort();
|
||||
panicPutStr("Guru Meditation Error: Core ");
|
||||
panicPutDec(core_id);
|
||||
panicPutStr(" panic'ed (");
|
||||
panicPutStr(reason);
|
||||
panicPutStr(")\r\n");
|
||||
#ifdef PANIC_COMPLETE_IN_ESP32C
|
||||
if (frame->exccause == PANIC_RSN_DEBUGEXCEPTION) {
|
||||
int debugRsn;
|
||||
asm("rsr.debugcause %0":"=r"(debugRsn));
|
||||
panicPutStr("Debug exception reason: ");
|
||||
if (debugRsn & XCHAL_DEBUGCAUSE_ICOUNT_MASK) {
|
||||
panicPutStr("SingleStep ");
|
||||
}
|
||||
if (debugRsn & XCHAL_DEBUGCAUSE_IBREAK_MASK) {
|
||||
panicPutStr("HwBreakpoint ");
|
||||
}
|
||||
if (debugRsn & XCHAL_DEBUGCAUSE_DBREAK_MASK) {
|
||||
//Unlike what the ISA manual says, this core seemingly distinguishes from a DBREAK
|
||||
//reason caused by watchdog 0 and one caused by watchdog 1 by setting bit 8 of the
|
||||
//debugcause if the cause is watchdog 1 and clearing it if it's watchdog 0.
|
||||
if (debugRsn & (1 << 8)) {
|
||||
#if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
|
||||
const char *name = pcTaskGetTaskName(xTaskGetCurrentTaskHandleForCPU(core_id));
|
||||
panicPutStr("Stack canary watchpoint triggered (");
|
||||
panicPutStr(name);
|
||||
panicPutStr(") ");
|
||||
#else
|
||||
panicPutStr("Watchpoint 1 triggered ");
|
||||
#endif
|
||||
} else {
|
||||
panicPutStr("Watchpoint 0 triggered ");
|
||||
}
|
||||
}
|
||||
if (debugRsn & XCHAL_DEBUGCAUSE_BREAK_MASK) {
|
||||
panicPutStr("BREAK instr ");
|
||||
}
|
||||
if (debugRsn & XCHAL_DEBUGCAUSE_BREAKN_MASK) {
|
||||
panicPutStr("BREAKN instr ");
|
||||
}
|
||||
if (debugRsn & XCHAL_DEBUGCAUSE_DEBUGINT_MASK) {
|
||||
panicPutStr("DebugIntr ");
|
||||
}
|
||||
panicPutStr("\r\n");
|
||||
}
|
||||
|
||||
if (esp_cpu_in_ocd_debug_mode()) {
|
||||
disableAllWdts();
|
||||
if (frame->exccause == PANIC_RSN_INTWDT_CPU0 ||
|
||||
frame->exccause == PANIC_RSN_INTWDT_CPU1) {
|
||||
TIMERG1.int_clr.wdt = 1;
|
||||
}
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_RTT_ESP32_FlushNoLock(CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH, APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#else
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH,
|
||||
APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#endif
|
||||
#endif
|
||||
setFirstBreakpoint(frame->pc);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
commonErrorHandler(frame);
|
||||
}
|
||||
|
||||
void xt_unhandled_exception(XtExcFrame *frame)
|
||||
{
|
||||
haltOtherCore();
|
||||
esp_dport_access_int_abort();
|
||||
if (!abort_called) {
|
||||
panicPutStr("Guru Meditation Error: Core ");
|
||||
panicPutDec(xPortGetCoreID());
|
||||
panicPutStr(" panic'ed (");
|
||||
int exccause = frame->exccause;
|
||||
if (exccause < NUM_EDESCS) {
|
||||
panicPutStr(edesc[exccause]);
|
||||
} else {
|
||||
panicPutStr("Unknown");
|
||||
}
|
||||
panicPutStr(")");
|
||||
#ifdef PANIC_COMPLETE_IN_ESP32C
|
||||
if (esp_cpu_in_ocd_debug_mode()) {
|
||||
panicPutStr(" at pc=");
|
||||
panicPutHex(frame->pc);
|
||||
panicPutStr(". Setting bp and returning..\r\n");
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_RTT_ESP32_FlushNoLock(CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH, APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#else
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH,
|
||||
APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#endif
|
||||
#endif
|
||||
//Stick a hardware breakpoint on the address the handler returns to. This way, the OCD debugger
|
||||
//will kick in exactly at the context the error happened.
|
||||
setFirstBreakpoint(frame->pc);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
panicPutStr(". Exception was unhandled.\r\n");
|
||||
}
|
||||
commonErrorHandler(frame);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
If watchdogs are enabled, the panic handler runs the risk of getting aborted pre-emptively because
|
||||
an overzealous watchdog decides to reset it. On the other hand, if we disable all watchdogs, we run
|
||||
the risk of somehow halting in the panic handler and not resetting. That is why this routine kills
|
||||
all watchdogs except the timer group 0 watchdog, and it reconfigures that to reset the chip after
|
||||
one second.
|
||||
*/
|
||||
static void reconfigureAllWdts()
|
||||
{
|
||||
TIMERG0.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG0.wdt_feed = 1;
|
||||
TIMERG0.wdt_config0.sys_reset_length = 7; //3.2uS
|
||||
TIMERG0.wdt_config0.cpu_reset_length = 7; //3.2uS
|
||||
TIMERG0.wdt_config0.stg0 = TIMG_WDT_STG_SEL_RESET_SYSTEM; //1st stage timeout: reset system
|
||||
TIMERG0.wdt_config1.clk_prescale = 80 * 500; //Prescaler: wdt counts in ticks of 0.5mS
|
||||
TIMERG0.wdt_config2 = 2000; //1 second before reset
|
||||
TIMERG0.wdt_config0.en = 1;
|
||||
TIMERG0.wdt_wprotect = 0;
|
||||
//Disable wdt 1
|
||||
TIMERG1.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG1.wdt_config0.en = 0;
|
||||
TIMERG1.wdt_wprotect = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
This disables all the watchdogs for when we call the gdbstub.
|
||||
*/
|
||||
static inline void disableAllWdts()
|
||||
{
|
||||
TIMERG0.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG0.wdt_config0.en = 0;
|
||||
TIMERG0.wdt_wprotect = 0;
|
||||
TIMERG1.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG1.wdt_config0.en = 0;
|
||||
TIMERG1.wdt_wprotect = 0;
|
||||
}
|
||||
|
||||
static void esp_panic_wdt_start()
|
||||
{
|
||||
if (REG_GET_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN)) {
|
||||
return;
|
||||
}
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTFEED_REG, 1);
|
||||
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_SYS_RESET_LENGTH, 7);
|
||||
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_CPU_RESET_LENGTH, 7);
|
||||
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, RTC_WDT_STG_SEL_RESET_SYSTEM);
|
||||
// 64KB of core dump data (stacks of about 30 tasks) will produce ~85KB base64 data.
|
||||
// @ 115200 UART speed it will take more than 6 sec to print them out.
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTCONFIG1_REG, rtc_clk_slow_freq_get_hz() * 7);
|
||||
REG_SET_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN);
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0);
|
||||
}
|
||||
|
||||
void esp_panic_wdt_stop()
|
||||
{
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTFEED_REG, 1);
|
||||
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, RTC_WDT_STG_SEL_OFF);
|
||||
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN);
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0);
|
||||
}
|
||||
|
||||
static void esp_panic_dig_reset() __attribute__((noreturn));
|
||||
|
||||
static void esp_panic_dig_reset()
|
||||
{
|
||||
// make sure all the panic handler output is sent from UART FIFO
|
||||
uart_tx_wait_idle(CONFIG_CONSOLE_UART_NUM);
|
||||
// switch to XTAL (otherwise we will keep running from the PLL)
|
||||
rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL);
|
||||
// reset the digital part
|
||||
esp_cpu_unstall(PRO_CPU_NUM);
|
||||
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
|
||||
while (true) {
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
static void putEntry(uint32_t pc, uint32_t sp)
|
||||
{
|
||||
if (pc & 0x80000000) {
|
||||
pc = (pc & 0x3fffffff) | 0x40000000;
|
||||
}
|
||||
panicPutStr(" 0x");
|
||||
panicPutHex(pc);
|
||||
panicPutStr(":0x");
|
||||
panicPutHex(sp);
|
||||
}
|
||||
|
||||
static void doBacktrace(XtExcFrame *frame)
|
||||
{
|
||||
uint32_t i = 0, pc = frame->pc, sp = frame->a1;
|
||||
panicPutStr("\r\nBacktrace:");
|
||||
/* Do not check sanity on first entry, PC could be smashed. */
|
||||
putEntry(pc, sp);
|
||||
pc = frame->a0;
|
||||
while (i++ < 100) {
|
||||
uint32_t psp = sp;
|
||||
if (!esp_stack_ptr_is_sane(sp) || i++ > 100) {
|
||||
break;
|
||||
}
|
||||
sp = *((uint32_t *) (sp - 0x10 + 4));
|
||||
putEntry(pc - 3, sp); // stack frame addresses are return addresses, so subtract 3 to get the CALL address
|
||||
pc = *((uint32_t *) (psp - 0x10));
|
||||
if (pc < 0x40000000) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
panicPutStr("\r\n\r\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* Dump registers and do backtrace.
|
||||
*/
|
||||
static void commonErrorHandler_dump(XtExcFrame *frame, int core_id)
|
||||
{
|
||||
int *regs = (int *)frame;
|
||||
int x, y;
|
||||
const char *sdesc[] = {
|
||||
"PC ", "PS ", "A0 ", "A1 ", "A2 ", "A3 ", "A4 ", "A5 ",
|
||||
"A6 ", "A7 ", "A8 ", "A9 ", "A10 ", "A11 ", "A12 ", "A13 ",
|
||||
"A14 ", "A15 ", "SAR ", "EXCCAUSE", "EXCVADDR", "LBEG ", "LEND ", "LCOUNT "
|
||||
};
|
||||
|
||||
/* only dump registers for 'real' crashes, if crashing via abort()
|
||||
the register window is no longer useful.
|
||||
*/
|
||||
if (!abort_called) {
|
||||
panicPutStr("Core");
|
||||
panicPutDec(core_id);
|
||||
panicPutStr(" register dump:\r\n");
|
||||
|
||||
for (x = 0; x < 24; x += 4) {
|
||||
for (y = 0; y < 4; y++) {
|
||||
if (sdesc[x + y][0] != 0) {
|
||||
panicPutStr(sdesc[x + y]);
|
||||
panicPutStr(": 0x");
|
||||
panicPutHex(regs[x + y + 1]);
|
||||
panicPutStr(" ");
|
||||
}
|
||||
}
|
||||
panicPutStr("\r\n");
|
||||
}
|
||||
|
||||
if (xPortInterruptedFromISRContext()
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
&& other_core_frame != frame
|
||||
#endif //!CONFIG_FREERTOS_UNICORE
|
||||
) {
|
||||
//If the core which triggers the interrupt watchdog was in ISR context, dump the epc registers.
|
||||
uint32_t __value;
|
||||
panicPutStr("Core");
|
||||
panicPutDec(core_id);
|
||||
panicPutStr(" was running in ISR context:\r\n");
|
||||
|
||||
__asm__("rsr.epc1 %0" : "=a"(__value));
|
||||
panicPutStr("EPC1 : 0x");
|
||||
panicPutHex(__value);
|
||||
|
||||
__asm__("rsr.epc2 %0" : "=a"(__value));
|
||||
panicPutStr(" EPC2 : 0x");
|
||||
panicPutHex(__value);
|
||||
|
||||
__asm__("rsr.epc3 %0" : "=a"(__value));
|
||||
panicPutStr(" EPC3 : 0x");
|
||||
panicPutHex(__value);
|
||||
|
||||
__asm__("rsr.epc4 %0" : "=a"(__value));
|
||||
panicPutStr(" EPC4 : 0x");
|
||||
panicPutHex(__value);
|
||||
|
||||
panicPutStr("\r\n");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* With windowed ABI backtracing is easy, let's do it. */
|
||||
doBacktrace(frame);
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
We arrive here after a panic or unhandled exception, when no OCD is detected. Dump the registers to the
|
||||
serial port and either jump to the gdb stub, halt the CPU or reboot.
|
||||
*/
|
||||
static __attribute__((noreturn)) void commonErrorHandler(XtExcFrame *frame)
|
||||
{
|
||||
|
||||
int core_id = xPortGetCoreID();
|
||||
// start panic WDT to restart system if we hang in this handler
|
||||
esp_panic_wdt_start();
|
||||
|
||||
//Feed the watchdogs, so they will give us time to print out debug info
|
||||
reconfigureAllWdts();
|
||||
|
||||
commonErrorHandler_dump(frame, core_id);
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
if (other_core_frame != NULL) {
|
||||
commonErrorHandler_dump((XtExcFrame *)other_core_frame, (core_id ? 0 : 1));
|
||||
}
|
||||
#endif //!CONFIG_FREERTOS_UNICORE
|
||||
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
disableAllWdts();
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_RTT_ESP32_FlushNoLock(CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH, APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#else
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH,
|
||||
APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#endif
|
||||
reconfigureAllWdts();
|
||||
#endif
|
||||
|
||||
#if CONFIG_ESP32_PANIC_GDBSTUB
|
||||
disableAllWdts();
|
||||
esp_panic_wdt_stop();
|
||||
panicPutStr("Entering gdb stub now.\r\n");
|
||||
esp_gdbstub_panic_handler(frame);
|
||||
#else
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP
|
||||
static bool s_dumping_core;
|
||||
if (s_dumping_core) {
|
||||
panicPutStr("Re-entered core dump! Exception happened during core dump!\r\n");
|
||||
} else {
|
||||
disableAllWdts();
|
||||
s_dumping_core = true;
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
esp_core_dump_to_flash(frame);
|
||||
#endif
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART && !CONFIG_ESP32_PANIC_SILENT_REBOOT
|
||||
esp_core_dump_to_uart(frame);
|
||||
#endif
|
||||
s_dumping_core = false;
|
||||
reconfigureAllWdts();
|
||||
}
|
||||
#endif /* CONFIG_ESP32_ENABLE_COREDUMP */
|
||||
esp_panic_wdt_stop();
|
||||
#if CONFIG_ESP32_PANIC_PRINT_REBOOT || CONFIG_ESP32_PANIC_SILENT_REBOOT
|
||||
panicPutStr("Rebooting...\r\n");
|
||||
if (frame->exccause != PANIC_RSN_CACHEERR) {
|
||||
esp_restart_noos();
|
||||
} else {
|
||||
// The only way to clear invalid cache access interrupt is to reset the digital part
|
||||
esp_panic_dig_reset();
|
||||
}
|
||||
#else
|
||||
disableAllWdts();
|
||||
panicPutStr("CPU halted.\r\n");
|
||||
while (1);
|
||||
#endif /* CONFIG_ESP32_PANIC_PRINT_REBOOT || CONFIG_ESP32_PANIC_SILENT_REBOOT */
|
||||
#endif /* CONFIG_ESP32_PANIC_GDBSTUB */
|
||||
}
|
||||
|
||||
|
||||
void esp_set_breakpoint_if_jtag(void *fn)
|
||||
{
|
||||
if (esp_cpu_in_ocd_debug_mode()) {
|
||||
setFirstBreakpoint((uint32_t)fn);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
esp_err_t esp_set_watchpoint(int no, void *adr, int size, int flags)
|
||||
{
|
||||
int x;
|
||||
if (no < 0 || no > 1) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (flags & (~0xC0000000)) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
int dbreakc = 0x3F;
|
||||
//We support watching 2^n byte values, from 1 to 64. Calculate the mask for that.
|
||||
for (x = 0; x < 7; x++) {
|
||||
if (size == (1 << x)) {
|
||||
break;
|
||||
}
|
||||
dbreakc <<= 1;
|
||||
}
|
||||
if (x == 7) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
//Mask mask and add in flags.
|
||||
dbreakc = (dbreakc & 0x3f) | flags;
|
||||
|
||||
if (no == 0) {
|
||||
asm volatile(
|
||||
"wsr.dbreaka0 %0\n" \
|
||||
"wsr.dbreakc0 %1\n" \
|
||||
::"r"(adr), "r"(dbreakc));
|
||||
} else {
|
||||
asm volatile(
|
||||
"wsr.dbreaka1 %0\n" \
|
||||
"wsr.dbreakc1 %1\n" \
|
||||
::"r"(adr), "r"(dbreakc));
|
||||
}
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
void esp_clear_watchpoint(int no)
|
||||
{
|
||||
//Setting a dbreakc register to 0 makes it trigger on neither load nor store, effectively disabling it.
|
||||
int dbreakc = 0;
|
||||
if (no == 0) {
|
||||
asm volatile(
|
||||
"wsr.dbreakc0 %0\n" \
|
||||
::"r"(dbreakc));
|
||||
} else {
|
||||
asm volatile(
|
||||
"wsr.dbreakc1 %0\n" \
|
||||
::"r"(dbreakc));
|
||||
}
|
||||
}
|
||||
|
||||
void _esp_error_check_failed(esp_err_t rc, const char *file, int line, const char *function, const char *expression)
|
||||
{
|
||||
ets_printf("ESP_ERROR_CHECK failed: esp_err_t 0x%x", rc);
|
||||
#ifdef CONFIG_ESP_ERR_TO_NAME_LOOKUP
|
||||
ets_printf(" (%s)", esp_err_to_name(rc));
|
||||
#endif //CONFIG_ESP_ERR_TO_NAME_LOOKUP
|
||||
ets_printf(" at 0x%08x\n", (intptr_t)__builtin_return_address(0) - 3);
|
||||
if (spi_flash_cache_enabled()) { // strings may be in flash cache
|
||||
ets_printf("file: \"%s\" line %d\nfunc: %s\nexpression: %s\n", file, line, function, expression);
|
||||
}
|
||||
invoke_abort();
|
||||
}
|
573
components/esp32s2beta/pm_esp32s2beta.c
Normal file
573
components/esp32s2beta/pm_esp32s2beta.c
Normal file
@ -0,0 +1,573 @@
|
||||
// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include <sys/param.h>
|
||||
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_pm.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp32s2beta/clk.h"
|
||||
#include "esp_private/crosscore_int.h"
|
||||
|
||||
#include "soc/rtc.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/xtensa_timer.h"
|
||||
#include "xtensa/core-macros.h"
|
||||
|
||||
#include "esp_private/pm_impl.h"
|
||||
#include "esp_private/pm_trace.h"
|
||||
#include "esp_private/esp_timer_impl.h"
|
||||
#include "esp32/pm.h"
|
||||
|
||||
/* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
|
||||
* for the purpose of detecting a deadlock.
|
||||
*/
|
||||
#define CCOMPARE_UPDATE_TIMEOUT 1000000
|
||||
|
||||
/* When changing CCOMPARE, don't allow changes if the difference is less
|
||||
* than this. This is to prevent setting CCOMPARE below CCOUNT.
|
||||
*/
|
||||
#define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
|
||||
|
||||
/* When light sleep is used, wake this number of microseconds earlier than
|
||||
* the next tick.
|
||||
*/
|
||||
#define LIGHT_SLEEP_EARLY_WAKEUP_US 100
|
||||
|
||||
#ifdef CONFIG_PM_PROFILING
|
||||
#define WITH_PROFILING
|
||||
#endif
|
||||
|
||||
|
||||
static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
|
||||
/* The following state variables are protected using s_switch_lock: */
|
||||
/* Current sleep mode; When switching, contains old mode until switch is complete */
|
||||
static pm_mode_t s_mode = PM_MODE_CPU_MAX;
|
||||
/* True when switch is in progress */
|
||||
static volatile bool s_is_switching;
|
||||
/* When switch is in progress, this is the mode we are switching into */
|
||||
static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
|
||||
/* Number of times each mode was locked */
|
||||
static size_t s_mode_lock_counts[PM_MODE_COUNT];
|
||||
/* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
|
||||
static uint32_t s_mode_mask;
|
||||
|
||||
/* Divider and multiplier used to adjust (ccompare - ccount) duration.
|
||||
* Only set to non-zero values when switch is in progress.
|
||||
*/
|
||||
static uint32_t s_ccount_div;
|
||||
static uint32_t s_ccount_mul;
|
||||
|
||||
/* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
|
||||
* Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
|
||||
*/
|
||||
static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
|
||||
|
||||
/* When no RTOS tasks are active, these locks are released to allow going into
|
||||
* a lower power mode. Used by ISR hook and idle hook.
|
||||
*/
|
||||
static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
|
||||
|
||||
/* A flag indicating that Idle hook has run on a given CPU;
|
||||
* Next interrupt on the same CPU will take s_rtos_lock_handle.
|
||||
*/
|
||||
static bool s_core_idle[portNUM_PROCESSORS];
|
||||
|
||||
/* g_ticks_us defined in ROM for PRO CPU */
|
||||
extern uint32_t g_ticks_per_us_pro;
|
||||
|
||||
/* Lookup table of CPU frequencies to be used in each mode.
|
||||
* Initialized by esp_pm_impl_init and modified by esp_pm_configure.
|
||||
*/
|
||||
rtc_cpu_freq_t s_cpu_freq_by_mode[PM_MODE_COUNT];
|
||||
|
||||
/* Lookup table of CPU ticks per microsecond for each RTC_CPU_FREQ_ value.
|
||||
* Essentially the same as returned by rtc_clk_cpu_freq_value(), but without
|
||||
* the function call. Not const because XTAL frequency is only known at run time.
|
||||
*/
|
||||
static uint32_t s_cpu_freq_to_ticks[] = {
|
||||
[RTC_CPU_FREQ_XTAL] = 0, /* This is set by esp_pm_impl_init */
|
||||
[RTC_CPU_FREQ_80M] = 80,
|
||||
[RTC_CPU_FREQ_160M] = 160,
|
||||
[RTC_CPU_FREQ_240M] = 240,
|
||||
[RTC_CPU_FREQ_2M] = 2
|
||||
};
|
||||
|
||||
/* Lookup table of names for each RTC_CPU_FREQ_ value. Used for logging only. */
|
||||
static const char* s_freq_names[] __attribute__((unused)) = {
|
||||
[RTC_CPU_FREQ_XTAL] = "XTAL",
|
||||
[RTC_CPU_FREQ_80M] = "80",
|
||||
[RTC_CPU_FREQ_160M] = "160",
|
||||
[RTC_CPU_FREQ_240M] = "240",
|
||||
[RTC_CPU_FREQ_2M] = "2"
|
||||
};
|
||||
|
||||
/* Whether automatic light sleep is enabled */
|
||||
static bool s_light_sleep_en = false;
|
||||
|
||||
/* When configuration is changed, current frequency may not match the
|
||||
* newly configured frequency for the current mode. This is an indicator
|
||||
* to the mode switch code to get the actual current frequency instead of
|
||||
* relying on the current mode.
|
||||
*/
|
||||
static bool s_config_changed = false;
|
||||
|
||||
#ifdef WITH_PROFILING
|
||||
/* Time, in microseconds, spent so far in each mode */
|
||||
static pm_time_t s_time_in_mode[PM_MODE_COUNT];
|
||||
/* Timestamp, in microseconds, when the mode switch last happened */
|
||||
static pm_time_t s_last_mode_change_time;
|
||||
/* User-readable mode names, used by esp_pm_impl_dump_stats */
|
||||
static const char* s_mode_names[] = {
|
||||
"SLEEP",
|
||||
"APB_MIN",
|
||||
"APB_MAX",
|
||||
"CPU_MAX"
|
||||
};
|
||||
#endif // WITH_PROFILING
|
||||
|
||||
|
||||
static const char* TAG = "pm_esp32";
|
||||
|
||||
static void update_ccompare();
|
||||
static void do_switch(pm_mode_t new_mode);
|
||||
static void leave_idle();
|
||||
static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
|
||||
|
||||
|
||||
pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
|
||||
{
|
||||
(void) arg;
|
||||
if (type == ESP_PM_CPU_FREQ_MAX) {
|
||||
return PM_MODE_CPU_MAX;
|
||||
} else if (type == ESP_PM_APB_FREQ_MAX) {
|
||||
return PM_MODE_APB_MAX;
|
||||
} else if (type == ESP_PM_NO_LIGHT_SLEEP) {
|
||||
return PM_MODE_APB_MIN;
|
||||
} else {
|
||||
// unsupported mode
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
/* rtc_cpu_freq_t enum is not ordered by frequency, so convert to MHz,
|
||||
* figure out the maximum value, then convert back to rtc_cpu_freq_t.
|
||||
*/
|
||||
static rtc_cpu_freq_t max_freq_of(rtc_cpu_freq_t f1, rtc_cpu_freq_t f2)
|
||||
{
|
||||
int f1_hz = rtc_clk_cpu_freq_value(f1);
|
||||
int f2_hz = rtc_clk_cpu_freq_value(f2);
|
||||
int f_max_hz = MAX(f1_hz, f2_hz);
|
||||
rtc_cpu_freq_t result = RTC_CPU_FREQ_XTAL;
|
||||
if (!rtc_clk_cpu_freq_from_mhz(f_max_hz/1000000, &result)) {
|
||||
assert(false && "unsupported frequency");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
esp_err_t esp_pm_configure(const void* vconfig)
|
||||
{
|
||||
#ifndef CONFIG_PM_ENABLE
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
#endif
|
||||
|
||||
const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
|
||||
#ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
|
||||
if (config->light_sleep_enable) {
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (config->min_cpu_freq == RTC_CPU_FREQ_2M) {
|
||||
/* Minimal APB frequency to achieve 1MHz REF_TICK frequency is 5 MHz */
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
}
|
||||
|
||||
rtc_cpu_freq_t min_freq = config->min_cpu_freq;
|
||||
rtc_cpu_freq_t max_freq = config->max_cpu_freq;
|
||||
int min_freq_mhz = rtc_clk_cpu_freq_value(min_freq);
|
||||
int max_freq_mhz = rtc_clk_cpu_freq_value(max_freq);
|
||||
if (min_freq_mhz > max_freq_mhz) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
rtc_cpu_freq_t apb_max_freq = max_freq; /* CPU frequency in APB_MAX mode */
|
||||
if (max_freq == RTC_CPU_FREQ_240M) {
|
||||
/* We can't switch between 240 and 80/160 without disabling PLL,
|
||||
* so use 240MHz CPU frequency when 80MHz APB frequency is requested.
|
||||
*/
|
||||
apb_max_freq = RTC_CPU_FREQ_240M;
|
||||
} else if (max_freq == RTC_CPU_FREQ_160M || max_freq == RTC_CPU_FREQ_80M) {
|
||||
/* Otherwise, can use 80MHz
|
||||
* CPU frequency when 80MHz APB frequency is requested.
|
||||
*/
|
||||
apb_max_freq = RTC_CPU_FREQ_80M;
|
||||
}
|
||||
|
||||
apb_max_freq = max_freq_of(apb_max_freq, min_freq);
|
||||
|
||||
ESP_LOGI(TAG, "Frequency switching config: "
|
||||
"CPU_MAX: %s, APB_MAX: %s, APB_MIN: %s, Light sleep: %s",
|
||||
s_freq_names[max_freq],
|
||||
s_freq_names[apb_max_freq],
|
||||
s_freq_names[min_freq],
|
||||
config->light_sleep_enable ? "ENABLED" : "DISABLED");
|
||||
|
||||
portENTER_CRITICAL(&s_switch_lock);
|
||||
s_cpu_freq_by_mode[PM_MODE_CPU_MAX] = max_freq;
|
||||
s_cpu_freq_by_mode[PM_MODE_APB_MAX] = apb_max_freq;
|
||||
s_cpu_freq_by_mode[PM_MODE_APB_MIN] = min_freq;
|
||||
s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = min_freq;
|
||||
s_light_sleep_en = config->light_sleep_enable;
|
||||
s_config_changed = true;
|
||||
portEXIT_CRITICAL(&s_switch_lock);
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static pm_mode_t IRAM_ATTR get_lowest_allowed_mode()
|
||||
{
|
||||
/* TODO: optimize using ffs/clz */
|
||||
if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
|
||||
return PM_MODE_CPU_MAX;
|
||||
} else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
|
||||
return PM_MODE_APB_MAX;
|
||||
} else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
|
||||
return PM_MODE_APB_MIN;
|
||||
} else {
|
||||
return PM_MODE_LIGHT_SLEEP;
|
||||
}
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
|
||||
pm_mode_switch_t lock_or_unlock, pm_time_t now)
|
||||
{
|
||||
bool need_switch = false;
|
||||
uint32_t mode_mask = BIT(mode);
|
||||
portENTER_CRITICAL(&s_switch_lock);
|
||||
uint32_t count;
|
||||
if (lock_or_unlock == MODE_LOCK) {
|
||||
count = ++s_mode_lock_counts[mode];
|
||||
} else {
|
||||
count = s_mode_lock_counts[mode]--;
|
||||
}
|
||||
if (count == 1) {
|
||||
if (lock_or_unlock == MODE_LOCK) {
|
||||
s_mode_mask |= mode_mask;
|
||||
} else {
|
||||
s_mode_mask &= ~mode_mask;
|
||||
}
|
||||
need_switch = true;
|
||||
}
|
||||
|
||||
pm_mode_t new_mode = s_mode;
|
||||
if (need_switch) {
|
||||
new_mode = get_lowest_allowed_mode();
|
||||
#ifdef WITH_PROFILING
|
||||
if (s_last_mode_change_time != 0) {
|
||||
pm_time_t diff = now - s_last_mode_change_time;
|
||||
s_time_in_mode[s_mode] += diff;
|
||||
}
|
||||
s_last_mode_change_time = now;
|
||||
#endif // WITH_PROFILING
|
||||
}
|
||||
portEXIT_CRITICAL(&s_switch_lock);
|
||||
if (need_switch && new_mode != s_mode) {
|
||||
do_switch(new_mode);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
|
||||
* values on both CPUs.
|
||||
* @param old_ticks_per_us old CPU frequency
|
||||
* @param ticks_per_us new CPU frequency
|
||||
*/
|
||||
static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
|
||||
{
|
||||
uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
|
||||
uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
|
||||
/* Update APB frequency value used by the timer */
|
||||
if (old_apb_ticks_per_us != apb_ticks_per_us) {
|
||||
esp_timer_impl_update_apb_freq(apb_ticks_per_us);
|
||||
}
|
||||
|
||||
/* Calculate new tick divisor */
|
||||
_xt_tick_divisor = ticks_per_us * 1000000 / XT_TICK_PER_SEC;
|
||||
|
||||
int core_id = xPortGetCoreID();
|
||||
if (s_rtos_lock_handle[core_id] != NULL) {
|
||||
ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
|
||||
/* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
|
||||
* to calculate new CCOMPARE value.
|
||||
*/
|
||||
s_ccount_div = old_ticks_per_us;
|
||||
s_ccount_mul = ticks_per_us;
|
||||
|
||||
/* Update CCOMPARE value on this CPU */
|
||||
update_ccompare();
|
||||
|
||||
#if portNUM_PROCESSORS == 2
|
||||
/* Send interrupt to the other CPU to update CCOMPARE value */
|
||||
int other_core_id = (core_id == 0) ? 1 : 0;
|
||||
|
||||
s_need_update_ccompare[other_core_id] = true;
|
||||
esp_crosscore_int_send_freq_switch(other_core_id);
|
||||
|
||||
int timeout = 0;
|
||||
while (s_need_update_ccompare[other_core_id]) {
|
||||
if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
|
||||
assert(false && "failed to update CCOMPARE, possible deadlock");
|
||||
}
|
||||
}
|
||||
#endif // portNUM_PROCESSORS == 2
|
||||
|
||||
s_ccount_mul = 0;
|
||||
s_ccount_div = 0;
|
||||
ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Perform the switch to new power mode.
|
||||
* Currently only changes the CPU frequency and adjusts clock dividers.
|
||||
* No light sleep yet.
|
||||
* @param new_mode mode to switch to
|
||||
*/
|
||||
static void IRAM_ATTR do_switch(pm_mode_t new_mode)
|
||||
{
|
||||
const int core_id = xPortGetCoreID();
|
||||
|
||||
do {
|
||||
portENTER_CRITICAL_ISR(&s_switch_lock);
|
||||
if (!s_is_switching) {
|
||||
break;
|
||||
}
|
||||
if (s_new_mode <= new_mode) {
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
return;
|
||||
}
|
||||
if (s_need_update_ccompare[core_id]) {
|
||||
s_need_update_ccompare[core_id] = false;
|
||||
}
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
} while (true);
|
||||
s_new_mode = new_mode;
|
||||
s_is_switching = true;
|
||||
bool config_changed = s_config_changed;
|
||||
s_config_changed = false;
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
|
||||
rtc_cpu_freq_t new_freq = s_cpu_freq_by_mode[new_mode];
|
||||
rtc_cpu_freq_t old_freq;
|
||||
if (!config_changed) {
|
||||
old_freq = s_cpu_freq_by_mode[s_mode];
|
||||
} else {
|
||||
old_freq = rtc_clk_cpu_freq_get();
|
||||
}
|
||||
|
||||
if (new_freq != old_freq) {
|
||||
uint32_t old_ticks_per_us = g_ticks_per_us_pro;
|
||||
uint32_t new_ticks_per_us = s_cpu_freq_to_ticks[new_freq];
|
||||
|
||||
bool switch_down = new_ticks_per_us < old_ticks_per_us;
|
||||
|
||||
ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
|
||||
if (switch_down) {
|
||||
on_freq_update(old_ticks_per_us, new_ticks_per_us);
|
||||
}
|
||||
rtc_clk_cpu_freq_set_fast(new_freq);
|
||||
if (!switch_down) {
|
||||
on_freq_update(old_ticks_per_us, new_ticks_per_us);
|
||||
}
|
||||
ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
|
||||
}
|
||||
|
||||
portENTER_CRITICAL_ISR(&s_switch_lock);
|
||||
s_mode = new_mode;
|
||||
s_is_switching = false;
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
|
||||
*
|
||||
* Adjusts CCOMPARE value so that the interrupt happens at the same time as it
|
||||
* would happen without the frequency change.
|
||||
* Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
|
||||
*/
|
||||
static void IRAM_ATTR update_ccompare()
|
||||
{
|
||||
uint32_t ccount = XTHAL_GET_CCOUNT();
|
||||
uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
|
||||
if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
|
||||
uint32_t diff = ccompare - ccount;
|
||||
uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
|
||||
if (diff_scaled < _xt_tick_divisor) {
|
||||
uint32_t new_ccompare = ccount + diff_scaled;
|
||||
XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void IRAM_ATTR leave_idle()
|
||||
{
|
||||
int core_id = xPortGetCoreID();
|
||||
if (s_core_idle[core_id]) {
|
||||
// TODO: possible optimization: raise frequency here first
|
||||
esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
|
||||
s_core_idle[core_id] = false;
|
||||
}
|
||||
}
|
||||
|
||||
void esp_pm_impl_idle_hook()
|
||||
{
|
||||
int core_id = xPortGetCoreID();
|
||||
uint32_t state = portENTER_CRITICAL_NESTED();
|
||||
if (!s_core_idle[core_id]) {
|
||||
esp_pm_lock_release(s_rtos_lock_handle[core_id]);
|
||||
s_core_idle[core_id] = true;
|
||||
}
|
||||
portEXIT_CRITICAL_NESTED(state);
|
||||
ESP_PM_TRACE_ENTER(IDLE, core_id);
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_pm_impl_isr_hook()
|
||||
{
|
||||
int core_id = xPortGetCoreID();
|
||||
ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
|
||||
#if portNUM_PROCESSORS == 2
|
||||
if (s_need_update_ccompare[core_id]) {
|
||||
update_ccompare();
|
||||
s_need_update_ccompare[core_id] = false;
|
||||
} else {
|
||||
leave_idle();
|
||||
}
|
||||
#else
|
||||
leave_idle();
|
||||
#endif // portNUM_PROCESSORS == 2
|
||||
ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
|
||||
}
|
||||
|
||||
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
|
||||
|
||||
bool IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
|
||||
{
|
||||
bool result = false;
|
||||
portENTER_CRITICAL(&s_switch_lock);
|
||||
if (s_mode == PM_MODE_LIGHT_SLEEP && !s_is_switching) {
|
||||
/* Calculate how much we can sleep */
|
||||
int64_t next_esp_timer_alarm = esp_timer_get_next_alarm();
|
||||
int64_t now = esp_timer_get_time();
|
||||
int64_t time_until_next_alarm = next_esp_timer_alarm - now;
|
||||
int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
|
||||
int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
|
||||
if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
|
||||
esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
|
||||
#ifdef CONFIG_PM_TRACE
|
||||
/* to force tracing GPIOs to keep state */
|
||||
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
|
||||
#endif
|
||||
/* Enter sleep */
|
||||
int core_id = xPortGetCoreID();
|
||||
ESP_PM_TRACE_ENTER(SLEEP, core_id);
|
||||
int64_t sleep_start = esp_timer_get_time();
|
||||
esp_light_sleep_start();
|
||||
int64_t slept_us = esp_timer_get_time() - sleep_start;
|
||||
ESP_PM_TRACE_EXIT(SLEEP, core_id);
|
||||
|
||||
uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
|
||||
if (slept_ticks > 0) {
|
||||
/* Adjust RTOS tick count based on the amount of time spent in sleep */
|
||||
vTaskStepTick(slept_ticks);
|
||||
|
||||
/* Trigger tick interrupt, since sleep time was longer
|
||||
* than portTICK_PERIOD_MS. Note that setting INTSET does not
|
||||
* work for timer interrupt, and changing CCOMPARE would clear
|
||||
* the interrupt flag.
|
||||
*/
|
||||
XTHAL_SET_CCOUNT(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
|
||||
while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
|
||||
;
|
||||
}
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
}
|
||||
portEXIT_CRITICAL(&s_switch_lock);
|
||||
return result;
|
||||
}
|
||||
#endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
|
||||
|
||||
#ifdef WITH_PROFILING
|
||||
void esp_pm_impl_dump_stats(FILE* out)
|
||||
{
|
||||
pm_time_t time_in_mode[PM_MODE_COUNT];
|
||||
|
||||
portENTER_CRITICAL_ISR(&s_switch_lock);
|
||||
memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
|
||||
pm_time_t last_mode_change_time = s_last_mode_change_time;
|
||||
pm_mode_t cur_mode = s_mode;
|
||||
pm_time_t now = pm_get_time();
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
|
||||
time_in_mode[cur_mode] += now - last_mode_change_time;
|
||||
|
||||
fprintf(out, "Mode stats:\n");
|
||||
for (int i = 0; i < PM_MODE_COUNT; ++i) {
|
||||
if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
|
||||
/* don't display light sleep mode if it's not enabled */
|
||||
continue;
|
||||
}
|
||||
fprintf(out, "%8s %6s %12lld %2d%%\n",
|
||||
s_mode_names[i],
|
||||
s_freq_names[s_cpu_freq_by_mode[i]],
|
||||
time_in_mode[i],
|
||||
(int) (time_in_mode[i] * 100 / now));
|
||||
}
|
||||
}
|
||||
#endif // WITH_PROFILING
|
||||
|
||||
void esp_pm_impl_init()
|
||||
{
|
||||
s_cpu_freq_to_ticks[RTC_CPU_FREQ_XTAL] = rtc_clk_xtal_freq_get();
|
||||
#ifdef CONFIG_PM_TRACE
|
||||
esp_pm_trace_init();
|
||||
#endif
|
||||
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
|
||||
&s_rtos_lock_handle[0]));
|
||||
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
|
||||
#if portNUM_PROCESSORS == 2
|
||||
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
|
||||
&s_rtos_lock_handle[1]));
|
||||
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
|
||||
#endif // portNUM_PROCESSORS == 2
|
||||
|
||||
/* Configure all modes to use the default CPU frequency.
|
||||
* This will be modified later by a call to esp_pm_configure.
|
||||
*/
|
||||
rtc_cpu_freq_t default_freq;
|
||||
if (!rtc_clk_cpu_freq_from_mhz(CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ, &default_freq)) {
|
||||
assert(false && "unsupported frequency");
|
||||
}
|
||||
for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
|
||||
s_cpu_freq_by_mode[i] = default_freq;
|
||||
}
|
||||
}
|
52
components/esp32s2beta/pm_trace.c
Normal file
52
components/esp32s2beta/pm_trace.c
Normal file
@ -0,0 +1,52 @@
|
||||
// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#include "esp_private/pm_trace.h"
|
||||
#include "driver/gpio.h"
|
||||
#include "soc/gpio_reg.h"
|
||||
|
||||
/* GPIOs to use for tracing of esp_pm events.
|
||||
* Two entries in the array for each type, one for each CPU.
|
||||
* Feel free to change when debugging.
|
||||
*/
|
||||
static const int DRAM_ATTR s_trace_io[] = {
|
||||
BIT(4), BIT(5), // ESP_PM_TRACE_IDLE
|
||||
BIT(16), BIT(17), // ESP_PM_TRACE_TICK
|
||||
BIT(18), BIT(18), // ESP_PM_TRACE_FREQ_SWITCH
|
||||
BIT(19), BIT(19), // ESP_PM_TRACE_CCOMPARE_UPDATE
|
||||
BIT(25), BIT(26), // ESP_PM_TRACE_ISR_HOOK
|
||||
BIT(27), BIT(27), // ESP_PM_TRACE_SLEEP
|
||||
};
|
||||
|
||||
void esp_pm_trace_init()
|
||||
{
|
||||
for (size_t i = 0; i < sizeof(s_trace_io)/sizeof(s_trace_io[0]); ++i) {
|
||||
int io = __builtin_ffs(s_trace_io[i]);
|
||||
if (io == 0) {
|
||||
continue;
|
||||
}
|
||||
gpio_set_direction(io - 1, GPIO_MODE_OUTPUT);
|
||||
}
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_pm_trace_enter(esp_pm_trace_event_t event, int core_id)
|
||||
{
|
||||
REG_WRITE(GPIO_OUT_W1TS_REG, s_trace_io[2 * event + core_id]);
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_pm_trace_exit(esp_pm_trace_event_t event, int core_id)
|
||||
{
|
||||
REG_WRITE(GPIO_OUT_W1TC_REG, s_trace_io[2 * event + core_id]);
|
||||
}
|
650
components/esp32s2beta/sleep_modes.c
Normal file
650
components/esp32s2beta/sleep_modes.c
Normal file
@ -0,0 +1,650 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <sys/lock.h>
|
||||
#include <sys/param.h>
|
||||
#include "esp_attr.h"
|
||||
#include "esp_sleep.h"
|
||||
#include "esp_private/esp_timer_impl.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp32s2beta/clk.h"
|
||||
#include "esp_newlib.h"
|
||||
#include "esp_spi_flash.h"
|
||||
#include "esp32s2beta/rom/cache.h"
|
||||
#include "esp32s2beta/rom/rtc.h"
|
||||
#include "esp32s2beta/rom/uart.h"
|
||||
#include "soc/cpu.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/apb_ctrl_reg.h"
|
||||
#include "soc/rtc_io_reg.h"
|
||||
#include "soc/spi_mem_reg.h"
|
||||
#include "soc/sens_reg.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "driver/rtc_io.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "sdkconfig.h"
|
||||
|
||||
// If light sleep time is less than that, don't power down flash
|
||||
#define FLASH_PD_MIN_SLEEP_TIME_US 2000
|
||||
|
||||
// Time from VDD_SDIO power up to first flash read in ROM code
|
||||
#define VDD_SDIO_POWERUP_TO_FLASH_READ_US 700
|
||||
|
||||
// Extra time it takes to enter and exit light sleep and deep sleep
|
||||
// For deep sleep, this is until the wake stub runs (not the app).
|
||||
#ifdef CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
|
||||
#define LIGHT_SLEEP_TIME_OVERHEAD_US (650 + 30 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
|
||||
#define DEEP_SLEEP_TIME_OVERHEAD_US (650 + 100 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
|
||||
#else
|
||||
#define LIGHT_SLEEP_TIME_OVERHEAD_US (250 + 30 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
|
||||
#define DEEP_SLEEP_TIME_OVERHEAD_US (250 + 100 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
|
||||
#endif // CONFIG_ESP32_RTC_CLOCK_SOURCE
|
||||
|
||||
// Minimal amount of time we can sleep for
|
||||
#define LIGHT_SLEEP_MIN_TIME_US 200
|
||||
|
||||
#define CHECK_SOURCE(source, value, mask) ((s_config.wakeup_triggers & mask) && \
|
||||
(source == value))
|
||||
|
||||
/**
|
||||
* Internal structure which holds all requested deep sleep parameters
|
||||
*/
|
||||
typedef struct {
|
||||
esp_sleep_pd_option_t pd_options[ESP_PD_DOMAIN_MAX];
|
||||
uint64_t sleep_duration;
|
||||
uint32_t wakeup_triggers : 11;
|
||||
uint32_t ext1_trigger_mode : 1;
|
||||
uint32_t ext1_rtc_gpio_mask : 18;
|
||||
uint32_t ext0_trigger_level : 1;
|
||||
uint32_t ext0_rtc_gpio_num : 5;
|
||||
uint32_t sleep_time_adjustment;
|
||||
uint64_t rtc_ticks_at_sleep_start;
|
||||
} sleep_config_t;
|
||||
|
||||
static sleep_config_t s_config = {
|
||||
.pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO },
|
||||
.wakeup_triggers = 0
|
||||
};
|
||||
|
||||
/* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc()
|
||||
is not thread-safe. */
|
||||
static _lock_t lock_rtc_memory_crc;
|
||||
|
||||
static const char* TAG = "sleep";
|
||||
|
||||
static uint32_t get_power_down_flags();
|
||||
static void ext0_wakeup_prepare();
|
||||
static void ext1_wakeup_prepare();
|
||||
static void timer_wakeup_prepare();
|
||||
|
||||
/* Wake from deep sleep stub
|
||||
See esp_deepsleep.h esp_wake_deep_sleep() comments for details.
|
||||
*/
|
||||
esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void)
|
||||
{
|
||||
_lock_acquire(&lock_rtc_memory_crc);
|
||||
uint32_t stored_crc = REG_READ(RTC_MEMORY_CRC_REG);
|
||||
set_rtc_memory_crc();
|
||||
uint32_t calc_crc = REG_READ(RTC_MEMORY_CRC_REG);
|
||||
REG_WRITE(RTC_MEMORY_CRC_REG, stored_crc);
|
||||
_lock_release(&lock_rtc_memory_crc);
|
||||
|
||||
if(stored_crc == calc_crc) {
|
||||
return (esp_deep_sleep_wake_stub_fn_t)REG_READ(RTC_ENTRY_ADDR_REG);
|
||||
} else {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub)
|
||||
{
|
||||
_lock_acquire(&lock_rtc_memory_crc);
|
||||
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub);
|
||||
set_rtc_memory_crc();
|
||||
_lock_release(&lock_rtc_memory_crc);
|
||||
}
|
||||
|
||||
void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void) {
|
||||
/* Clear MMU for CPU 0 */
|
||||
_DPORT_REG_SET_BIT(DPORT_PRO_CACHE_IA_INT_EN_REG, DPORT_PRO_CACHE_INT_CLR);
|
||||
_DPORT_REG_SET_BIT(DPORT_PRO_CACHE_IA_INT_EN_REG, DPORT_PRO_CACHE_DBG_EN);
|
||||
|
||||
#if CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY > 0
|
||||
// ROM code has not started yet, so we need to set delay factor
|
||||
// used by ets_delay_us first.
|
||||
ets_update_cpu_frequency(ets_get_xtal_freq() / 1000000);
|
||||
// This delay is configured in menuconfig, it can be used to give
|
||||
// the flash chip some time to become ready.
|
||||
ets_delay_us(CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY);
|
||||
#endif
|
||||
}
|
||||
|
||||
void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void);
|
||||
|
||||
void esp_deep_sleep(uint64_t time_in_us)
|
||||
{
|
||||
esp_sleep_enable_timer_wakeup(time_in_us);
|
||||
esp_deep_sleep_start();
|
||||
}
|
||||
|
||||
static void IRAM_ATTR suspend_uarts()
|
||||
{
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
REG_SET_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XOFF);
|
||||
uart_tx_wait_idle(i);
|
||||
}
|
||||
}
|
||||
|
||||
static void IRAM_ATTR resume_uarts()
|
||||
{
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
REG_CLR_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XOFF);
|
||||
REG_SET_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XON);
|
||||
REG_CLR_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XON);
|
||||
}
|
||||
}
|
||||
|
||||
static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags)
|
||||
{
|
||||
// Stop UART output so that output is not lost due to APB frequency change
|
||||
suspend_uarts();
|
||||
|
||||
// Save current frequency and switch to XTAL
|
||||
rtc_cpu_freq_t cpu_freq = rtc_clk_cpu_freq_get();
|
||||
rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL);
|
||||
|
||||
// Configure pins for external wakeup
|
||||
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
|
||||
ext0_wakeup_prepare();
|
||||
}
|
||||
if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) {
|
||||
ext1_wakeup_prepare();
|
||||
}
|
||||
// Enable ULP wakeup
|
||||
if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) {
|
||||
//TODO, esp32s2 does not have this bit
|
||||
//SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_WAKEUP_FORCE_EN);
|
||||
}
|
||||
|
||||
// Enter sleep
|
||||
rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags);
|
||||
rtc_sleep_init(config);
|
||||
|
||||
// Configure timer wakeup
|
||||
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) &&
|
||||
s_config.sleep_duration > 0) {
|
||||
timer_wakeup_prepare();
|
||||
}
|
||||
uint32_t result = rtc_sleep_start(s_config.wakeup_triggers, 0,0);
|
||||
|
||||
// Restore CPU frequency
|
||||
rtc_clk_cpu_freq_set(cpu_freq);
|
||||
|
||||
// re-enable UART output
|
||||
resume_uarts();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_deep_sleep_start()
|
||||
{
|
||||
// record current RTC time
|
||||
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
|
||||
esp_sync_counters_rtc_and_frc();
|
||||
// Configure wake stub
|
||||
if (esp_get_deep_sleep_wake_stub() == NULL) {
|
||||
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
|
||||
}
|
||||
|
||||
// Decide which power domains can be powered down
|
||||
uint32_t pd_flags = get_power_down_flags();
|
||||
|
||||
// Correct the sleep time
|
||||
s_config.sleep_time_adjustment = DEEP_SLEEP_TIME_OVERHEAD_US;
|
||||
|
||||
// Enter sleep
|
||||
esp_sleep_start(RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO | pd_flags);
|
||||
|
||||
// Because RTC is in a slower clock domain than the CPU, it
|
||||
// can take several CPU cycles for the sleep mode to start.
|
||||
while (1) {
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
static void rtc_wdt_enable(int time_ms)
|
||||
{
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTFEED_REG, 1);
|
||||
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_SYS_RESET_LENGTH, 7);
|
||||
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_CPU_RESET_LENGTH, 7);
|
||||
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, RTC_WDT_STG_SEL_RESET_RTC);
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTCONFIG1_REG, rtc_clk_slow_freq_get_hz() * time_ms / 1000);
|
||||
SET_PERI_REG_MASK(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN | RTC_CNTL_WDT_PAUSE_IN_SLP);
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0);
|
||||
}
|
||||
|
||||
static void rtc_wdt_disable()
|
||||
{
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTFEED_REG, 1);
|
||||
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, RTC_WDT_STG_SEL_OFF);
|
||||
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN);
|
||||
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper function which handles entry to and exit from light sleep
|
||||
* Placed into IRAM as flash may need some time to be powered on.
|
||||
*/
|
||||
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
|
||||
uint32_t flash_enable_time_us,
|
||||
rtc_vddsdio_config_t vddsdio_config) IRAM_ATTR __attribute__((noinline));
|
||||
|
||||
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
|
||||
uint32_t flash_enable_time_us,
|
||||
rtc_vddsdio_config_t vddsdio_config)
|
||||
{
|
||||
// Enter sleep
|
||||
esp_err_t err = esp_sleep_start(pd_flags);
|
||||
|
||||
// If VDDSDIO regulator was controlled by RTC registers before sleep,
|
||||
// restore the configuration.
|
||||
if (vddsdio_config.force) {
|
||||
rtc_vddsdio_set_config(vddsdio_config);
|
||||
}
|
||||
|
||||
// If SPI flash was powered down, wait for it to become ready
|
||||
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
|
||||
// Wait for the flash chip to start up
|
||||
ets_delay_us(flash_enable_time_us);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
esp_err_t esp_light_sleep_start()
|
||||
{
|
||||
static portMUX_TYPE light_sleep_lock = portMUX_INITIALIZER_UNLOCKED;
|
||||
portENTER_CRITICAL(&light_sleep_lock);
|
||||
/* We will be calling esp_timer_impl_advance inside DPORT access critical
|
||||
* section. Make sure the code on the other CPU is not holding esp_timer
|
||||
* lock, otherwise there will be deadlock.
|
||||
*/
|
||||
esp_timer_impl_lock();
|
||||
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
|
||||
uint64_t frc_time_at_start = esp_timer_get_time();
|
||||
DPORT_STALL_OTHER_CPU_START();
|
||||
|
||||
// Decide which power domains can be powered down
|
||||
uint32_t pd_flags = get_power_down_flags();
|
||||
|
||||
// Amount of time to subtract from actual sleep time.
|
||||
// This is spent on entering and leaving light sleep.
|
||||
s_config.sleep_time_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US;
|
||||
|
||||
// Decide if VDD_SDIO needs to be powered down;
|
||||
// If it needs to be powered down, adjust sleep time.
|
||||
const uint32_t flash_enable_time_us = VDD_SDIO_POWERUP_TO_FLASH_READ_US
|
||||
+ CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY;
|
||||
|
||||
#ifndef CONFIG_SPIRAM_SUPPORT
|
||||
const uint32_t vddsdio_pd_sleep_duration = MAX(FLASH_PD_MIN_SLEEP_TIME_US,
|
||||
flash_enable_time_us + LIGHT_SLEEP_TIME_OVERHEAD_US + LIGHT_SLEEP_MIN_TIME_US);
|
||||
|
||||
if (s_config.sleep_duration > vddsdio_pd_sleep_duration) {
|
||||
pd_flags |= RTC_SLEEP_PD_VDDSDIO;
|
||||
s_config.sleep_time_adjustment += flash_enable_time_us;
|
||||
}
|
||||
#endif //CONFIG_SPIRAM_SUPPORT
|
||||
|
||||
rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config();
|
||||
|
||||
// Safety net: enable WDT in case exit from light sleep fails
|
||||
rtc_wdt_enable(1000);
|
||||
|
||||
// Enter sleep, then wait for flash to be ready on wakeup
|
||||
esp_err_t err = esp_light_sleep_inner(pd_flags,
|
||||
flash_enable_time_us, vddsdio_config);
|
||||
|
||||
// FRC1 has been clock gated for the duration of the sleep, correct for that.
|
||||
uint64_t rtc_ticks_at_end = rtc_time_get();
|
||||
uint64_t frc_time_at_end = esp_timer_get_time();
|
||||
|
||||
uint64_t rtc_time_diff = rtc_time_slowclk_to_us(rtc_ticks_at_end - s_config.rtc_ticks_at_sleep_start,
|
||||
esp_clk_slowclk_cal_get());
|
||||
uint64_t frc_time_diff = frc_time_at_end - frc_time_at_start;
|
||||
|
||||
int64_t time_diff = rtc_time_diff - frc_time_diff;
|
||||
/* Small negative values (up to 1 RTC_SLOW clock period) are possible,
|
||||
* for very small values of sleep_duration. Ignore those to keep esp_timer
|
||||
* monotonic.
|
||||
*/
|
||||
if (time_diff > 0) {
|
||||
esp_timer_impl_advance(time_diff);
|
||||
}
|
||||
esp_set_time_from_rtc();
|
||||
|
||||
esp_timer_impl_unlock();
|
||||
DPORT_STALL_OTHER_CPU_END();
|
||||
rtc_wdt_disable();
|
||||
portEXIT_CRITICAL(&light_sleep_lock);
|
||||
return err;
|
||||
}
|
||||
|
||||
void system_deep_sleep(uint64_t) __attribute__((alias("esp_deep_sleep")));
|
||||
|
||||
esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source)
|
||||
{
|
||||
// For most of sources it is enough to set trigger mask in local
|
||||
// configuration structure. The actual RTC wake up options
|
||||
// will be updated by esp_sleep_start().
|
||||
if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TIMER, RTC_TIMER_TRIG_EN)) {
|
||||
s_config.wakeup_triggers &= ~RTC_TIMER_TRIG_EN;
|
||||
s_config.sleep_duration = 0;
|
||||
}
|
||||
else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT0, RTC_EXT0_TRIG_EN)) {
|
||||
s_config.ext0_rtc_gpio_num = 0;
|
||||
s_config.ext0_trigger_level = 0;
|
||||
s_config.wakeup_triggers &= ~RTC_EXT0_TRIG_EN;
|
||||
}
|
||||
else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT1, RTC_EXT1_TRIG_EN)) {
|
||||
s_config.ext1_rtc_gpio_mask = 0;
|
||||
s_config.ext1_trigger_mode = 0;
|
||||
s_config.wakeup_triggers &= ~RTC_EXT1_TRIG_EN;
|
||||
}
|
||||
else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TOUCHPAD, RTC_TOUCH_TRIG_EN)) {
|
||||
s_config.wakeup_triggers &= ~RTC_TOUCH_TRIG_EN;
|
||||
}
|
||||
#ifdef CONFIG_ULP_COPROC_ENABLED
|
||||
else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_ULP, RTC_ULP_TRIG_EN)) {
|
||||
s_config.wakeup_triggers &= ~RTC_ULP_TRIG_EN;
|
||||
}
|
||||
#endif
|
||||
else {
|
||||
ESP_LOGE(TAG, "Incorrect wakeup source (%d) to disable.", (int) source);
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_sleep_enable_ulp_wakeup()
|
||||
{
|
||||
#ifdef CONFIG_ULP_COPROC_ENABLED
|
||||
if(s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
|
||||
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
s_config.wakeup_triggers |= RTC_ULP_TRIG_EN;
|
||||
return ESP_OK;
|
||||
#else
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
#endif
|
||||
}
|
||||
|
||||
esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us)
|
||||
{
|
||||
s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN;
|
||||
s_config.sleep_duration = time_in_us;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static void timer_wakeup_prepare()
|
||||
{
|
||||
uint32_t period = esp_clk_slowclk_cal_get();
|
||||
int64_t sleep_duration = (int64_t) s_config.sleep_duration - (int64_t) s_config.sleep_time_adjustment;
|
||||
if (sleep_duration < 0) {
|
||||
sleep_duration = 0;
|
||||
}
|
||||
int64_t rtc_count_delta = rtc_time_us_to_slowclk(sleep_duration, period);
|
||||
|
||||
rtc_sleep_set_wakeup_time(s_config.rtc_ticks_at_sleep_start + rtc_count_delta);
|
||||
}
|
||||
|
||||
esp_err_t esp_sleep_enable_touchpad_wakeup()
|
||||
{
|
||||
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) {
|
||||
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
s_config.wakeup_triggers |= RTC_TOUCH_TRIG_EN;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
touch_pad_t esp_sleep_get_touchpad_wakeup_status()
|
||||
{
|
||||
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TOUCHPAD) {
|
||||
return TOUCH_PAD_MAX;
|
||||
}
|
||||
uint32_t touch_mask = REG_GET_FIELD(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_MEAS_EN);
|
||||
assert(touch_mask != 0 && "wakeup reason is RTC_TOUCH_TRIG_EN but SENS_TOUCH_MEAS_EN is zero");
|
||||
return (touch_pad_t) (__builtin_ffs(touch_mask) - 1);
|
||||
}
|
||||
|
||||
esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level)
|
||||
{
|
||||
if (level < 0 || level > 1) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (!RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
|
||||
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
s_config.ext0_rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;
|
||||
s_config.ext0_trigger_level = level;
|
||||
s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static void ext0_wakeup_prepare()
|
||||
{
|
||||
int rtc_gpio_num = s_config.ext0_rtc_gpio_num;
|
||||
// Set GPIO to be used for wakeup
|
||||
REG_SET_FIELD(RTC_IO_EXT_WAKEUP0_REG, RTC_IO_EXT_WAKEUP0_SEL, rtc_gpio_num);
|
||||
// Set level which will trigger wakeup
|
||||
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
|
||||
s_config.ext0_trigger_level, RTC_CNTL_EXT_WAKEUP0_LV_S);
|
||||
// Find GPIO descriptor in the rtc_gpio_desc table and configure the pad
|
||||
for (size_t gpio_num = 0; gpio_num < GPIO_PIN_COUNT; ++gpio_num) {
|
||||
const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio_num];
|
||||
if (desc->rtc_num == rtc_gpio_num) {
|
||||
REG_SET_BIT(desc->reg, desc->mux);
|
||||
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
|
||||
REG_SET_BIT(desc->reg, desc->ie);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t mask, esp_sleep_ext1_wakeup_mode_t mode)
|
||||
{
|
||||
if (mode > ESP_EXT1_WAKEUP_ANY_HIGH) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
|
||||
uint32_t rtc_gpio_mask = 0;
|
||||
for (int gpio = 0; mask; ++gpio, mask >>= 1) {
|
||||
if ((mask & 1) == 0) {
|
||||
continue;
|
||||
}
|
||||
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
|
||||
ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio);
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
rtc_gpio_mask |= BIT(rtc_gpio_desc[gpio].rtc_num);
|
||||
}
|
||||
s_config.ext1_rtc_gpio_mask = rtc_gpio_mask;
|
||||
s_config.ext1_trigger_mode = mode;
|
||||
s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static void ext1_wakeup_prepare()
|
||||
{
|
||||
// Configure all RTC IOs selected as ext1 wakeup inputs
|
||||
uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask;
|
||||
for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) {
|
||||
int rtc_pin = rtc_gpio_desc[gpio].rtc_num;
|
||||
if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) {
|
||||
continue;
|
||||
}
|
||||
const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio];
|
||||
// Route pad to RTC
|
||||
REG_SET_BIT(desc->reg, desc->mux);
|
||||
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
|
||||
// set input enable in sleep mode
|
||||
REG_SET_BIT(desc->reg, desc->ie);
|
||||
// Pad configuration depends on RTC_PERIPH state in sleep mode
|
||||
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
|
||||
// RTC_PERIPH will be powered down, so RTC_IO_ registers will
|
||||
// loose their state. Lock pad configuration.
|
||||
// Pullups/pulldowns also need to be disabled.
|
||||
REG_CLR_BIT(desc->reg, desc->pulldown);
|
||||
REG_CLR_BIT(desc->reg, desc->pullup);
|
||||
}
|
||||
// Keep track of pins which are processed to bail out early
|
||||
rtc_gpio_mask &= ~BIT(rtc_pin);
|
||||
}
|
||||
// Clear state from previous wakeup
|
||||
REG_SET_BIT(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_STATUS_CLR);
|
||||
// Set pins to be used for wakeup
|
||||
REG_SET_FIELD(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_SEL, s_config.ext1_rtc_gpio_mask);
|
||||
// Set logic function (any low, all high)
|
||||
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
|
||||
s_config.ext1_trigger_mode, RTC_CNTL_EXT_WAKEUP1_LV_S);
|
||||
}
|
||||
|
||||
uint64_t esp_sleep_get_ext1_wakeup_status()
|
||||
{
|
||||
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_EXT1) {
|
||||
return 0;
|
||||
}
|
||||
uint32_t status = REG_GET_FIELD(RTC_CNTL_EXT_WAKEUP1_STATUS_REG, RTC_CNTL_EXT_WAKEUP1_STATUS);
|
||||
// Translate bit map of RTC IO numbers into the bit map of GPIO numbers
|
||||
uint64_t gpio_mask = 0;
|
||||
for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) {
|
||||
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
|
||||
continue;
|
||||
}
|
||||
int rtc_pin = rtc_gpio_desc[gpio].rtc_num;
|
||||
if ((status & BIT(rtc_pin)) == 0) {
|
||||
continue;
|
||||
}
|
||||
gpio_mask |= 1ULL << gpio;
|
||||
}
|
||||
return gpio_mask;
|
||||
}
|
||||
|
||||
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause()
|
||||
{
|
||||
if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET) {
|
||||
return ESP_SLEEP_WAKEUP_UNDEFINED;
|
||||
}
|
||||
|
||||
uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE);
|
||||
if (wakeup_cause & RTC_EXT0_TRIG_EN) {
|
||||
return ESP_SLEEP_WAKEUP_EXT0;
|
||||
} else if (wakeup_cause & RTC_EXT1_TRIG_EN) {
|
||||
return ESP_SLEEP_WAKEUP_EXT1;
|
||||
} else if (wakeup_cause & RTC_TIMER_TRIG_EN) {
|
||||
return ESP_SLEEP_WAKEUP_TIMER;
|
||||
} else if (wakeup_cause & RTC_TOUCH_TRIG_EN) {
|
||||
return ESP_SLEEP_WAKEUP_TOUCHPAD;
|
||||
} else if (wakeup_cause & RTC_ULP_TRIG_EN) {
|
||||
return ESP_SLEEP_WAKEUP_ULP;
|
||||
} else {
|
||||
return ESP_SLEEP_WAKEUP_UNDEFINED;
|
||||
}
|
||||
}
|
||||
|
||||
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain,
|
||||
esp_sleep_pd_option_t option)
|
||||
{
|
||||
if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
s_config.pd_options[domain] = option;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static uint32_t get_power_down_flags()
|
||||
{
|
||||
// Where needed, convert AUTO options to ON. Later interpret AUTO as OFF.
|
||||
|
||||
// RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP
|
||||
// is used and RTC_SLOW_MEM is Auto.
|
||||
// If there is any data placed into .rtc.data or .rtc.bss segments, and
|
||||
// RTC_SLOW_MEM is Auto, keep it powered up as well.
|
||||
|
||||
// These labels are defined in the linker script:
|
||||
extern int _rtc_data_start, _rtc_data_end, _rtc_bss_start, _rtc_bss_end;
|
||||
|
||||
if ((s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] == ESP_PD_OPTION_AUTO) &&
|
||||
(&_rtc_data_end > &_rtc_data_start || &_rtc_bss_end > &_rtc_bss_start ||
|
||||
(s_config.wakeup_triggers & RTC_ULP_TRIG_EN))) {
|
||||
s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] = ESP_PD_OPTION_ON;
|
||||
}
|
||||
|
||||
// RTC_FAST_MEM is needed for deep sleep stub.
|
||||
// If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub
|
||||
// can run.
|
||||
// In the new chip revision, deep sleep stub will be optional,
|
||||
// and this can be changed.
|
||||
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] == ESP_PD_OPTION_AUTO) {
|
||||
s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON;
|
||||
}
|
||||
|
||||
// RTC_PERIPH is needed for EXT0 wakeup.
|
||||
// If RTC_PERIPH is auto, and EXT0 isn't enabled, power down RTC_PERIPH.
|
||||
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) {
|
||||
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
|
||||
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
|
||||
} else if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
|
||||
// In both rev. 0 and rev. 1 of ESP32, forcing power up of RTC_PERIPH
|
||||
// prevents ULP timer and touch FSMs from working correctly.
|
||||
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF;
|
||||
}
|
||||
}
|
||||
|
||||
if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] == ESP_PD_OPTION_AUTO) {
|
||||
s_config.pd_options[ESP_PD_DOMAIN_XTAL] = ESP_PD_OPTION_OFF;
|
||||
}
|
||||
|
||||
const char* option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */};
|
||||
ESP_LOGD(TAG, "RTC_PERIPH: %s, RTC_SLOW_MEM: %s, RTC_FAST_MEM: %s",
|
||||
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]],
|
||||
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM]],
|
||||
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]);
|
||||
|
||||
// Prepare flags based on the selected options
|
||||
uint32_t pd_flags = 0;
|
||||
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) {
|
||||
pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM;
|
||||
}
|
||||
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) {
|
||||
pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM;
|
||||
}
|
||||
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
|
||||
pd_flags |= RTC_SLEEP_PD_RTC_PERIPH;
|
||||
}
|
||||
// if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] != ESP_PD_OPTION_ON) {
|
||||
// pd_flags |= RTC_SLEEP_PD_XTAL;
|
||||
// }
|
||||
return pd_flags;
|
||||
}
|
367
components/esp32s2beta/spiram.c
Normal file
367
components/esp32s2beta/spiram.c
Normal file
@ -0,0 +1,367 @@
|
||||
/*
|
||||
Abstraction layer for spi-ram. For now, it's no more than a stub for the spiram_psram functions, but if
|
||||
we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
|
||||
*/
|
||||
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <sys/param.h>
|
||||
#include "sdkconfig.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp32s2beta/spiram.h"
|
||||
#include "spiram_psram.h"
|
||||
#include "esp_log.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/xtensa_api.h"
|
||||
#include "soc/soc.h"
|
||||
#include "esp_heap_caps_init.h"
|
||||
#include "soc/soc_memory_layout.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "esp32s2beta/rom/cache.h"
|
||||
|
||||
#if CONFIG_FREERTOS_UNICORE
|
||||
#define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
|
||||
#else
|
||||
#if CONFIG_MEMMAP_SPIRAM_CACHE_EVENODD
|
||||
#define PSRAM_MODE PSRAM_VADDR_MODE_EVENODD
|
||||
#else
|
||||
#define PSRAM_MODE PSRAM_VADDR_MODE_LOWHIGH
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if CONFIG_SPIRAM_SUPPORT
|
||||
|
||||
static const char* TAG = "spiram";
|
||||
|
||||
#if CONFIG_SPIRAM_SPEED_40M && CONFIG_ESPTOOLPY_FLASHFREQ_40M
|
||||
#define PSRAM_SPEED PSRAM_CACHE_F40M_S40M
|
||||
#elif CONFIG_SPIRAM_SPEED_40M && CONFIG_ESPTOOLPY_FLASHFREQ_80M
|
||||
#define PSRAM_SPEED PSRAM_CACHE_F80M_S40M
|
||||
#elif CONFIG_SPIRAM_SPEED_80M && CONFIG_ESPTOOLPY_FLASHFREQ_80M
|
||||
#define PSRAM_SPEED PSRAM_CACHE_F80M_S80M
|
||||
#else
|
||||
#define PSRAM_SPEED PSRAM_CACHE_F20M_S20M
|
||||
#endif
|
||||
|
||||
|
||||
static bool spiram_inited=false;
|
||||
|
||||
|
||||
/*
|
||||
Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
|
||||
true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
|
||||
initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
|
||||
*/
|
||||
bool esp_spiram_test()
|
||||
{
|
||||
volatile int *spiram=(volatile int*)(SOC_EXTRAM_DATA_HIGH - CONFIG_SPIRAM_SIZE);
|
||||
size_t p;
|
||||
size_t s=CONFIG_SPIRAM_SIZE;
|
||||
int errct=0;
|
||||
int initial_err=-1;
|
||||
|
||||
if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) < CONFIG_SPIRAM_SIZE) {
|
||||
ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH);
|
||||
spiram=(volatile int*)SOC_EXTRAM_DATA_LOW;
|
||||
s = SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW;
|
||||
}
|
||||
for (p=0; p<(s/sizeof(int)); p+=8) {
|
||||
spiram[p]=p^0xAAAAAAAA;
|
||||
}
|
||||
for (p=0; p<(s/sizeof(int)); p+=8) {
|
||||
if (spiram[p]!=(p^0xAAAAAAAA)) {
|
||||
errct++;
|
||||
if (errct==1) initial_err=p*4;
|
||||
if (errct < 4) {
|
||||
ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p^0xAAAAAAAA);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (errct) {
|
||||
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s/32, initial_err+SOC_EXTRAM_DATA_LOW);
|
||||
return false;
|
||||
} else {
|
||||
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
#define DRAM0_ONLY_CACHE_SIZE BUS_IRAM0_CACHE_SIZE
|
||||
#define DRAM0_DRAM1_CACHE_SIZE (BUS_IRAM0_CACHE_SIZE + BUS_IRAM1_CACHE_SIZE)
|
||||
#define DRAM0_DRAM1_DPORT_CACHE_SIZE (BUS_IRAM0_CACHE_SIZE + BUS_IRAM1_CACHE_SIZE + BUS_DPORT_CACHE_SIZE)
|
||||
#define DBUS3_ONLY_CACHE_SIZE BUS_AHB_DBUS3_CACHE_SIZE
|
||||
#define DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE (DRAM0_DRAM1_DPORT_CACHE_SIZE + DBUS3_ONLY_CACHE_SIZE)
|
||||
|
||||
#define SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT (CONFIG_SPIRAM_SIZE - DRAM0_DRAM1_DPORT_CACHE_SIZE)
|
||||
#define SPIRAM_SIZE_EXC_DATA_CACHE (CONFIG_SPIRAM_SIZE - DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE)
|
||||
|
||||
#define SPIRAM_SMALL_SIZE_MAP_VADDR (DRAM0_CACHE_ADDRESS_HIGH - CONFIG_SPIRAM_SIZE)
|
||||
#define SPIRAM_SMALL_SIZE_MAP_PADDR 0
|
||||
#define SPIRAM_SMALL_SIZE_MAP_SIZE CONFIG_SPIRAM_SIZE
|
||||
|
||||
#define SPIRAM_MID_SIZE_MAP_VADDR (AHB_DBUS3_ADDRESS_HIGH - SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT)
|
||||
#define SPIRAM_MID_SIZE_MAP_PADDR 0
|
||||
#define SPIRAM_MID_SIZE_MAP_SIZE (SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT)
|
||||
|
||||
#define SPIRAM_BIG_SIZE_MAP_VADDR AHB_DBUS3_ADDRESS_LOW
|
||||
#define SPIRAM_BIG_SIZE_MAP_PADDR (AHB_DBUS3_ADDRESS_HIGH - DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE)
|
||||
#define SPIRAM_BIG_SIZE_MAP_SIZE DBUS3_ONLY_CACHE_SIZE
|
||||
|
||||
#define SPIRAM_MID_BIG_SIZE_MAP_VADDR DPORT_CACHE_ADDRESS_LOW
|
||||
#define SPIRAM_MID_BIG_SIZE_MAP_PADDR SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT
|
||||
#define SPIRAM_MID_BIG_SIZE_MAP_SIZE DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE
|
||||
|
||||
|
||||
void IRAM_ATTR esp_spiram_init_cache()
|
||||
{
|
||||
Cache_Suspend_DCache();
|
||||
/* map the address from SPIRAM end to the start, map the address in order: DRAM1, DRAM1, DPORT, DBUS3 */
|
||||
#if CONFIG_SPIRAM_SIZE <= DRAM0_ONLY_CACHE_SIZE
|
||||
/* cache size <= 3MB + 576 KB, only map DRAM0 bus */
|
||||
Cache_Dbus_MMU_Set(DPORT_MMU_ACCESS_SPIRAM, SPIRAM_SMALL_SIZE_MAP_VADDR, SPIRAM_SMALL_SIZE_MAP_PADDR, 64, SPIRAM_SMALL_SIZE_MAP_SIZE >> 16, 0);
|
||||
REG_SET_BIT(DPORT_CACHE_SOURCE_1_REG, DPORT_PRO_CACHE_D_SOURCE_PRO_DRAM0);
|
||||
REG_CLR_BIT(DPORT_PRO_DCACHE_CTRL1_REG, DPORT_PRO_DCACHE_MASK_DRAM0);
|
||||
#elif CONFIG_SPIRAM_SIZE <= DRAM0_DRAM1_CACHE_SIZE
|
||||
/* cache size <= 7MB + 576KB, only map DRAM0 and DRAM1 bus */
|
||||
Cache_Dbus_MMU_Set(DPORT_MMU_ACCESS_SPIRAM, SPIRAM_SMALL_SIZE_MAP_VADDR, SPIRAM_SMALL_SIZE_MAP_PADDR, 64, SPIRAM_SMALL_SIZE_MAP_SIZE >> 16, 0);
|
||||
REG_SET_BIT(DPORT_CACHE_SOURCE_1_REG, DPORT_PRO_CACHE_D_SOURCE_PRO_DRAM0);
|
||||
REG_CLR_BIT(DPORT_PRO_DCACHE_CTRL1_REG, DPORT_PRO_DCACHE_MASK_DRAM1 | DPORT_PRO_DCACHE_MASK_DRAM0);
|
||||
#elif CONFIG_SPIRAM_SIZE <= DRAM0_DRAM1_DPORT_CACHE_SIZE
|
||||
/* cache size <= 10MB + 576KB, map DRAM0, DRAM1, DPORT bus */
|
||||
Cache_Dbus_MMU_Set(DPORT_MMU_ACCESS_SPIRAM, SPIRAM_SMALL_SIZE_MAP_VADDR, SPIRAM_SMALL_SIZE_MAP_PADDR, 64, SPIRAM_SMALL_SIZE_MAP_SIZE >> 16, 0);
|
||||
REG_SET_BIT(DPORT_CACHE_SOURCE_1_REG, DPORT_PRO_CACHE_D_SOURCE_PRO_DPORT | DPORT_PRO_CACHE_D_SOURCE_PRO_DRAM0);
|
||||
REG_CLR_BIT(DPORT_PRO_DCACHE_CTRL1_REG, DPORT_PRO_DCACHE_MASK_DRAM1 | DPORT_PRO_DCACHE_MASK_DRAM0 | DPORT_PRO_DCACHE_MASK_DPORT);
|
||||
#else
|
||||
#if CONFIG_USE_AHB_DBUS3_ACCESS_SPIRAM
|
||||
#if CONFIG_SPIRAM_SIZE <= DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE
|
||||
/* cache size <= 14MB + 576KB, map DRAM0, DRAM1, DPORT bus, as well as data bus3 */
|
||||
Cache_Dbus_MMU_Set(DPORT_MMU_ACCESS_SPIRAM, SPIRAM_MID_SIZE_MAP_VADDR, SPIRAM_MID_SIZE_MAP_PADDR, 64, SPIRAM_MID_SIZE_MAP_SIZE >> 16, 0);
|
||||
#else
|
||||
/* cache size > 14MB + 576KB, map DRAM0, DRAM1, DPORT bus, as well as data bus3 */
|
||||
Cache_Dbus_MMU_Set(DPORT_MMU_ACCESS_SPIRAM, SPIRAM_BIG_SIZE_MAP_VADDR, SPIRAM_BIG_SIZE_MAP_PADDR, 64, SPIRAM_BIG_SIZE_MAP_SIZE >> 16, 0);
|
||||
#endif
|
||||
Cache_Dbus_MMU_Set(DPORT_MMU_ACCESS_SPIRAM, SPIRAM_MID_BIG_SIZE_MAP_VADDR, SPIRAM_MID_BIG_SIZE_MAP_PADDR, 64, SPIRAM_MID_BIG_SIZE_MAP_SIZE >> 16, 0);
|
||||
REG_SET_BIT(DPORT_CACHE_SOURCE_1_REG, DPORT_PRO_CACHE_D_SOURCE_PRO_DPORT | DPORT_PRO_CACHE_D_SOURCE_PRO_DRAM0);
|
||||
REG_CLR_BIT(DPORT_CACHE_SOURCE_1_REG, DPORT_PRO_CACHE_D_SOURCE_PRO_DROM0);
|
||||
REG_CLR_BIT(DPORT_PRO_DCACHE_CTRL1_REG, DPORT_PRO_DCACHE_MASK_DRAM1 | DPORT_PRO_DCACHE_MASK_DRAM0 | DPORT_PRO_DCACHE_MASK_DPORT | DPORT_PRO_DCACHE_MASK_BUS3);
|
||||
#else
|
||||
/* cache size > 10MB + 576KB, map DRAM0, DRAM1, DPORT bus , only remap 0x3f500000 ~ 0x3ff90000*/
|
||||
Cache_Dbus_MMU_Set(DPORT_MMU_ACCESS_SPIRAM, SPIRAM_MID_BIG_SIZE_MAP_VADDR, SPIRAM_MID_BIG_SIZE_MAP_PADDR, 64, SPIRAM_MID_BIG_SIZE_MAP_SIZE >> 16, 0);
|
||||
REG_SET_BIT(DPORT_CACHE_SOURCE_1_REG, DPORT_PRO_CACHE_D_SOURCE_PRO_DPORT | DPORT_PRO_CACHE_D_SOURCE_PRO_DRAM0);
|
||||
REG_CLR_BIT(DPORT_PRO_DCACHE_CTRL1_REG, DPORT_PRO_DCACHE_MASK_DRAM1 | DPORT_PRO_DCACHE_MASK_DRAM0 | DPORT_PRO_DCACHE_MASK_DPORT);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
static uint32_t pages_for_flash = 0;
|
||||
static uint32_t page0_mapped = 0;
|
||||
static uint32_t page0_page = 0xffff;
|
||||
static uint32_t instrcution_in_spiram = 0;
|
||||
static uint32_t rodata_in_spiram = 0;
|
||||
|
||||
uint32_t esp_spiram_instruction_access_enabled()
|
||||
{
|
||||
return instrcution_in_spiram;
|
||||
}
|
||||
|
||||
uint32_t esp_spiram_rodata_access_enabled()
|
||||
{
|
||||
return rodata_in_spiram;
|
||||
}
|
||||
|
||||
esp_err_t esp_spiram_enable_instruction_access(void)
|
||||
{
|
||||
uint32_t pages_in_flash = 0;
|
||||
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS0, &page0_mapped);
|
||||
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS1, &page0_mapped);
|
||||
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS2, &page0_mapped);
|
||||
if ((pages_in_flash + pages_for_flash) > (CONFIG_SPIRAM_SIZE >> 16)) {
|
||||
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (CONFIG_SPIRAM_SIZE >> 16), (pages_in_flash + pages_for_flash));
|
||||
return ESP_FAIL;
|
||||
}
|
||||
ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM");
|
||||
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS0, IRAM0_ADDRESS_LOW, pages_for_flash, &page0_page);
|
||||
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS1, IRAM1_ADDRESS_LOW, pages_for_flash, &page0_page);
|
||||
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS2, IROM0_ADDRESS_LOW, pages_for_flash, &page0_page);
|
||||
instrcution_in_spiram = 1;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_spiram_enable_rodata_access(void)
|
||||
{
|
||||
uint32_t pages_in_flash = 0;
|
||||
if (Cache_Drom0_Using_ICache()) {
|
||||
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS3, &page0_mapped);
|
||||
} else {
|
||||
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS3, &page0_mapped);
|
||||
}
|
||||
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS0, &page0_mapped);
|
||||
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS1, &page0_mapped);
|
||||
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS2, &page0_mapped);
|
||||
|
||||
if ((pages_in_flash + pages_for_flash) > (CONFIG_SPIRAM_SIZE >> 16)) {
|
||||
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data.");
|
||||
return ESP_FAIL;
|
||||
}
|
||||
|
||||
ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM");
|
||||
if (Cache_Drom0_Using_ICache()) {
|
||||
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS3, DROM0_ADDRESS_LOW, pages_for_flash, &page0_page);
|
||||
} else {
|
||||
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS3, DROM0_ADDRESS_LOW, pages_for_flash, &page0_page);
|
||||
}
|
||||
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS0, DRAM0_ADDRESS_LOW, pages_for_flash, &page0_page);
|
||||
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS1, DRAM1_ADDRESS_LOW, pages_for_flash, &page0_page);
|
||||
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS2, DPORT_ADDRESS_LOW, pages_for_flash, &page0_page);
|
||||
rodata_in_spiram = 1;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_spiram_init()
|
||||
{
|
||||
esp_err_t r;
|
||||
r = psram_enable(PSRAM_SPEED, PSRAM_MODE);
|
||||
if (r != ESP_OK) {
|
||||
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
|
||||
ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out.");
|
||||
#endif
|
||||
return r;
|
||||
}
|
||||
|
||||
ESP_EARLY_LOGI(TAG, "SPI RAM mode: %s", PSRAM_SPEED == PSRAM_CACHE_F40M_S40M ? "flash 40m sram 40m" : \
|
||||
PSRAM_SPEED == PSRAM_CACHE_F80M_S40M ? "flash 80m sram 40m" : \
|
||||
PSRAM_SPEED == PSRAM_CACHE_F80M_S80M ? "flash 80m sram 80m" : "flash 20m sram 20m");
|
||||
ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \
|
||||
(PSRAM_MODE==PSRAM_VADDR_MODE_EVENODD)?"even/odd (2-core)": \
|
||||
(PSRAM_MODE==PSRAM_VADDR_MODE_LOWHIGH)?"low/high (2-core)": \
|
||||
(PSRAM_MODE==PSRAM_VADDR_MODE_NORMAL)?"normal (1-core)":"ERROR");
|
||||
spiram_inited=true;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
|
||||
esp_err_t esp_spiram_add_to_heapalloc()
|
||||
{
|
||||
uint32_t size_for_flash = (pages_for_flash << 16);
|
||||
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (CONFIG_SPIRAM_SIZE - (pages_for_flash << 16))/1024);
|
||||
//Add entire external RAM region to heap allocator. Heap allocator knows the capabilities of this type of memory, so there's
|
||||
//no need to explicitly specify them.
|
||||
|
||||
#if CONFIG_SPIRAM_SIZE <= DRAM0_DRAM1_DPORT_CACHE_SIZE
|
||||
/* cache size <= 10MB + 576KB, map DRAM0, DRAM1, DPORT bus */
|
||||
return heap_caps_add_region((intptr_t)SPIRAM_SMALL_SIZE_MAP_VADDR + size_for_flash, (intptr_t)SPIRAM_SMALL_SIZE_MAP_VADDR + SPIRAM_SMALL_SIZE_MAP_SIZE -1);
|
||||
#else
|
||||
#if CONFIG_USE_AHB_DBUS3_ACCESS_SPIRAM
|
||||
#if CONFIG_SPIRAM_SIZE <= DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE
|
||||
/* cache size <= 14MB + 576KB, map DRAM0, DRAM1, DPORT bus, as well as data bus3 */
|
||||
if (size_for_flash <= SPIRAM_MID_SIZE_MAP_SIZE) {
|
||||
esp_err_t err = heap_caps_add_region((intptr_t)SPIRAM_MID_SIZE_MAP_VADDR + size_for_flash, (intptr_t)SPIRAM_MID_SIZE_MAP_VADDR + SPIRAM_MID_SIZE_MAP_SIZE -1);
|
||||
if (err) {
|
||||
return err;
|
||||
}
|
||||
return heap_caps_add_region((intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR, (intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + SPIRAM_MID_BIG_SIZE_MAP_SIZE -1);
|
||||
} else {
|
||||
return heap_caps_add_region((intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + size_for_flash - SPIRAM_MID_SIZE_MAP_SIZE, (intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + SPIRAM_MID_BIG_SIZE_MAP_SIZE -1);
|
||||
}
|
||||
#else
|
||||
if (size_for_flash <= SPIRAM_SIZE_EXC_DATA_CACHE) {
|
||||
esp_err_t err = heap_caps_add_region((intptr_t)SPIRAM_BIG_SIZE_MAP_VADDR, (intptr_t)SPIRAM_BIG_SIZE_MAP_VADDR + SPIRAM_BIG_SIZE_MAP_SIZE -1);
|
||||
if (err) {
|
||||
return err;
|
||||
}
|
||||
return heap_caps_add_region((intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR, (intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + SPIRAM_MID_BIG_SIZE_MAP_SIZE -1);
|
||||
} else if (size_for_flash <= SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT) {
|
||||
esp_err_t err = heap_caps_add_region((intptr_t)SPIRAM_BIG_SIZE_MAP_VADDR + size_for_flash - SPIRAM_SIZE_EXC_DATA_CACHE, (intptr_t)SPIRAM_MID_SIZE_MAP_VADDR + SPIRAM_MID_SIZE_MAP_SIZE -1);
|
||||
if (err) {
|
||||
return err;
|
||||
}
|
||||
return heap_caps_add_region((intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR, (intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + SPIRAM_MID_BIG_SIZE_MAP_SIZE -1);
|
||||
} else {
|
||||
return heap_caps_add_region((intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + size_for_flash - SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT, (intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + SPIRAM_MID_BIG_SIZE_MAP_SIZE -1);
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
Cache_Dbus_MMU_Set(DPORT_MMU_ACCESS_SPIRAM, SPIRAM_MID_BIG_SIZE_MAP_VADDR, SPIRAM_MID_BIG_SIZE_MAP_PADDR, 64, SPIRAM_MID_BIG_SIZE_MAP_SIZE >> 16, 0);
|
||||
if (size_for_flash <= SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT) {
|
||||
return heap_caps_add_region((intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR, (intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + SPIRAM_MID_BIG_SIZE_MAP_SIZE -1);
|
||||
} else {
|
||||
return heap_caps_add_region((intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + size_for_flash, (intptr_t)SPIRAM_MID_BIG_SIZE_MAP_VADDR + SPIRAM_MID_BIG_SIZE_MAP_SIZE -1);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static uint8_t *dma_heap;
|
||||
|
||||
esp_err_t esp_spiram_reserve_dma_pool(size_t size) {
|
||||
if (size==0) return ESP_OK; //no-op
|
||||
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024);
|
||||
dma_heap=heap_caps_malloc(size, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
|
||||
if (!dma_heap) return ESP_ERR_NO_MEM;
|
||||
uint32_t caps[]={MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT};
|
||||
return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+size-1);
|
||||
}
|
||||
|
||||
size_t esp_spiram_get_size()
|
||||
{
|
||||
return CONFIG_SPIRAM_SIZE;
|
||||
}
|
||||
|
||||
/*
|
||||
Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first,
|
||||
otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this.
|
||||
*/
|
||||
void IRAM_ATTR esp_spiram_writeback_cache()
|
||||
{
|
||||
extern void Cache_WriteBack_All(void);
|
||||
int cache_was_disabled=0;
|
||||
|
||||
if (!spiram_inited) return;
|
||||
|
||||
//We need cache enabled for this to work. Re-enable it if needed; make sure we
|
||||
//disable it again on exit as well.
|
||||
if (DPORT_REG_GET_BIT(DPORT_PRO_DCACHE_CTRL_REG, DPORT_PRO_DCACHE_ENABLE)==0) {
|
||||
cache_was_disabled|=(1<<0);
|
||||
DPORT_SET_PERI_REG_BITS(DPORT_PRO_DCACHE_CTRL_REG, 1, 1, DPORT_PRO_DCACHE_ENABLE_S);
|
||||
}
|
||||
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
if (DPORT_REG_GET_BIT(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_CACHE_ENABLE)==0) {
|
||||
cache_was_disabled|=(1<<1);
|
||||
DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 1, DPORT_APP_CACHE_ENABLE_S);
|
||||
}
|
||||
#endif
|
||||
|
||||
Cache_WriteBack_All();
|
||||
|
||||
if (cache_was_disabled&(1<<0)) {
|
||||
#ifdef DPORT_CODE_COMPLETE
|
||||
while (DPORT_GET_PERI_REG_BITS2(DPORT_PRO_DCACHE_DBUG2_REG, DPORT_PRO_CACHE_STATE, DPORT_PRO_CACHE_STATE_S) != 1) ;
|
||||
#endif
|
||||
DPORT_SET_PERI_REG_BITS(DPORT_PRO_DCACHE_CTRL_REG, 1, 0, DPORT_PRO_DCACHE_ENABLE_S);
|
||||
}
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
if (cache_was_disabled&(1<<1)) {
|
||||
while (DPORT_GET_PERI_REG_BITS2(DPORT_APP_DCACHE_DBUG2_REG, DPORT_APP_CACHE_STATE, DPORT_APP_CACHE_STATE_S) != 1) ;
|
||||
DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 0, DPORT_APP_CACHE_ENABLE_S);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
903
components/esp32s2beta/spiram_psram.c
Normal file
903
components/esp32s2beta/spiram_psram.c
Normal file
@ -0,0 +1,903 @@
|
||||
/*
|
||||
Driver bits for PSRAM chips (at the moment only the ESP-PSRAM32 chip).
|
||||
*/
|
||||
|
||||
// Copyright 2013-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#include "sdkconfig.h"
|
||||
#include "string.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_types.h"
|
||||
#include "esp_log.h"
|
||||
#include "spiram_psram.h"
|
||||
#include "esp32s2beta/rom/ets_sys.h"
|
||||
#include "esp32s2beta/rom/spi_flash.h"
|
||||
#include "esp32s2beta/rom/gpio.h"
|
||||
#include "esp32s2beta/rom/cache.h"
|
||||
#include "soc/io_mux_reg.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/apb_ctrl_reg.h"
|
||||
#include "soc/gpio_sig_map.h"
|
||||
#include "soc/efuse_reg.h"
|
||||
#include "driver/gpio.h"
|
||||
#include "driver/spi_common.h"
|
||||
#include "driver/periph_ctrl.h"
|
||||
|
||||
#if CONFIG_SPIRAM_SUPPORT
|
||||
#include "soc/rtc.h"
|
||||
|
||||
//Commands for PSRAM chip
|
||||
#define PSRAM_READ 0x03
|
||||
#define PSRAM_FAST_READ 0x0B
|
||||
#define PSRAM_FAST_READ_DUMMY 0x3
|
||||
#define PSRAM_FAST_READ_QUAD 0xEB
|
||||
#define PSRAM_FAST_READ_QUAD_DUMMY 0x5
|
||||
#define PSRAM_WRITE 0x02
|
||||
#define PSRAM_QUAD_WRITE 0x38
|
||||
#define PSRAM_ENTER_QMODE 0x35
|
||||
#define PSRAM_EXIT_QMODE 0xF5
|
||||
#define PSRAM_RESET_EN 0x66
|
||||
#define PSRAM_RESET 0x99
|
||||
#define PSRAM_SET_BURST_LEN 0xC0
|
||||
#define PSRAM_DEVICE_ID 0x9F
|
||||
|
||||
typedef enum {
|
||||
PSRAM_CLK_MODE_NORM = 0, /*!< Normal SPI mode */
|
||||
PSRAM_CLK_MODE_DCLK = 1, /*!< Two extra clock cycles after CS is set high level */
|
||||
} psram_clk_mode_t;
|
||||
|
||||
#define PSRAM_ID_KGD_M 0xff
|
||||
#define PSRAM_ID_KGD_S 8
|
||||
#define PSRAM_ID_KGD 0x5d
|
||||
#define PSRAM_ID_EID_M 0xff
|
||||
#define PSRAM_ID_EID_S 16
|
||||
|
||||
#define PSRAM_KGD(id) (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M)
|
||||
#define PSRAM_EID(id) (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M)
|
||||
#define PSRAM_IS_VALID(id) (PSRAM_KGD(id) == PSRAM_ID_KGD)
|
||||
|
||||
// PSRAM_EID = 0x26 or 0x4x ----> 64MBit psram
|
||||
// PSRAM_EID = 0x20 ------------> 32MBit psram
|
||||
#define PSRAM_IS_64MBIT(id) ((PSRAM_EID(id) == 0x26) || ((PSRAM_EID(id) & 0xf0) == 0x40))
|
||||
#define PSRAM_IS_32MBIT_VER0(id) (PSRAM_EID(id) == 0x20)
|
||||
|
||||
// IO-pins for PSRAM. These need to be in the VDD_SIO power domain because all chips we
|
||||
// currently support are 1.8V parts.
|
||||
// WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
|
||||
// hardcode the flash pins as well, making this code incompatible with either a setup
|
||||
// that has the flash on non-standard pins or ESP32s with built-in flash.
|
||||
#define FLASH_CLK_IO SPI_CLK_GPIO_NUM //Psram clock is a delayed version of this in 40MHz mode
|
||||
#define FLASH_CS_IO SPI_CS0_GPIO_NUM
|
||||
#define PSRAM_CS_IO 26
|
||||
#define PSRAM_SPIQ_IO SPI_Q_GPIO_NUM
|
||||
#define PSRAM_SPID_IO SPI_D_GPIO_NUM
|
||||
#define PSRAM_SPIWP_IO SPI_WP_GPIO_NUM
|
||||
#define PSRAM_SPIHD_IO SPI_HD_GPIO_NUM
|
||||
#define PSRAM_INTERNAL_IO_28 28
|
||||
#define PSRAM_INTERNAL_IO_29 29
|
||||
#define PSRAM_IO_MATRIX_DUMMY_20M 0
|
||||
#define PSRAM_IO_MATRIX_DUMMY_40M 0
|
||||
#define PSRAM_IO_MATRIX_DUMMY_80M 0
|
||||
|
||||
#define _SPI_CACHE_PORT 0
|
||||
#define _SPI_FLASH_PORT 1
|
||||
#define _SPI_80M_CLK_DIV 1
|
||||
#define _SPI_40M_CLK_DIV 2
|
||||
#define _SPI_20M_CLK_DIV 4
|
||||
|
||||
static const char* TAG = "psram";
|
||||
typedef enum {
|
||||
PSRAM_SPI_1 = 0x1,
|
||||
PSRAM_SPI_2,
|
||||
PSRAM_SPI_3,
|
||||
PSRAM_SPI_MAX ,
|
||||
} psram_spi_num_t;
|
||||
|
||||
static psram_cache_mode_t s_psram_mode = PSRAM_CACHE_MAX;
|
||||
static psram_clk_mode_t s_clk_mode = PSRAM_CLK_MODE_DCLK;
|
||||
static uint32_t s_psram_id = 0;
|
||||
|
||||
/* dummy_len_plus values defined in ROM for SPI flash configuration */
|
||||
extern uint8_t g_rom_spiflash_dummy_len_plus[];
|
||||
static int extra_dummy = 0;
|
||||
typedef enum {
|
||||
PSRAM_CMD_QPI,
|
||||
PSRAM_CMD_SPI,
|
||||
} psram_cmd_mode_t;
|
||||
|
||||
typedef struct {
|
||||
uint16_t cmd; /*!< Command value */
|
||||
uint16_t cmdBitLen; /*!< Command byte length*/
|
||||
uint32_t *addr; /*!< Point to address value*/
|
||||
uint16_t addrBitLen; /*!< Address byte length*/
|
||||
uint32_t *txData; /*!< Point to send data buffer*/
|
||||
uint16_t txDataBitLen; /*!< Send data byte length.*/
|
||||
uint32_t *rxData; /*!< Point to recevie data buffer*/
|
||||
uint16_t rxDataBitLen; /*!< Recevie Data byte length.*/
|
||||
uint32_t dummyBitLen;
|
||||
} psram_cmd_t;
|
||||
|
||||
static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode);
|
||||
|
||||
static void psram_clear_spi_fifo(psram_spi_num_t spi_num)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < 16; i++) {
|
||||
WRITE_PERI_REG(SPI_MEM_W0_REG(spi_num)+i*4, 0);
|
||||
}
|
||||
}
|
||||
|
||||
//set basic SPI write mode
|
||||
static void psram_set_basic_write_mode(psram_spi_num_t spi_num)
|
||||
{
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_QIO);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FCMD_QUAD_M);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_DIO);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_QUAD);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_DUAL);
|
||||
}
|
||||
//set QPI write mode
|
||||
static void psram_set_qio_write_mode(psram_spi_num_t spi_num)
|
||||
{
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_QIO);
|
||||
SET_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FCMD_QUAD_M);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_DIO);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_QUAD);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_DUAL);
|
||||
}
|
||||
//set QPI read mode
|
||||
static void psram_set_qio_read_mode(psram_spi_num_t spi_num)
|
||||
{
|
||||
SET_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_QIO);
|
||||
SET_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FCMD_QUAD_M);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_QUAD);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_DUAL);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_DIO);
|
||||
}
|
||||
//set SPI read mode
|
||||
static void psram_set_basic_read_mode(psram_spi_num_t spi_num)
|
||||
{
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_QIO);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FCMD_QUAD_M);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_QUAD);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_DUAL);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_DIO);
|
||||
}
|
||||
|
||||
|
||||
//start sending cmd/addr and optionally, receiving data
|
||||
static void IRAM_ATTR psram_cmd_recv_start(psram_spi_num_t spi_num, uint32_t* pRxData, uint16_t rxByteLen,
|
||||
psram_cmd_mode_t cmd_mode)
|
||||
{
|
||||
//get cs1
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_MISC_REG(PSRAM_SPI_1), SPI_MEM_CS1_DIS_M);
|
||||
SET_PERI_REG_MASK(SPI_MEM_MISC_REG(PSRAM_SPI_1), SPI_MEM_CS0_DIS_M);
|
||||
|
||||
uint32_t mode_backup = (READ_PERI_REG(SPI_MEM_USER_REG(spi_num)) >> SPI_MEM_FWRITE_DUAL_S) & 0xf;
|
||||
#ifdef FAKE_QPI
|
||||
uint32_t rd_mode_backup = READ_PERI_REG(SPI_MEM_CTRL_REG(spi_num)) & (SPI_MEM_FREAD_DIO_M | SPI_MEM_FREAD_DUAL_M | SPI_MEM_FREAD_QUAD_M | SPI_MEM_FREAD_QIO_M);
|
||||
#else
|
||||
uint32_t rd_mode_backup = READ_PERI_REG(SPI_MEM_CTRL_REG(spi_num)) & (SPI_MEM_FREAD_DIO_M | SPI_MEM_FREAD_DUAL_M | SPI_MEM_FREAD_QUAD_M | SPI_MEM_FREAD_QIO_M | SPI_MEM_FCMD_QUAD);
|
||||
#endif
|
||||
if (cmd_mode == PSRAM_CMD_SPI) {
|
||||
psram_set_basic_write_mode(spi_num);
|
||||
psram_set_basic_read_mode(spi_num);
|
||||
} else if (cmd_mode == PSRAM_CMD_QPI) {
|
||||
psram_set_qio_write_mode(spi_num);
|
||||
psram_set_qio_read_mode(spi_num);
|
||||
}
|
||||
|
||||
// Start send data
|
||||
SET_PERI_REG_MASK(SPI_MEM_CMD_REG(spi_num), SPI_MEM_USR);
|
||||
while ((READ_PERI_REG(SPI_MEM_CMD_REG(spi_num)) & SPI_MEM_USR));
|
||||
|
||||
//recover spi mode
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER_REG(spi_num), (pRxData?SPI_MEM_FWRITE_DUAL_M:0xf), mode_backup, SPI_MEM_FWRITE_DUAL_S);
|
||||
#ifdef FAKE_QPI
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), (SPI_MEM_FREAD_DIO_M|SPI_MEM_FREAD_DUAL_M|SPI_MEM_FREAD_QUAD_M|SPI_MEM_FREAD_QIO_M));
|
||||
#else
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), (SPI_MEM_FREAD_DIO_M|SPI_MEM_FREAD_DUAL_M|SPI_MEM_FREAD_QUAD_M|SPI_MEM_FREAD_QIO_M|SPI_MEM_FCMD_QUAD));
|
||||
#endif
|
||||
SET_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), rd_mode_backup);
|
||||
|
||||
//return cs to cs0
|
||||
SET_PERI_REG_MASK(SPI_MEM_MISC_REG(PSRAM_SPI_1), SPI_MEM_CS1_DIS_M);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_MISC_REG(PSRAM_SPI_1), SPI_MEM_CS0_DIS_M);
|
||||
|
||||
if (pRxData) {
|
||||
int idx = 0;
|
||||
// Read data out
|
||||
do {
|
||||
*pRxData++ = READ_PERI_REG(SPI_MEM_W0_REG(spi_num) + (idx << 2));
|
||||
} while (++idx < ((rxByteLen / 4) + ((rxByteLen % 4) ? 1 : 0)));
|
||||
}
|
||||
}
|
||||
|
||||
static uint32_t backup_usr[3];
|
||||
static uint32_t backup_usr1[3];
|
||||
static uint32_t backup_usr2[3];
|
||||
|
||||
|
||||
|
||||
//setup spi command/addr/data/dummy in user mode
|
||||
static int psram_cmd_config(psram_spi_num_t spi_num, psram_cmd_t* pInData)
|
||||
{
|
||||
while (READ_PERI_REG(SPI_MEM_CMD_REG(spi_num)) & SPI_MEM_USR);
|
||||
backup_usr[spi_num]=READ_PERI_REG(SPI_MEM_USER_REG(spi_num));
|
||||
backup_usr1[spi_num]=READ_PERI_REG(SPI_MEM_USER1_REG(spi_num));
|
||||
backup_usr2[spi_num]=READ_PERI_REG(SPI_MEM_USER2_REG(spi_num));
|
||||
// Set command by user.
|
||||
if (pInData->cmdBitLen != 0) {
|
||||
// Max command length 16 bits.
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER2_REG(spi_num), SPI_MEM_USR_COMMAND_BITLEN, pInData->cmdBitLen - 1,
|
||||
SPI_MEM_USR_COMMAND_BITLEN_S);
|
||||
// Enable command
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_COMMAND);
|
||||
// Load command,bit15-0 is cmd value.
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER2_REG(spi_num), SPI_MEM_USR_COMMAND_VALUE, pInData->cmd, SPI_MEM_USR_COMMAND_VALUE_S);
|
||||
} else {
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_COMMAND);
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER2_REG(spi_num), SPI_MEM_USR_COMMAND_BITLEN, 0, SPI_MEM_USR_COMMAND_BITLEN_S);
|
||||
}
|
||||
// Set Address by user.
|
||||
if (pInData->addrBitLen != 0) {
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER1_REG(spi_num), SPI_MEM_USR_ADDR_BITLEN, (pInData->addrBitLen - 1), SPI_MEM_USR_ADDR_BITLEN_S);
|
||||
// Enable address
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_ADDR);
|
||||
// Set address
|
||||
WRITE_PERI_REG(SPI_MEM_ADDR_REG(spi_num), *pInData->addr);
|
||||
} else {
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_ADDR);
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER1_REG(spi_num), SPI_MEM_USR_ADDR_BITLEN, 0, SPI_MEM_USR_ADDR_BITLEN_S);
|
||||
}
|
||||
// Set data by user.
|
||||
uint32_t* p_tx_val = pInData->txData;
|
||||
if (pInData->txDataBitLen != 0) {
|
||||
// Enable MOSI
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_MOSI);
|
||||
// Load send buffer
|
||||
int len = (pInData->txDataBitLen + 31) / 32;
|
||||
if (p_tx_val != NULL) {
|
||||
memcpy((void*)SPI_MEM_W0_REG(spi_num), p_tx_val, len * 4);
|
||||
}
|
||||
// Set data send buffer length.Max data length 64 bytes.
|
||||
SET_PERI_REG_BITS(SPI_MEM_MOSI_DLEN_REG(spi_num), SPI_MEM_USR_MOSI_DBITLEN, (pInData->txDataBitLen - 1),
|
||||
SPI_MEM_USR_MOSI_DBITLEN_S);
|
||||
} else {
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_MOSI);
|
||||
SET_PERI_REG_BITS(SPI_MEM_MOSI_DLEN_REG(spi_num), SPI_MEM_USR_MOSI_DBITLEN, 0, SPI_MEM_USR_MOSI_DBITLEN_S);
|
||||
}
|
||||
// Set rx data by user.
|
||||
if (pInData->rxDataBitLen != 0) {
|
||||
// Enable MOSI
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_MISO);
|
||||
// Set data send buffer length.Max data length 64 bytes.
|
||||
SET_PERI_REG_BITS(SPI_MEM_MISO_DLEN_REG(spi_num), SPI_MEM_USR_MISO_DBITLEN, (pInData->rxDataBitLen - 1),
|
||||
SPI_MEM_USR_MISO_DBITLEN_S);
|
||||
} else {
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_MISO);
|
||||
SET_PERI_REG_BITS(SPI_MEM_MISO_DLEN_REG(spi_num), SPI_MEM_USR_MISO_DBITLEN, 0, SPI_MEM_USR_MISO_DBITLEN_S);
|
||||
}
|
||||
if (pInData->dummyBitLen != 0) {
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_USR_DUMMY); // dummy en
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER1_REG(PSRAM_SPI_1), SPI_MEM_USR_DUMMY_CYCLELEN_V, pInData->dummyBitLen - 1,
|
||||
SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY
|
||||
} else {
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_USR_DUMMY); // dummy en
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER1_REG(PSRAM_SPI_1), SPI_MEM_USR_DUMMY_CYCLELEN_V, 0, SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void psram_cmd_end(int spi_num) {
|
||||
while (READ_PERI_REG(SPI_MEM_CMD_REG(spi_num)) & SPI_MEM_USR);
|
||||
WRITE_PERI_REG(SPI_MEM_USER_REG(spi_num), backup_usr[spi_num]);
|
||||
WRITE_PERI_REG(SPI_MEM_USER1_REG(spi_num), backup_usr1[spi_num]);
|
||||
WRITE_PERI_REG(SPI_MEM_USER2_REG(spi_num), backup_usr2[spi_num]);
|
||||
}
|
||||
|
||||
#ifdef FAKE_QPI
|
||||
//exit QPI mode(set back to SPI mode)
|
||||
static void psram_disable_qio_mode(psram_spi_num_t spi_num)
|
||||
{
|
||||
psram_cmd_t ps_cmd;
|
||||
uint32_t cmd_exit_qpi;
|
||||
cmd_exit_qpi = PSRAM_EXIT_QMODE;
|
||||
ps_cmd.txDataBitLen = 8;
|
||||
if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
|
||||
switch (s_psram_mode) {
|
||||
case PSRAM_CACHE_F80M_S80M:
|
||||
break;
|
||||
case PSRAM_CACHE_F80M_S40M:
|
||||
case PSRAM_CACHE_F40M_S40M:
|
||||
default:
|
||||
cmd_exit_qpi = PSRAM_EXIT_QMODE << 8;
|
||||
ps_cmd.txDataBitLen = 16;
|
||||
break;
|
||||
}
|
||||
}
|
||||
ps_cmd.txData = &cmd_exit_qpi;
|
||||
ps_cmd.cmd = 0;
|
||||
ps_cmd.cmdBitLen = 0;
|
||||
ps_cmd.addr = 0;
|
||||
ps_cmd.addrBitLen = 0;
|
||||
ps_cmd.rxData = NULL;
|
||||
ps_cmd.rxDataBitLen = 0;
|
||||
ps_cmd.dummyBitLen = 0;
|
||||
psram_cmd_config(spi_num, &ps_cmd);
|
||||
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI);
|
||||
psram_cmd_end(spi_num);
|
||||
}
|
||||
|
||||
//read psram id
|
||||
static void psram_read_id(uint32_t* dev_id)
|
||||
{
|
||||
psram_spi_num_t spi_num = PSRAM_SPI_1;
|
||||
psram_disable_qio_mode(spi_num);
|
||||
uint32_t dummy_bits = 0 + extra_dummy;
|
||||
psram_cmd_t ps_cmd;
|
||||
|
||||
uint32_t addr = 0;
|
||||
ps_cmd.addrBitLen = 3 * 8;
|
||||
ps_cmd.cmd = PSRAM_DEVICE_ID;
|
||||
ps_cmd.cmdBitLen = 8;
|
||||
if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
|
||||
switch (s_psram_mode) {
|
||||
case PSRAM_CACHE_F80M_S80M:
|
||||
break;
|
||||
case PSRAM_CACHE_F80M_S40M:
|
||||
case PSRAM_CACHE_F40M_S40M:
|
||||
default:
|
||||
ps_cmd.cmdBitLen = 2; //this two bits is used to delay 2 clock cycle
|
||||
ps_cmd.cmd = 0;
|
||||
addr = (PSRAM_DEVICE_ID << 24) | 0;
|
||||
ps_cmd.addrBitLen = 4 * 8;
|
||||
break;
|
||||
}
|
||||
}
|
||||
ps_cmd.addr = &addr;
|
||||
ps_cmd.txDataBitLen = 0;
|
||||
ps_cmd.txData = NULL;
|
||||
ps_cmd.rxDataBitLen = 4 * 8;
|
||||
ps_cmd.rxData = dev_id;
|
||||
ps_cmd.dummyBitLen = dummy_bits;
|
||||
|
||||
psram_cmd_config(spi_num, &ps_cmd);
|
||||
psram_clear_spi_fifo(spi_num);
|
||||
psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI);
|
||||
psram_cmd_end(spi_num);
|
||||
}
|
||||
|
||||
//enter QPI mode
|
||||
static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num)
|
||||
{
|
||||
psram_cmd_t ps_cmd;
|
||||
uint32_t addr = (PSRAM_ENTER_QMODE << 24) | 0;
|
||||
|
||||
ps_cmd.cmdBitLen = 0;
|
||||
if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
|
||||
switch (s_psram_mode) {
|
||||
case PSRAM_CACHE_F80M_S80M:
|
||||
break;
|
||||
case PSRAM_CACHE_F80M_S40M:
|
||||
case PSRAM_CACHE_F40M_S40M:
|
||||
default:
|
||||
ps_cmd.cmdBitLen = 2;
|
||||
break;
|
||||
}
|
||||
}
|
||||
ps_cmd.cmd = 0;
|
||||
ps_cmd.addr = &addr;
|
||||
ps_cmd.addrBitLen = 8;
|
||||
ps_cmd.txData = NULL;
|
||||
ps_cmd.txDataBitLen = 0;
|
||||
ps_cmd.rxData = NULL;
|
||||
ps_cmd.rxDataBitLen = 0;
|
||||
ps_cmd.dummyBitLen = 0;
|
||||
psram_cmd_config(spi_num, &ps_cmd);
|
||||
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
|
||||
psram_cmd_end(spi_num);
|
||||
return ESP_OK;
|
||||
}
|
||||
#else /* FAKE_QPI */
|
||||
//exit QPI mode(set back to SPI mode)
|
||||
static void psram_disable_qio_mode(psram_spi_num_t spi_num)
|
||||
{
|
||||
psram_cmd_t ps_cmd;
|
||||
ps_cmd.txData = NULL;
|
||||
ps_cmd.txDataBitLen = 0;
|
||||
ps_cmd.cmd = PSRAM_EXIT_QMODE;
|
||||
ps_cmd.cmdBitLen = 8;
|
||||
ps_cmd.addr = 0;
|
||||
ps_cmd.addrBitLen = 0;
|
||||
ps_cmd.rxData = NULL;
|
||||
ps_cmd.rxDataBitLen = 0;
|
||||
ps_cmd.dummyBitLen = 0;
|
||||
psram_cmd_config(spi_num, &ps_cmd);
|
||||
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI);
|
||||
psram_cmd_end(spi_num);
|
||||
}
|
||||
|
||||
|
||||
//switch psram burst length(32 bytes or 1024 bytes)
|
||||
//datasheet says it should be 1024 bytes by default
|
||||
static void psram_set_wrap_burst_length(psram_spi_num_t spi_num, psram_cmd_mode_t mode)
|
||||
{
|
||||
psram_cmd_t ps_cmd;
|
||||
ps_cmd.cmd = 0xC0;
|
||||
ps_cmd.cmdBitLen = 8;
|
||||
ps_cmd.addr = 0;
|
||||
ps_cmd.addrBitLen = 0;
|
||||
ps_cmd.txData = NULL;
|
||||
ps_cmd.txDataBitLen = 0;
|
||||
ps_cmd.rxData = NULL;
|
||||
ps_cmd.rxDataBitLen = 0;
|
||||
ps_cmd.dummyBitLen = 0;
|
||||
psram_cmd_config(spi_num, &ps_cmd);
|
||||
psram_cmd_recv_start(spi_num, NULL, 0, mode);
|
||||
psram_cmd_end(spi_num);
|
||||
}
|
||||
|
||||
//send reset command to psram, in spi mode
|
||||
static void psram_reset_mode(psram_spi_num_t spi_num)
|
||||
{
|
||||
psram_cmd_t ps_cmd;
|
||||
ps_cmd.txData = NULL;
|
||||
ps_cmd.txDataBitLen = 0;
|
||||
ps_cmd.addr = NULL;
|
||||
ps_cmd.addrBitLen = 0;
|
||||
ps_cmd.cmd = PSRAM_RESET_EN;
|
||||
ps_cmd.cmdBitLen = 8;
|
||||
ps_cmd.rxData = NULL;
|
||||
ps_cmd.rxDataBitLen = 0;
|
||||
ps_cmd.dummyBitLen = 0;
|
||||
psram_cmd_config(spi_num, &ps_cmd);
|
||||
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
|
||||
psram_cmd_end(spi_num);
|
||||
|
||||
memset(&ps_cmd, 0, sizeof(ps_cmd));
|
||||
ps_cmd.txData = NULL;
|
||||
ps_cmd.txDataBitLen = 0;
|
||||
ps_cmd.addr = NULL;
|
||||
ps_cmd.addrBitLen = 0;
|
||||
ps_cmd.cmd = PSRAM_RESET;
|
||||
ps_cmd.cmdBitLen = 8;
|
||||
ps_cmd.rxData = NULL;
|
||||
ps_cmd.rxDataBitLen = 0;
|
||||
ps_cmd.dummyBitLen = 0;
|
||||
psram_cmd_config(spi_num, &ps_cmd);
|
||||
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
|
||||
psram_cmd_end(spi_num);
|
||||
}
|
||||
|
||||
esp_err_t psram_enable_wrap(uint32_t wrap_size)
|
||||
{
|
||||
switch (wrap_size) {
|
||||
case 32:
|
||||
psram_set_wrap_burst_length(PSRAM_SPI_1, PSRAM_CMD_QPI);
|
||||
return ESP_OK;
|
||||
case 16:
|
||||
case 64:
|
||||
default:
|
||||
return ESP_FAIL;
|
||||
}
|
||||
}
|
||||
|
||||
bool psram_support_wrap_size(uint32_t wrap_size)
|
||||
{
|
||||
switch (wrap_size) {
|
||||
case 0:
|
||||
case 32:
|
||||
return true;
|
||||
case 16:
|
||||
case 64:
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static void psram_read_id(uint32_t* dev_id)
|
||||
{
|
||||
psram_spi_num_t spi_num = PSRAM_SPI_1;
|
||||
psram_disable_qio_mode(spi_num);
|
||||
uint32_t dummy_bits = 0;
|
||||
uint32_t addr = 0;
|
||||
psram_cmd_t ps_cmd;
|
||||
switch (s_psram_mode) {
|
||||
case PSRAM_CACHE_F80M_S80M:
|
||||
dummy_bits = 0 + extra_dummy;
|
||||
break;
|
||||
case PSRAM_CACHE_F80M_S40M:
|
||||
case PSRAM_CACHE_F40M_S40M:
|
||||
case PSRAM_CACHE_F26M_S26M:
|
||||
case PSRAM_CACHE_F20M_S20M:
|
||||
default:
|
||||
dummy_bits = 0 + extra_dummy;
|
||||
break;
|
||||
}
|
||||
ps_cmd.cmd = PSRAM_DEVICE_ID;
|
||||
ps_cmd.cmdBitLen = 8;
|
||||
ps_cmd.addr = &addr;
|
||||
ps_cmd.addrBitLen = 24;
|
||||
ps_cmd.txDataBitLen = 0;
|
||||
ps_cmd.txData = NULL;
|
||||
ps_cmd.rxDataBitLen = 3 * 8;
|
||||
ps_cmd.rxData = dev_id;
|
||||
ps_cmd.dummyBitLen = dummy_bits;
|
||||
psram_cmd_config(spi_num, &ps_cmd);
|
||||
psram_clear_spi_fifo(spi_num);
|
||||
psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI);
|
||||
psram_cmd_end(spi_num);
|
||||
}
|
||||
|
||||
//enter QPI mode
|
||||
static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num)
|
||||
{
|
||||
psram_cmd_t ps_cmd;
|
||||
ps_cmd.cmd = PSRAM_ENTER_QMODE;
|
||||
ps_cmd.cmdBitLen = 8; //this two bits is used to delay 2 clock cycle
|
||||
ps_cmd.addr = NULL;
|
||||
ps_cmd.addrBitLen = 0;
|
||||
ps_cmd.txData = NULL;
|
||||
ps_cmd.txDataBitLen = 0;
|
||||
ps_cmd.rxData = NULL;
|
||||
ps_cmd.rxDataBitLen = 0;
|
||||
ps_cmd.dummyBitLen = 0;
|
||||
psram_cmd_config(spi_num, &ps_cmd);
|
||||
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
|
||||
psram_cmd_end(spi_num);
|
||||
return ESP_OK;
|
||||
}
|
||||
#endif /* FAKE_QPI */
|
||||
|
||||
//spi param init for psram
|
||||
void IRAM_ATTR psram_spi_init(psram_spi_num_t spi_num, psram_cache_mode_t mode)
|
||||
{
|
||||
uint8_t k;
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_CS_SETUP);
|
||||
#if 0
|
||||
// SPI_CPOL & SPI_CPHA
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_MISC_REG(spi_num), SPI_MEM_CK_IDLE_EDGE);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_CK_OUT_EDGE);
|
||||
// SPI bit order
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_WR_BIT_ORDER);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_RD_BIT_ORDER);
|
||||
// SPI bit order
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_DOUTDIN);
|
||||
#endif
|
||||
// May be not must to do.
|
||||
WRITE_PERI_REG(SPI_MEM_USER1_REG(spi_num), 0);
|
||||
#if 0
|
||||
// SPI mode type
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_SLAVE_REG(spi_num), SPI_MEM_SLAVE_MODE);
|
||||
#endif
|
||||
// Set SPI speed for non-80M mode. (80M mode uses APB clock directly.)
|
||||
if (mode!=PSRAM_CACHE_F80M_S80M) {
|
||||
k = 2; //Main divider. Divide by 2 so we get 40MHz
|
||||
//clear bit 31, set SPI clock div
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CLOCK_REG(spi_num), SPI_MEM_CLK_EQU_SYSCLK);
|
||||
WRITE_PERI_REG(SPI_MEM_CLOCK_REG(spi_num),
|
||||
(((k - 1) & SPI_MEM_CLKCNT_N) << SPI_MEM_CLKCNT_N_S) |
|
||||
((((k + 1) / 2 - 1) & SPI_MEM_CLKCNT_H) << SPI_MEM_CLKCNT_H_S) | //50% duty cycle
|
||||
(((k - 1) & SPI_MEM_CLKCNT_L) << SPI_MEM_CLKCNT_L_S));
|
||||
}
|
||||
// Enable MOSI
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_CS_SETUP | SPI_MEM_CS_HOLD | SPI_MEM_USR_MOSI);
|
||||
memset((void*)SPI_MEM_W0_REG(spi_num), 0, 16 * 4);
|
||||
}
|
||||
|
||||
/*
|
||||
* Psram mode init will overwrite original flash speed mode, so that it is possible to change psram and flash speed after OTA.
|
||||
* Flash read mode(QIO/QOUT/DIO/DOUT) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
|
||||
*/
|
||||
static void IRAM_ATTR psram_gpio_config(psram_cache_mode_t mode)
|
||||
{
|
||||
int spi_cache_dummy = 0;
|
||||
uint32_t rd_mode_reg = READ_PERI_REG(SPI_MEM_CTRL_REG(0));
|
||||
if (rd_mode_reg & (SPI_MEM_FREAD_QIO_M | SPI_MEM_FREAD_DIO_M)) {
|
||||
spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN;
|
||||
} else if (rd_mode_reg & (SPI_MEM_FREAD_QUAD_M | SPI_MEM_FREAD_DUAL_M)) {
|
||||
spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
|
||||
} else {
|
||||
spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
|
||||
}
|
||||
// In bootloader, all the signals are already configured,
|
||||
// We keep the following code in case the bootloader is some older version.
|
||||
gpio_matrix_out(FLASH_CS_IO, SPICS0_OUT_IDX, 0, 0);
|
||||
gpio_matrix_out(PSRAM_SPIQ_IO, SPIQ_OUT_IDX, 0, 0);
|
||||
gpio_matrix_in(PSRAM_SPIQ_IO, SPIQ_IN_IDX, 0);
|
||||
gpio_matrix_out(PSRAM_SPID_IO, SPID_OUT_IDX, 0, 0);
|
||||
gpio_matrix_in(PSRAM_SPID_IO, SPID_IN_IDX, 0);
|
||||
gpio_matrix_out(PSRAM_SPIWP_IO, SPIWP_OUT_IDX, 0, 0);
|
||||
gpio_matrix_in(PSRAM_SPIWP_IO, SPIWP_IN_IDX, 0);
|
||||
gpio_matrix_out(PSRAM_SPIHD_IO, SPIHD_OUT_IDX, 0, 0);
|
||||
gpio_matrix_in(PSRAM_SPIHD_IO, SPIHD_IN_IDX, 0);
|
||||
switch (mode) {
|
||||
case PSRAM_CACHE_F80M_S40M:
|
||||
extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
|
||||
g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
|
||||
g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER1_REG(_SPI_CACHE_PORT), SPI_MEM_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY
|
||||
esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
|
||||
esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
|
||||
break;
|
||||
case PSRAM_CACHE_F80M_S80M:
|
||||
extra_dummy = PSRAM_IO_MATRIX_DUMMY_80M;
|
||||
#if 0
|
||||
g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
|
||||
g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER1_REG(_SPI_CACHE_PORT), SPI_MEM_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY
|
||||
|
||||
CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE);
|
||||
esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
|
||||
CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE);
|
||||
esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_FLASH_PORT);
|
||||
|
||||
#endif
|
||||
break;
|
||||
case PSRAM_CACHE_F40M_S40M:
|
||||
extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
|
||||
#if 0
|
||||
g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
|
||||
g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER1_REG(_SPI_CACHE_PORT), SPI_MEM_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_40M, SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY
|
||||
|
||||
CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE);
|
||||
esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_CACHE_PORT);
|
||||
|
||||
CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE);
|
||||
esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
|
||||
#endif
|
||||
|
||||
break;
|
||||
case PSRAM_CACHE_F26M_S26M:
|
||||
case PSRAM_CACHE_F20M_S20M:
|
||||
extra_dummy = PSRAM_IO_MATRIX_DUMMY_20M;
|
||||
#if 0
|
||||
g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_20M;
|
||||
g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_20M;
|
||||
SET_PERI_REG_BITS(SPI_MEM_USER1_REG(_SPI_CACHE_PORT), SPI_MEM_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_20M, SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY
|
||||
|
||||
CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE);
|
||||
esp_rom_spiflash_config_clk(_SPI_20M_CLK_DIV, _SPI_CACHE_PORT);
|
||||
CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE);
|
||||
esp_rom_spiflash_config_clk(_SPI_20M_CLK_DIV, _SPI_FLASH_PORT);
|
||||
#endif
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(0), SPI_MEM_USR_DUMMY); // dummy en
|
||||
//select pin function gpio
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPIHD_U, PIN_FUNC_GPIO);
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPIWP_U, PIN_FUNC_GPIO);
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPICS0_U, PIN_FUNC_GPIO);
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPIQ_U, PIN_FUNC_GPIO);
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPID_U, PIN_FUNC_GPIO);
|
||||
// flash clock signal should come from IO MUX.
|
||||
// set drive ability for clock
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPICLK_U, FUNC_SPICLK_SPICLK);
|
||||
}
|
||||
|
||||
psram_size_t psram_get_size()
|
||||
{
|
||||
if (PSRAM_IS_32MBIT_VER0(s_psram_id)) {
|
||||
return PSRAM_SIZE_32MBITS;
|
||||
} else if (PSRAM_IS_64MBIT(s_psram_id)) {
|
||||
return PSRAM_SIZE_64MBITS;
|
||||
} else {
|
||||
return PSRAM_SIZE_MAX;
|
||||
}
|
||||
}
|
||||
|
||||
//psram gpio init , different working frequency we have different solutions
|
||||
esp_err_t IRAM_ATTR psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode) //psram init
|
||||
{
|
||||
|
||||
assert(mode < PSRAM_CACHE_MAX && "we don't support any other mode for now.");
|
||||
s_psram_mode = mode;
|
||||
|
||||
periph_module_enable(PERIPH_SPI_MODULE);
|
||||
#if 0
|
||||
WRITE_PERI_REG(SPI_MEM_EXT3_REG(0), 0x1);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_USR_PREP_HOLD_M);
|
||||
#endif
|
||||
|
||||
|
||||
switch (mode) {
|
||||
case PSRAM_CACHE_F80M_S80M:
|
||||
case PSRAM_CACHE_F80M_S40M:
|
||||
case PSRAM_CACHE_F40M_S40M:
|
||||
case PSRAM_CACHE_F26M_S26M:
|
||||
case PSRAM_CACHE_F20M_S20M:
|
||||
default:
|
||||
psram_spi_init(PSRAM_SPI_1, mode);
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_CS_HOLD);
|
||||
gpio_matrix_out(PSRAM_CS_IO, SPICS1_OUT_IDX, 0, 0);
|
||||
#ifdef FAKE_QPI
|
||||
/* We need to delay CLK to the PSRAM with respect to the clock signal as output by the SPI peripheral.
|
||||
We do this by routing it signal to signal 220/221, which are used as a loopback; the extra run through
|
||||
the GPIO matrix causes the delay. We use GPIO20 (which is not in any package but has pad logic in
|
||||
silicon) as a temporary pad for this. So the signal path is:
|
||||
SPI CLK --> GPIO28 --> signal220(in then out) --> internal GPIO29 --> signal221(in then out) --> GPIO17(PSRAM CLK)
|
||||
*/
|
||||
gpio_matrix_out(PSRAM_INTERNAL_IO_28, SPICLK_OUT_IDX, 0, 0);
|
||||
gpio_matrix_in(PSRAM_INTERNAL_IO_28, SIG_IN_FUNC220_IDX, 0);
|
||||
gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC220_IDX, 0, 0);
|
||||
gpio_matrix_in(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC221_IDX, 0);
|
||||
gpio_matrix_out(PSRAM_CLK_IO, SIG_IN_FUNC221_IDX, 0, 0);
|
||||
#else
|
||||
REG_SET_FIELD(SPI_MEM_SRAM_CMD_REG(0), SPI_MEM_SCLK_MODE, 1);
|
||||
REG_SET_FIELD(SPI_MEM_CTRL1_REG(1), SPI_MEM_CLK_MODE, 1);
|
||||
#endif
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
#if CONFIG_BOOTLOADER_VDDSDIO_BOOST_1_9V
|
||||
// For flash 80Mhz, we must update ldo voltage in case older version of bootloader didn't do this.
|
||||
rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
|
||||
if (cfg.enable == 1 && cfg.tieh == RTC_VDDSDIO_TIEH_1_8V) { // VDDSDIO regulator is enabled @ 1.8V
|
||||
cfg.drefh = 3;
|
||||
cfg.drefm = 3;
|
||||
cfg.drefl = 3;
|
||||
cfg.force = 1;
|
||||
rtc_vddsdio_set_config(cfg);
|
||||
ets_delay_us(10); // wait for regulator to become stable
|
||||
}
|
||||
#endif
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_CS_SETUP_M);
|
||||
psram_gpio_config(mode);
|
||||
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[PSRAM_CS_IO], PIN_FUNC_GPIO);
|
||||
psram_read_id(&s_psram_id);
|
||||
if (!PSRAM_IS_VALID(s_psram_id)) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
uint32_t flash_id = g_rom_flashchip.device_id;
|
||||
if (flash_id == FLASH_ID_GD25LQ32C) {
|
||||
// Set drive ability for 1.8v flash in 80Mhz.
|
||||
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPIHD_U, FUN_DRV, 3, FUN_DRV_S);
|
||||
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPIWP_U, FUN_DRV, 3, FUN_DRV_S);
|
||||
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPICS0_U, FUN_DRV, 3, FUN_DRV_S);
|
||||
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPICLK_U, FUN_DRV, 3, FUN_DRV_S);
|
||||
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPIQ_U, FUN_DRV, 3, FUN_DRV_S);
|
||||
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPID_U, FUN_DRV, 3, FUN_DRV_S);
|
||||
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[PSRAM_CS_IO], FUN_DRV, 3, FUN_DRV_S);
|
||||
}
|
||||
if (PSRAM_IS_64MBIT(s_psram_id)) {
|
||||
// For this psram, we don't need any extra clock cycles after cs get back to high level
|
||||
s_clk_mode = PSRAM_CLK_MODE_NORM;
|
||||
REG_SET_FIELD(SPI_MEM_SRAM_CMD_REG(0), SPI_MEM_SCLK_MODE, 0);
|
||||
REG_SET_FIELD(SPI_MEM_CTRL1_REG(1), SPI_MEM_CLK_MODE, 0);
|
||||
} else if (PSRAM_IS_32MBIT_VER0(s_psram_id)) {
|
||||
s_clk_mode = PSRAM_CLK_MODE_DCLK;
|
||||
if (mode == PSRAM_CACHE_F80M_S80M) {
|
||||
}
|
||||
}
|
||||
psram_reset_mode(PSRAM_SPI_1);
|
||||
psram_enable_qio_mode(PSRAM_SPI_1);
|
||||
psram_cache_init(mode, vaddrmode);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static void IRAM_ATTR psram_clock_set(psram_spi_num_t spi_num, int8_t freqdiv)
|
||||
{
|
||||
uint32_t freqbits;
|
||||
if (1 >= freqdiv) {
|
||||
WRITE_PERI_REG(SPI_MEM_SRAM_CLK_REG(spi_num), SPI_MEM_SCLK_EQU_SYSCLK);
|
||||
} else {
|
||||
freqbits = (((freqdiv-1)<<SPI_MEM_SCLKCNT_N_S)) | (((freqdiv/2-1)<<SPI_MEM_SCLKCNT_H_S)) | ((freqdiv-1)<<SPI_MEM_SCLKCNT_L_S);
|
||||
WRITE_PERI_REG(SPI_MEM_SRAM_CLK_REG(spi_num), freqbits);
|
||||
}
|
||||
}
|
||||
|
||||
//register initialization for sram cache params and r/w commands
|
||||
static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode)
|
||||
{
|
||||
SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_USR_RD_SRAM_DUMMY_M); //enable cache read dummy
|
||||
SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_CACHE_SRAM_USR_RCMD_M); //enable user mode for cache read command
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN, 7,
|
||||
SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN_S);
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE,
|
||||
SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7,
|
||||
SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_S);
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD,
|
||||
SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0x0b
|
||||
SET_PERI_REG_BITS(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_SRAM_RDUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
|
||||
SPI_MEM_SRAM_RDUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy,80m--+2dummy
|
||||
|
||||
switch (psram_cache_mode) {
|
||||
case PSRAM_CACHE_F80M_S80M:
|
||||
psram_clock_set(0, 1);
|
||||
break;
|
||||
case PSRAM_CACHE_F80M_S40M:
|
||||
psram_clock_set(0, 2);
|
||||
break;
|
||||
case PSRAM_CACHE_F26M_S26M:
|
||||
psram_clock_set(0, 3);
|
||||
break;
|
||||
case PSRAM_CACHE_F20M_S20M:
|
||||
psram_clock_set(0, 4);
|
||||
break;
|
||||
case PSRAM_CACHE_F40M_S40M:
|
||||
default:
|
||||
psram_clock_set(0, 2);
|
||||
break;
|
||||
}
|
||||
SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_CACHE_SRAM_USR_WCMD_M); // cache write command enable
|
||||
SET_PERI_REG_BITS(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_SRAM_ADDR_BITLEN_V, 23, SPI_MEM_SRAM_ADDR_BITLEN_S); //write address for cache command.
|
||||
SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_USR_SRAM_QIO_M); //enable qio mode for cache command
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_USR_SRAM_DIO_M); //disable dio mode for cache command
|
||||
|
||||
//config sram cache r/w command
|
||||
switch (psram_cache_mode) {
|
||||
case PSRAM_CACHE_F80M_S80M: //in this mode , no delay is needed
|
||||
break;
|
||||
case PSRAM_CACHE_F80M_S40M: //is sram is @40M, need 2 cycles of delay
|
||||
case PSRAM_CACHE_F40M_S40M:
|
||||
case PSRAM_CACHE_F26M_S26M:
|
||||
case PSRAM_CACHE_F20M_S20M:
|
||||
default:
|
||||
#ifdef FAKE_QPI
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 15,
|
||||
SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_S); //read command length, 2 bytes(1byte for delay),sending in qio mode in cache
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_V, ((PSRAM_FAST_READ_QUAD) << 8),
|
||||
SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0x0b, read command value,(0x00 for delay,0x0b for cmd)
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN, 15,
|
||||
SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN_S); //write command length,2 bytes(1byte for delay,send in qio mode in cache)
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE, ((PSRAM_QUAD_WRITE) << 8),
|
||||
SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38, write command value,(0x00 for delay)
|
||||
#else
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7,
|
||||
SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_S); //read command length, 2 bytes(1byte for delay),sending in qio mode in cache
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD,
|
||||
SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0x0b, read command value,(0x00 for delay,0x0b for cmd)
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN, 7,
|
||||
SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN_S); //write command length,2 bytes(1byte for delay,send in qio mode in cache)
|
||||
SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE,
|
||||
SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38, write command value,(0x00 for delay)
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL|DPORT_PRO_DRAM_SPLIT);
|
||||
DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL|DPORT_APP_DRAM_SPLIT);
|
||||
if (vaddrmode == PSRAM_VADDR_MODE_LOWHIGH) {
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL);
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL);
|
||||
} else if (vaddrmode == PSRAM_VADDR_MODE_EVENODD) {
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_SPLIT);
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_SPLIT);
|
||||
}
|
||||
#endif
|
||||
|
||||
Cache_Resume_DCache(0);
|
||||
|
||||
CLEAR_PERI_REG_MASK(SPI_MEM_MISC_REG(0), SPI_MEM_CS1_DIS_M); //ENABLE SPI0 CS1 TO PSRAM(CS0--FLASH; CS1--SRAM)
|
||||
if (s_clk_mode == PSRAM_CLK_MODE_NORM) { //different
|
||||
REG_SET_FIELD(SPI_MEM_SRAM_CMD_REG(0), SPI_MEM_SCLK_MODE, 0);
|
||||
REG_SET_FIELD(SPI_MEM_CTRL1_REG(1), SPI_MEM_CLK_MODE, 0);
|
||||
|
||||
SET_PERI_REG_MASK(SPI_MEM_USER_REG(0), SPI_MEM_CS_HOLD);
|
||||
// Set cs time.
|
||||
SET_PERI_REG_BITS(SPI_MEM_CTRL2_REG(0), SPI_MEM_CS_HOLD_TIME_V, 1, SPI_MEM_CS_HOLD_TIME_S);
|
||||
}
|
||||
}
|
||||
#endif // CONFIG_SPIRAM_SUPPORT
|
80
components/esp32s2beta/spiram_psram.h
Normal file
80
components/esp32s2beta/spiram_psram.h
Normal file
@ -0,0 +1,80 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#ifndef _PSRAM_H
|
||||
#define _PSRAM_H
|
||||
#include "soc/spi_mem_reg.h"
|
||||
#include "esp_err.h"
|
||||
#include "sdkconfig.h"
|
||||
|
||||
typedef enum {
|
||||
PSRAM_CACHE_F80M_S40M = 0,
|
||||
PSRAM_CACHE_F80M_S80M,
|
||||
PSRAM_CACHE_F40M_S40M,
|
||||
PSRAM_CACHE_F26M_S26M,
|
||||
PSRAM_CACHE_F20M_S20M,
|
||||
PSRAM_CACHE_MAX,
|
||||
} psram_cache_mode_t;
|
||||
|
||||
typedef enum {
|
||||
PSRAM_SIZE_32MBITS = 0,
|
||||
PSRAM_SIZE_64MBITS = 1,
|
||||
PSRAM_SIZE_MAX,
|
||||
} psram_size_t;
|
||||
|
||||
/*
|
||||
See the TRM, chapter PID/MPU/MMU, header 'External RAM' for the definitions of these modes.
|
||||
|
||||
Important is that NORMAL works with the app CPU cache disabled, but gives huge cache coherency
|
||||
issues when both app and pro CPU are enabled. LOWHIGH and EVENODD do not have these coherency
|
||||
issues but cannot be used when the app CPU cache is disabled.
|
||||
*/
|
||||
typedef enum {
|
||||
PSRAM_VADDR_MODE_NORMAL=0, ///< App and pro CPU use their own flash cache for external RAM access
|
||||
PSRAM_VADDR_MODE_LOWHIGH, ///< App and pro CPU share external RAM caches: pro CPU has low 2M, app CPU has high 2M
|
||||
PSRAM_VADDR_MODE_EVENODD, ///< App and pro CPU share external RAM caches: pro CPU does even 32yte ranges, app does odd ones.
|
||||
} psram_vaddr_mode_t;
|
||||
|
||||
/**
|
||||
* @brief get psram size
|
||||
* @return
|
||||
* - PSRAM_SIZE_MAX if psram not enabled or not valid
|
||||
* - PSRAM size
|
||||
*/
|
||||
psram_size_t psram_get_size();
|
||||
|
||||
/**
|
||||
* @brief psram cache enable function
|
||||
*
|
||||
* Esp-idf uses this to initialize cache for psram, mapping it into the main memory
|
||||
* address space.
|
||||
*
|
||||
* @param mode SPI mode to access psram in
|
||||
* @param vaddrmode Mode the psram cache works in.
|
||||
* @return ESP_OK on success, ESP_ERR_INVALID_STATE when VSPI peripheral is needed but cannot be claimed.
|
||||
*/
|
||||
esp_err_t psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode);
|
||||
|
||||
typedef enum {
|
||||
SPIRAM_WRAP_MODE_16B,
|
||||
SPIRAM_WRAP_MODE_32B,
|
||||
SPIRAM_WRAP_MODE_64B,
|
||||
SPIRAM_WRAP_MODE_DISABLE
|
||||
} spiram_wrap_mode_t;
|
||||
|
||||
esp_err_t esp_spiram_wrap_set(spiram_wrap_mode_t mode);
|
||||
|
||||
|
||||
#endif
|
369
components/esp32s2beta/system_api.c
Normal file
369
components/esp32s2beta/system_api.c
Normal file
@ -0,0 +1,369 @@
|
||||
// Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "esp_system.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_wifi.h"
|
||||
#include "esp_private/wifi.h"
|
||||
#include "esp_log.h"
|
||||
#include "sdkconfig.h"
|
||||
#include "esp32s2beta/rom/efuse.h"
|
||||
#include "esp32s2beta/rom/cache.h"
|
||||
#include "esp32s2beta/rom/uart.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/gpio_reg.h"
|
||||
#include "soc/efuse_reg.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/timer_group_reg.h"
|
||||
#include "soc/timer_group_struct.h"
|
||||
#include "soc/cpu.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/xtensa_api.h"
|
||||
#include "esp_heap_caps.h"
|
||||
#include "soc/syscon_reg.h"
|
||||
|
||||
static const char* TAG = "system_api";
|
||||
|
||||
static uint8_t base_mac_addr[6] = { 0 };
|
||||
|
||||
#define SHUTDOWN_HANDLERS_NO 2
|
||||
static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO];
|
||||
|
||||
void system_init()
|
||||
{
|
||||
}
|
||||
|
||||
esp_err_t esp_base_mac_addr_set(uint8_t *mac)
|
||||
{
|
||||
if (mac == NULL) {
|
||||
ESP_LOGE(TAG, "Base MAC address is NULL");
|
||||
abort();
|
||||
}
|
||||
|
||||
memcpy(base_mac_addr, mac, 6);
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_base_mac_addr_get(uint8_t *mac)
|
||||
{
|
||||
uint8_t null_mac[6] = {0};
|
||||
|
||||
if (memcmp(base_mac_addr, null_mac, 6) == 0) {
|
||||
ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
|
||||
return ESP_ERR_INVALID_MAC;
|
||||
}
|
||||
|
||||
memcpy(mac, base_mac_addr, 6);
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
|
||||
{
|
||||
return ESP_ERR_NOT_SUPPORTED; // TODO: read from MAC block in efuse
|
||||
}
|
||||
|
||||
esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
|
||||
{
|
||||
uint32_t mac_low;
|
||||
uint32_t mac_high;
|
||||
uint8_t efuse_crc;
|
||||
uint8_t calc_crc;
|
||||
|
||||
// mac_low = REG_READ(EFUSE_BLK0_RDATA1_REG);
|
||||
// mac_high = REG_READ(EFUSE_BLK0_RDATA2_REG);
|
||||
mac_low = REG_READ(EFUSE_RD_MAC_SPI_8M_0_REG);
|
||||
mac_high = REG_GET_BIT(EFUSE_RD_MAC_SPI_8M_1_REG,EFUSE_MAC_1);
|
||||
|
||||
mac[0] = mac_high >> 8;
|
||||
mac[1] = mac_high;
|
||||
mac[2] = mac_low >> 24;
|
||||
mac[3] = mac_low >> 16;
|
||||
mac[4] = mac_low >> 8;
|
||||
mac[5] = mac_low;
|
||||
|
||||
//efuse_crc = mac_high >> 16;
|
||||
|
||||
//calc_crc = esp_crc8(mac, 6);
|
||||
|
||||
//if (efuse_crc != calc_crc) {
|
||||
// Small range of MAC addresses are accepted even if CRC is invalid.
|
||||
// These addresses are reserved for Espressif internal use.
|
||||
// if ((mac_high & 0xFFFF) == 0x18fe) {
|
||||
// if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
|
||||
// return ESP_OK;
|
||||
// }
|
||||
// } else {
|
||||
// ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
|
||||
// abort();
|
||||
// }
|
||||
//}
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t system_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
|
||||
esp_err_t esp_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
|
||||
|
||||
esp_err_t esp_derive_mac(uint8_t* local_mac, const uint8_t* universal_mac)
|
||||
{
|
||||
uint8_t idx;
|
||||
|
||||
if (local_mac == NULL || universal_mac == NULL) {
|
||||
ESP_LOGE(TAG, "mac address param is NULL");
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
memcpy(local_mac, universal_mac, 6);
|
||||
for (idx = 0; idx < 64; idx++) {
|
||||
local_mac[0] = universal_mac[0] | 0x02;
|
||||
local_mac[0] ^= idx << 2;
|
||||
|
||||
if (memcmp(local_mac, universal_mac, 6)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
|
||||
{
|
||||
uint8_t efuse_mac[6];
|
||||
|
||||
if (mac == NULL) {
|
||||
ESP_LOGE(TAG, "mac address param is NULL");
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) {
|
||||
ESP_LOGE(TAG, "mac type is incorrect");
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
_Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \
|
||||
|| UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \
|
||||
"incorrect NUM_MAC_ADDRESS_FROM_EFUSE value");
|
||||
|
||||
if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
|
||||
esp_efuse_mac_get_default(efuse_mac);
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case ESP_MAC_WIFI_STA:
|
||||
memcpy(mac, efuse_mac, 6);
|
||||
break;
|
||||
case ESP_MAC_WIFI_SOFTAP:
|
||||
if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
|
||||
memcpy(mac, efuse_mac, 6);
|
||||
mac[5] += 1;
|
||||
}
|
||||
else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
|
||||
esp_derive_mac(mac, efuse_mac);
|
||||
}
|
||||
break;
|
||||
case ESP_MAC_BT:
|
||||
memcpy(mac, efuse_mac, 6);
|
||||
if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
|
||||
mac[5] += 2;
|
||||
}
|
||||
else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
|
||||
mac[5] += 1;
|
||||
}
|
||||
break;
|
||||
case ESP_MAC_ETH:
|
||||
if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
|
||||
memcpy(mac, efuse_mac, 6);
|
||||
mac[5] += 3;
|
||||
}
|
||||
else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
|
||||
efuse_mac[5] += 1;
|
||||
esp_derive_mac(mac, efuse_mac);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ESP_LOGW(TAG, "incorrect mac type");
|
||||
break;
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
|
||||
if (shutdown_handlers[i] == NULL) {
|
||||
shutdown_handlers[i] = handler;
|
||||
return ESP_OK;
|
||||
}
|
||||
}
|
||||
return ESP_FAIL;
|
||||
}
|
||||
|
||||
void esp_restart_noos() __attribute__ ((noreturn));
|
||||
|
||||
void IRAM_ATTR esp_restart(void)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
|
||||
if (shutdown_handlers[i]) {
|
||||
shutdown_handlers[i]();
|
||||
}
|
||||
}
|
||||
|
||||
// Disable scheduler on this core.
|
||||
vTaskSuspendAll();
|
||||
|
||||
esp_restart_noos();
|
||||
}
|
||||
|
||||
/* "inner" restart function for after RTOS, interrupts & anything else on this
|
||||
* core are already stopped. Stalls other core, resets hardware,
|
||||
* triggers restart.
|
||||
*/
|
||||
void IRAM_ATTR esp_restart_noos()
|
||||
{
|
||||
// Disable interrupts
|
||||
xt_ints_off(0xFFFFFFFF);
|
||||
|
||||
// Enable RTC watchdog for 1 second
|
||||
REG_WRITE(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
|
||||
REG_WRITE(RTC_CNTL_WDTCONFIG0_REG,
|
||||
RTC_CNTL_WDT_FLASHBOOT_MOD_EN_M |
|
||||
(RTC_WDT_STG_SEL_RESET_SYSTEM << RTC_CNTL_WDT_STG0_S) |
|
||||
(RTC_WDT_STG_SEL_RESET_RTC << RTC_CNTL_WDT_STG1_S) |
|
||||
(1 << RTC_CNTL_WDT_SYS_RESET_LENGTH_S) |
|
||||
(1 << RTC_CNTL_WDT_CPU_RESET_LENGTH_S) );
|
||||
REG_WRITE(RTC_CNTL_WDTCONFIG1_REG, rtc_clk_slow_freq_get_hz() * 1);
|
||||
|
||||
// Reset and stall the other CPU.
|
||||
// CPU must be reset before stalling, in case it was running a s32c1i
|
||||
// instruction. This would cause memory pool to be locked by arbiter
|
||||
// to the stalled CPU, preventing current CPU from accessing this pool.
|
||||
const uint32_t core_id = xPortGetCoreID();
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
const uint32_t other_core_id = (core_id == 0) ? 1 : 0;
|
||||
esp_cpu_reset(other_core_id);
|
||||
esp_cpu_stall(other_core_id);
|
||||
#endif
|
||||
|
||||
// Other core is now stalled, can access DPORT registers directly
|
||||
esp_dport_access_int_abort();
|
||||
|
||||
// Disable TG0/TG1 watchdogs
|
||||
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG0.wdt_config0.en = 0;
|
||||
TIMERG0.wdt_wprotect=0;
|
||||
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG1.wdt_config0.en = 0;
|
||||
TIMERG1.wdt_wprotect=0;
|
||||
|
||||
// Flush any data left in UART FIFOs
|
||||
uart_tx_wait_idle(0);
|
||||
uart_tx_wait_idle(1);
|
||||
// Disable cache
|
||||
Cache_Disable_ICache();
|
||||
Cache_Disable_DCache();
|
||||
|
||||
// 2nd stage bootloader reconfigures SPI flash signals.
|
||||
// Reset them to the defaults expected by ROM.
|
||||
WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
|
||||
WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
|
||||
WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
|
||||
WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
|
||||
WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
|
||||
WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
|
||||
|
||||
// Reset wifi/bluetooth/ethernet/sdio (bb/mac)
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
|
||||
DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
|
||||
DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
|
||||
DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
|
||||
DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
|
||||
DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
|
||||
|
||||
// Reset timer/spi/uart
|
||||
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
|
||||
DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_UART_RST);
|
||||
DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
|
||||
|
||||
// Set CPU back to XTAL source, no PLL, same as hard reset
|
||||
rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL);
|
||||
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
// Clear entry point for APP CPU
|
||||
DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
|
||||
#endif
|
||||
|
||||
// Reset CPUs
|
||||
if (core_id == 0) {
|
||||
// Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
esp_cpu_reset(1);
|
||||
#endif
|
||||
esp_cpu_reset(0);
|
||||
}
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
else {
|
||||
// Running on APP CPU: need to reset PRO CPU and unstall it,
|
||||
// then reset APP CPU
|
||||
esp_cpu_reset(0);
|
||||
esp_cpu_unstall(0);
|
||||
esp_cpu_reset(1);
|
||||
}
|
||||
#endif
|
||||
while(true) {
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
void system_restart(void) __attribute__((alias("esp_restart")));
|
||||
|
||||
uint32_t esp_get_free_heap_size( void )
|
||||
{
|
||||
return heap_caps_get_free_size( MALLOC_CAP_DEFAULT );
|
||||
}
|
||||
|
||||
uint32_t esp_get_minimum_free_heap_size( void )
|
||||
{
|
||||
return heap_caps_get_minimum_free_size( MALLOC_CAP_DEFAULT );
|
||||
}
|
||||
|
||||
uint32_t system_get_free_heap_size(void) __attribute__((alias("esp_get_free_heap_size")));
|
||||
|
||||
const char* system_get_sdk_version(void)
|
||||
{
|
||||
return "master";
|
||||
}
|
||||
|
||||
const char* esp_get_idf_version(void)
|
||||
{
|
||||
return IDF_VER;
|
||||
}
|
||||
|
||||
void esp_chip_info(esp_chip_info_t* out_info)
|
||||
{
|
||||
memset(out_info, 0, sizeof(*out_info));
|
||||
|
||||
out_info->model = CHIP_ESP32S2BETA;
|
||||
out_info->cores = 1;
|
||||
out_info->features = CHIP_FEATURE_WIFI_BGN;
|
||||
|
||||
// FIXME: other features?
|
||||
}
|
414
components/esp32s2beta/task_wdt.c
Normal file
414
components/esp32s2beta/task_wdt.c
Normal file
@ -0,0 +1,414 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdbool.h>
|
||||
#include "sdkconfig.h"
|
||||
#include "freertos/FreeRTOSConfig.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/queue.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include <esp_types.h>
|
||||
#include "esp_err.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_freertos_hooks.h"
|
||||
#include "soc/timer_group_struct.h"
|
||||
#include "soc/timer_group_reg.h"
|
||||
#include "esp_log.h"
|
||||
#include "driver/timer.h"
|
||||
#include "driver/periph_ctrl.h"
|
||||
#include "esp_task_wdt.h"
|
||||
|
||||
//Assertion macro where, if 'cond' is false, will exit the critical section and return 'ret'
|
||||
#define ASSERT_EXIT_CRIT_RETURN(cond, ret) ({ \
|
||||
if(!(cond)){ \
|
||||
portEXIT_CRITICAL(&twdt_spinlock); \
|
||||
return ret; \
|
||||
} \
|
||||
})
|
||||
|
||||
//Empty define used in ASSERT_EXIT_CRIT_RETURN macro when returning in void
|
||||
#define VOID_RETURN
|
||||
|
||||
//Structure used for each subscribed task
|
||||
typedef struct twdt_task_t twdt_task_t;
|
||||
struct twdt_task_t {
|
||||
TaskHandle_t task_handle;
|
||||
bool has_reset;
|
||||
twdt_task_t *next;
|
||||
};
|
||||
|
||||
//Structure used to hold run time configuration of the TWDT
|
||||
typedef struct twdt_config_t twdt_config_t;
|
||||
struct twdt_config_t {
|
||||
twdt_task_t *list; //Linked list of subscribed tasks
|
||||
uint32_t timeout; //Timeout period of TWDT
|
||||
bool panic; //Flag to trigger panic when TWDT times out
|
||||
intr_handle_t intr_handle;
|
||||
};
|
||||
|
||||
static twdt_config_t *twdt_config = NULL;
|
||||
static portMUX_TYPE twdt_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
/*
|
||||
* Idle hook callback for Idle Tasks to reset the TWDT. This callback will only
|
||||
* be registered to the Idle Hook of a particular core when the corresponding
|
||||
* Idle Task subscribes to the TWDT.
|
||||
*/
|
||||
static bool idle_hook_cb(void)
|
||||
{
|
||||
esp_task_wdt_reset();
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Internal function that looks for the target task in the TWDT task list.
|
||||
* Returns the list item if found and returns null if not found. Also checks if
|
||||
* all the other tasks have reset. Should be called within critical.
|
||||
*/
|
||||
static twdt_task_t *find_task_in_twdt_list(TaskHandle_t handle, bool *all_reset)
|
||||
{
|
||||
twdt_task_t *target = NULL;
|
||||
*all_reset = true;
|
||||
for(twdt_task_t *task = twdt_config->list; task != NULL; task = task->next){
|
||||
if(task->task_handle == handle){
|
||||
target = task; //Get pointer to target task list member
|
||||
}else{
|
||||
if(task->has_reset == false){ //If a task has yet to reset
|
||||
*all_reset = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return target;
|
||||
}
|
||||
|
||||
/*
|
||||
* Resets the hardware timer and has_reset flags of each task on the list.
|
||||
* Called within critical
|
||||
*/
|
||||
static void reset_hw_timer()
|
||||
{
|
||||
//All tasks have reset; time to reset the hardware timer.
|
||||
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG0.wdt_feed=1;
|
||||
TIMERG0.wdt_wprotect=0;
|
||||
//Clear all has_reset flags in list
|
||||
for (twdt_task_t *task = twdt_config->list; task != NULL; task = task->next){
|
||||
task->has_reset=false;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* ISR for when TWDT times out. Checks for which tasks have not reset. Also
|
||||
* triggers panic if configured to do so
|
||||
*/
|
||||
static void task_wdt_isr(void *arg)
|
||||
{
|
||||
portENTER_CRITICAL(&twdt_spinlock);
|
||||
twdt_task_t *twdttask;
|
||||
const char *cpu;
|
||||
//Reset hardware timer so that 2nd stage timeout is not reached (will trigger system reset)
|
||||
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG0.wdt_feed=1;
|
||||
TIMERG0.wdt_wprotect=0;
|
||||
//Acknowledge interrupt
|
||||
TIMERG0.int_clr.wdt=1;
|
||||
//We are taking a spinlock while doing I/O (ets_printf) here. Normally, that is a pretty
|
||||
//bad thing, possibly (temporarily) hanging up the 2nd core and stopping FreeRTOS. In this case,
|
||||
//something bad already happened and reporting this is considered more important
|
||||
//than the badness caused by a spinlock here.
|
||||
|
||||
//Return immediately if no tasks have been added to task list
|
||||
ASSERT_EXIT_CRIT_RETURN((twdt_config->list != NULL), VOID_RETURN);
|
||||
|
||||
//Watchdog got triggered because at least one task did not reset in time.
|
||||
ets_printf("Task watchdog got triggered. The following tasks did not reset the watchdog in time:\n");
|
||||
for (twdttask=twdt_config->list; twdttask!=NULL; twdttask=twdttask->next) {
|
||||
if (!twdttask->has_reset) {
|
||||
cpu=xTaskGetAffinity(twdttask->task_handle)==0?DRAM_STR("CPU 0"):DRAM_STR("CPU 1");
|
||||
if (xTaskGetAffinity(twdttask->task_handle)==tskNO_AFFINITY) cpu=DRAM_STR("CPU 0/1");
|
||||
ets_printf(" - %s (%s)\n", pcTaskGetTaskName(twdttask->task_handle), cpu);
|
||||
}
|
||||
}
|
||||
ets_printf(DRAM_STR("Tasks currently running:\n"));
|
||||
for (int x=0; x<portNUM_PROCESSORS; x++) {
|
||||
ets_printf("CPU %d: %s\n", x, pcTaskGetTaskName(xTaskGetCurrentTaskHandleForCPU(x)));
|
||||
}
|
||||
|
||||
if (twdt_config->panic){ //Trigger Panic if configured to do so
|
||||
ets_printf("Aborting.\n");
|
||||
portEXIT_CRITICAL(&twdt_spinlock);
|
||||
abort();
|
||||
}
|
||||
|
||||
portEXIT_CRITICAL(&twdt_spinlock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initializes the TWDT by allocating memory for the config data
|
||||
* structure, obtaining the idle task handles/registering idle hooks, and
|
||||
* setting the hardware timer registers. If reconfiguring, it will just modify
|
||||
* wdt_config and reset the hardware timer.
|
||||
*/
|
||||
esp_err_t esp_task_wdt_init(uint32_t timeout, bool panic)
|
||||
{
|
||||
portENTER_CRITICAL(&twdt_spinlock);
|
||||
if(twdt_config == NULL){ //TWDT not initialized yet
|
||||
//Allocate memory for wdt_config
|
||||
twdt_config = calloc(1, sizeof(twdt_config_t));
|
||||
ASSERT_EXIT_CRIT_RETURN((twdt_config != NULL), ESP_ERR_NO_MEM);
|
||||
|
||||
twdt_config->list = NULL;
|
||||
twdt_config->timeout = timeout;
|
||||
twdt_config->panic = panic;
|
||||
|
||||
//Register Interrupt and ISR
|
||||
ESP_ERROR_CHECK(esp_intr_alloc(ETS_TG0_WDT_LEVEL_INTR_SOURCE, 0, task_wdt_isr, NULL, &twdt_config->intr_handle))
|
||||
|
||||
//Configure hardware timer
|
||||
periph_module_enable(PERIPH_TIMG0_MODULE);
|
||||
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; //Disable write protection
|
||||
TIMERG0.wdt_config0.sys_reset_length=7; //3.2uS
|
||||
TIMERG0.wdt_config0.cpu_reset_length=7; //3.2uS
|
||||
TIMERG0.wdt_config0.level_int_en=1;
|
||||
TIMERG0.wdt_config0.stg0=TIMG_WDT_STG_SEL_INT; //1st stage timeout: interrupt
|
||||
TIMERG0.wdt_config0.stg1=TIMG_WDT_STG_SEL_RESET_SYSTEM; //2nd stage timeout: reset system
|
||||
TIMERG0.wdt_config1.clk_prescale=80*500; //Prescaler: wdt counts in ticks of 0.5mS
|
||||
TIMERG0.wdt_config2=twdt_config->timeout*2000; //Set timeout before interrupt
|
||||
TIMERG0.wdt_config3=twdt_config->timeout*4000; //Set timeout before reset
|
||||
TIMERG0.wdt_config0.en=1;
|
||||
TIMERG0.wdt_feed=1;
|
||||
TIMERG0.wdt_wprotect=0; //Enable write protection
|
||||
|
||||
}else{ //twdt_config previously initialized
|
||||
//Reconfigure task wdt
|
||||
twdt_config->panic = panic;
|
||||
twdt_config->timeout = timeout;
|
||||
|
||||
//Reconfigure hardware timer
|
||||
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; //Disable write protection
|
||||
TIMERG0.wdt_config0.en=0; //Disable timer
|
||||
TIMERG0.wdt_config2=twdt_config->timeout*2000; //Set timeout before interrupt
|
||||
TIMERG0.wdt_config3=twdt_config->timeout*4000; //Set timeout before reset
|
||||
TIMERG0.wdt_config0.en=1; //Renable timer
|
||||
TIMERG0.wdt_feed=1; //Reset timer
|
||||
TIMERG0.wdt_wprotect=0; //Enable write protection
|
||||
}
|
||||
portEXIT_CRITICAL(&twdt_spinlock);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_task_wdt_deinit()
|
||||
{
|
||||
portENTER_CRITICAL(&twdt_spinlock);
|
||||
//TWDT must already be initialized
|
||||
ASSERT_EXIT_CRIT_RETURN((twdt_config != NULL), ESP_ERR_NOT_FOUND);
|
||||
//Task list must be empty
|
||||
ASSERT_EXIT_CRIT_RETURN((twdt_config->list == NULL), ESP_ERR_INVALID_STATE);
|
||||
|
||||
//Disable hardware timer
|
||||
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; //Disable write protection
|
||||
TIMERG0.wdt_config0.en=0; //Disable timer
|
||||
TIMERG0.wdt_wprotect=0; //Enable write protection
|
||||
|
||||
ESP_ERROR_CHECK(esp_intr_free(twdt_config->intr_handle)) //Unregister interrupt
|
||||
free(twdt_config); //Free twdt_config
|
||||
twdt_config = NULL;
|
||||
portEXIT_CRITICAL(&twdt_spinlock);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_task_wdt_add(TaskHandle_t handle)
|
||||
{
|
||||
portENTER_CRITICAL(&twdt_spinlock);
|
||||
//TWDT must already be initialized
|
||||
ASSERT_EXIT_CRIT_RETURN((twdt_config != NULL), ESP_ERR_INVALID_STATE);
|
||||
|
||||
twdt_task_t *target_task;
|
||||
bool all_reset;
|
||||
if (handle == NULL){ //Get handle of current task if none is provided
|
||||
handle = xTaskGetCurrentTaskHandle();
|
||||
}
|
||||
//Check if tasks exists in task list, and if all other tasks have reset
|
||||
target_task = find_task_in_twdt_list(handle, &all_reset);
|
||||
//task cannot be already subscribed
|
||||
ASSERT_EXIT_CRIT_RETURN((target_task == NULL), ESP_ERR_INVALID_ARG);
|
||||
|
||||
//Add target task to TWDT task list
|
||||
target_task = calloc(1,sizeof(twdt_task_t));
|
||||
ASSERT_EXIT_CRIT_RETURN((target_task != NULL), ESP_ERR_NO_MEM);
|
||||
target_task->task_handle = handle;
|
||||
target_task->has_reset = true;
|
||||
target_task->next = NULL;
|
||||
if (twdt_config->list == NULL) { //Adding to empty list
|
||||
twdt_config->list = target_task;
|
||||
} else { //Adding to tail of list
|
||||
twdt_task_t *task;
|
||||
for (task = twdt_config->list; task->next != NULL; task = task->next){
|
||||
; //point task to current tail of TWDT task list
|
||||
}
|
||||
task->next = target_task;
|
||||
}
|
||||
|
||||
//If idle task, register the idle hook callback to appropriate core
|
||||
for(int i = 0; i < portNUM_PROCESSORS; i++){
|
||||
if(handle == xTaskGetIdleTaskHandleForCPU(i)){
|
||||
ESP_ERROR_CHECK(esp_register_freertos_idle_hook_for_cpu(idle_hook_cb, i))
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(all_reset){ //Reset hardware timer if all other tasks in list have reset in
|
||||
reset_hw_timer();
|
||||
}
|
||||
|
||||
portEXIT_CRITICAL(&twdt_spinlock); //Nested critical if Legacy
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_task_wdt_reset()
|
||||
{
|
||||
portENTER_CRITICAL(&twdt_spinlock);
|
||||
//TWDT must already be initialized
|
||||
ASSERT_EXIT_CRIT_RETURN((twdt_config != NULL), ESP_ERR_INVALID_STATE);
|
||||
|
||||
TaskHandle_t handle = xTaskGetCurrentTaskHandle();
|
||||
twdt_task_t *target_task;
|
||||
bool all_reset;
|
||||
|
||||
//Check if task exists in task list, and if all other tasks have reset
|
||||
target_task = find_task_in_twdt_list(handle, &all_reset);
|
||||
//Return error if trying to reset task that is not on the task list
|
||||
ASSERT_EXIT_CRIT_RETURN((target_task != NULL), ESP_ERR_NOT_FOUND);
|
||||
|
||||
target_task->has_reset = true; //Reset the task if it's on the task list
|
||||
if(all_reset){ //Reset if all other tasks in list have reset in
|
||||
reset_hw_timer();
|
||||
}
|
||||
|
||||
portEXIT_CRITICAL(&twdt_spinlock);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_task_wdt_delete(TaskHandle_t handle)
|
||||
{
|
||||
if(handle == NULL){
|
||||
handle = xTaskGetCurrentTaskHandle();
|
||||
}
|
||||
portENTER_CRITICAL(&twdt_spinlock);
|
||||
//Return error if twdt has not been initialized
|
||||
ASSERT_EXIT_CRIT_RETURN((twdt_config != NULL), ESP_ERR_NOT_FOUND);
|
||||
|
||||
twdt_task_t *target_task;
|
||||
bool all_reset;
|
||||
target_task = find_task_in_twdt_list(handle, &all_reset);
|
||||
//Task doesn't exist on list. Return error
|
||||
ASSERT_EXIT_CRIT_RETURN((target_task != NULL), ESP_ERR_INVALID_ARG);
|
||||
|
||||
if(target_task == twdt_config->list){ //target_task is head of list. Delete
|
||||
twdt_config->list = target_task->next;
|
||||
free(target_task);
|
||||
}else{ //target_task not head of list. Delete
|
||||
twdt_task_t *prev;
|
||||
for (prev = twdt_config->list; prev->next != target_task; prev = prev->next){
|
||||
; //point prev to task preceding target_task
|
||||
}
|
||||
prev->next = target_task->next;
|
||||
free(target_task);
|
||||
}
|
||||
|
||||
//If idle task, deregister idle hook callback form appropriate core
|
||||
for(int i = 0; i < portNUM_PROCESSORS; i++){
|
||||
if(handle == xTaskGetIdleTaskHandleForCPU(i)){
|
||||
esp_deregister_freertos_idle_hook_for_cpu(idle_hook_cb, i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(all_reset){ //Reset hardware timer if all remaining tasks have reset
|
||||
reset_hw_timer();
|
||||
}
|
||||
|
||||
portEXIT_CRITICAL(&twdt_spinlock);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_task_wdt_status(TaskHandle_t handle)
|
||||
{
|
||||
if(handle == NULL){
|
||||
handle = xTaskGetCurrentTaskHandle();
|
||||
}
|
||||
|
||||
portENTER_CRITICAL(&twdt_spinlock);
|
||||
//Return if TWDT is not initialized
|
||||
ASSERT_EXIT_CRIT_RETURN((twdt_config != NULL), ESP_ERR_INVALID_STATE);
|
||||
|
||||
twdt_task_t *task;
|
||||
for(task = twdt_config->list; task!=NULL; task=task->next){
|
||||
//Return ESP_OK if task is found
|
||||
ASSERT_EXIT_CRIT_RETURN((task->task_handle != handle), ESP_OK);
|
||||
}
|
||||
|
||||
//Task could not be found
|
||||
portEXIT_CRITICAL(&twdt_spinlock);
|
||||
return ESP_ERR_NOT_FOUND;
|
||||
}
|
||||
|
||||
void esp_task_wdt_feed()
|
||||
{
|
||||
portENTER_CRITICAL(&twdt_spinlock);
|
||||
//Return immediately if TWDT has not been initialized
|
||||
ASSERT_EXIT_CRIT_RETURN((twdt_config != NULL), VOID_RETURN);
|
||||
|
||||
//Check if task is on list
|
||||
TaskHandle_t handle = xTaskGetCurrentTaskHandle();
|
||||
bool all_reset;
|
||||
twdt_task_t *target_task = find_task_in_twdt_list(handle, &all_reset);
|
||||
|
||||
//reset the task if it's on the list, then return
|
||||
if(target_task != NULL){
|
||||
target_task->has_reset = true;
|
||||
if(all_reset){
|
||||
reset_hw_timer(); //Reset hardware timer if all other tasks have reset
|
||||
}
|
||||
portEXIT_CRITICAL(&twdt_spinlock);
|
||||
return;
|
||||
}
|
||||
|
||||
//Add task if it's has not on list
|
||||
target_task = calloc(1, sizeof(twdt_task_t));
|
||||
ASSERT_EXIT_CRIT_RETURN((target_task != NULL), VOID_RETURN); //If calloc failed
|
||||
target_task->task_handle = handle;
|
||||
target_task->has_reset = true;
|
||||
target_task->next = NULL;
|
||||
|
||||
if (twdt_config->list == NULL) { //Adding to empty list
|
||||
twdt_config->list = target_task;
|
||||
} else { //Adding to tail of list
|
||||
twdt_task_t *task;
|
||||
for (task = twdt_config->list; task->next != NULL; task = task->next){
|
||||
; //point task to current tail of wdt task list
|
||||
}
|
||||
task->next = target_task;
|
||||
}
|
||||
|
||||
portEXIT_CRITICAL(&twdt_spinlock);
|
||||
}
|
||||
|
||||
|
@ -16,13 +16,10 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#include <sys/lock.h>
|
||||
|
||||
#include "esp32/rom/ets_sys.h"
|
||||
#include "esp32/rom/rtc.h"
|
||||
#include "soc/rtc.h"
|
||||
|
||||
#include "soc/dport_reg.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_phy_init.h"
|
||||
#include "esp_system.h"
|
||||
@ -30,7 +27,6 @@
|
||||
#include "nvs.h"
|
||||
#include "nvs_flash.h"
|
||||
#include "sdkconfig.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/portmacro.h"
|
||||
#include "phy.h"
|
||||
@ -39,6 +35,14 @@
|
||||
#include "driver/periph_ctrl.h"
|
||||
#include "esp_private/wifi.h"
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
#include "esp32/rom/ets_sys.h"
|
||||
#include "esp32/rom/rtc.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32S2BETA
|
||||
#include "esp32s2beta/rom/ets_sys.h"
|
||||
#include "esp32s2beta/rom/rtc.h"
|
||||
#endif
|
||||
|
||||
extern wifi_mac_time_update_cb_t s_wifi_mac_time_update_cb;
|
||||
|
||||
static const char* TAG = "phy_init";
|
||||
@ -100,7 +104,7 @@ static inline void phy_update_wifi_mac_time(bool en_clock_stopped, int64_t now)
|
||||
}
|
||||
}
|
||||
|
||||
esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data, esp_phy_calibration_mode_t mode,
|
||||
esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data, esp_phy_calibration_mode_t mode,
|
||||
esp_phy_calibration_data_t* calibration_data, phy_rf_module_t module)
|
||||
{
|
||||
/* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */
|
||||
@ -123,9 +127,9 @@ esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data, esp_phy_calibrat
|
||||
}
|
||||
else {
|
||||
/* If Wi-Fi, BT all disabled, modem sleep should not take effect;
|
||||
* If either Wi-Fi or BT is enabled, should allow modem sleep requires
|
||||
* If either Wi-Fi or BT is enabled, should allow modem sleep requires
|
||||
* to enter sleep;
|
||||
* If Wi-Fi, BT co-exist, it is disallowed that only one module
|
||||
* If Wi-Fi, BT co-exist, it is disallowed that only one module
|
||||
* support modem sleep, E,g. BT support modem sleep but Wi-Fi not
|
||||
* support modem sleep;
|
||||
*/
|
||||
@ -577,7 +581,7 @@ static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle,
|
||||
if (err != ESP_OK) {
|
||||
ESP_LOGE(TAG, "%s: store calibration nvs commit failed(0x%x)\n", __func__, err);
|
||||
}
|
||||
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
@ -585,10 +589,10 @@ static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle,
|
||||
static void esp_phy_reduce_tx_power(esp_phy_init_data_t* init_data)
|
||||
{
|
||||
uint8_t i;
|
||||
|
||||
|
||||
for(i = 0; i < PHY_TX_POWER_NUM; i++) {
|
||||
// LOWEST_PHY_TX_POWER is the lowest tx power
|
||||
init_data->params[PHY_TX_POWER_OFFSET+i] = PHY_TX_POWER_LOWEST;
|
||||
init_data->params[PHY_TX_POWER_OFFSET+i] = PHY_TX_POWER_LOWEST;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
381
components/mbedtls/port/esp32s2beta/aes.c
Normal file
381
components/mbedtls/port/esp32s2beta/aes.c
Normal file
@ -0,0 +1,381 @@
|
||||
/**
|
||||
* \brief AES block cipher, ESP32 hardware accelerated version
|
||||
* Based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016-2017, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*/
|
||||
/*
|
||||
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
|
||||
*
|
||||
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
|
||||
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
||||
*/
|
||||
#include <string.h>
|
||||
#include "mbedtls/aes.h"
|
||||
#include "hwcrypto/aes.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
#include <sys/lock.h>
|
||||
|
||||
#include <freertos/FreeRTOS.h>
|
||||
|
||||
#include "soc/cpu.h"
|
||||
#include <stdio.h>
|
||||
|
||||
#define AES_BLOCK_BYTES 16
|
||||
|
||||
/* AES uses a spinlock mux not a lock as the underlying block operation
|
||||
only takes a small number of cycles, much less than using
|
||||
a mutex for this.
|
||||
|
||||
For CBC, CFB, etc. this may mean that interrupts are disabled for a longer
|
||||
period of time for bigger data lengths.
|
||||
*/
|
||||
static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
void esp_aes_acquire_hardware( void )
|
||||
{
|
||||
/* newlib locks lazy initialize on ESP-IDF */
|
||||
portENTER_CRITICAL(&aes_spinlock);
|
||||
|
||||
/* Enable AES hardware */
|
||||
REG_SET_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_AES);
|
||||
/* Clear reset on digital signature unit,
|
||||
otherwise AES unit is held in reset also. */
|
||||
REG_CLR_BIT(DPORT_PERI_RST_EN_REG,
|
||||
DPORT_PERI_EN_AES
|
||||
| DPORT_PERI_EN_DIGITAL_SIGNATURE);
|
||||
}
|
||||
|
||||
void esp_aes_release_hardware( void )
|
||||
{
|
||||
/* Disable AES hardware */
|
||||
REG_SET_BIT(DPORT_PERI_RST_EN_REG, DPORT_PERI_EN_AES);
|
||||
/* Don't return other units to reset, as this pulls
|
||||
reset on RSA & SHA units, respectively. */
|
||||
REG_CLR_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_AES);
|
||||
|
||||
portEXIT_CRITICAL(&aes_spinlock);
|
||||
}
|
||||
|
||||
void esp_aes_init( esp_aes_context *ctx )
|
||||
{
|
||||
bzero( ctx, sizeof( esp_aes_context ) );
|
||||
}
|
||||
|
||||
void esp_aes_free( esp_aes_context *ctx )
|
||||
{
|
||||
if ( ctx == NULL ) {
|
||||
return;
|
||||
}
|
||||
|
||||
bzero( ctx, sizeof( esp_aes_context ) );
|
||||
}
|
||||
|
||||
/*
|
||||
* AES key schedule (same for encryption or decryption, as hardware handles schedule)
|
||||
*
|
||||
*/
|
||||
int esp_aes_setkey( esp_aes_context *ctx, const unsigned char *key,
|
||||
unsigned int keybits )
|
||||
{
|
||||
if (keybits != 128 && keybits != 192 && keybits != 256) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
ctx->key_bytes = keybits / 8;
|
||||
memcpy(ctx->key, key, ctx->key_bytes);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper function to copy key from esp_aes_context buffer
|
||||
* to hardware key registers.
|
||||
*
|
||||
* Call only while holding esp_aes_acquire_hardware().
|
||||
*/
|
||||
static inline void esp_aes_setkey_hardware( esp_aes_context *ctx, int mode)
|
||||
{
|
||||
const uint32_t MODE_DECRYPT_BIT = 4;
|
||||
unsigned mode_reg_base = (mode == ESP_AES_ENCRYPT) ? 0 : MODE_DECRYPT_BIT;
|
||||
|
||||
memcpy((uint32_t *)AES_KEY_BASE, ctx->key, ctx->key_bytes);
|
||||
REG_WRITE(AES_MODE_REG, mode_reg_base + ((ctx->key_bytes / 8) - 2));
|
||||
}
|
||||
|
||||
/* Run a single 16 byte block of AES, using the hardware engine.
|
||||
*
|
||||
* Call only while holding esp_aes_acquire_hardware().
|
||||
*/
|
||||
static inline void esp_aes_block(const void *input, void *output)
|
||||
{
|
||||
memcpy((void *)AES_TEXT_IN_BASE, input, AES_BLOCK_BYTES);
|
||||
|
||||
REG_WRITE(AES_TRIGGER_REG, 1);
|
||||
while (REG_READ(AES_STATE_REG) != 0) { }
|
||||
|
||||
memcpy(output, (void *)AES_TEXT_OUT_BASE, AES_BLOCK_BYTES);
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption
|
||||
*/
|
||||
int esp_internal_aes_encrypt( esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
esp_aes_acquire_hardware();
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
|
||||
esp_aes_block(input, output);
|
||||
esp_aes_release_hardware();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_aes_encrypt( esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
esp_internal_aes_encrypt(ctx, input, output);
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-ECB block decryption
|
||||
*/
|
||||
|
||||
int esp_internal_aes_decrypt( esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
esp_aes_acquire_hardware();
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
|
||||
esp_aes_block(input, output);
|
||||
esp_aes_release_hardware();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_aes_decrypt( esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
esp_internal_aes_decrypt(ctx, input, output);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ecb( esp_aes_context *ctx,
|
||||
int mode,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
esp_aes_acquire_hardware();
|
||||
esp_aes_setkey_hardware(ctx, mode);
|
||||
esp_aes_block(input, output);
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-CBC buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cbc( esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int i;
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
const uint32_t *input_words = (const uint32_t *)input;
|
||||
uint32_t *iv_words = (uint32_t *)iv;
|
||||
unsigned char temp[16];
|
||||
|
||||
if ( length % 16 ) {
|
||||
return ( ERR_ESP_AES_INVALID_INPUT_LENGTH );
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
|
||||
esp_aes_setkey_hardware(ctx, mode);
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
while ( length > 0 ) {
|
||||
memcpy(temp, input_words, 16);
|
||||
esp_aes_block(input_words, output_words);
|
||||
|
||||
for ( i = 0; i < 4; i++ ) {
|
||||
output_words[i] = output_words[i] ^ iv_words[i];
|
||||
}
|
||||
|
||||
memcpy( iv_words, temp, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
} else { // ESP_AES_ENCRYPT
|
||||
while ( length > 0 ) {
|
||||
|
||||
for ( i = 0; i < 4; i++ ) {
|
||||
output_words[i] = input_words[i] ^ iv_words[i];
|
||||
}
|
||||
|
||||
esp_aes_block(output_words, output_words);
|
||||
memcpy( iv_words, output_words, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
}
|
||||
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB128 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb128( esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int c;
|
||||
size_t n = *iv_off;
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
esp_aes_block(iv, iv );
|
||||
}
|
||||
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)( c ^ iv[n] );
|
||||
iv[n] = (unsigned char) c;
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
} else {
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
esp_aes_block(iv, iv );
|
||||
}
|
||||
|
||||
iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ );
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
}
|
||||
|
||||
*iv_off = n;
|
||||
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB8 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb8( esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
unsigned char c;
|
||||
unsigned char ov[17];
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
|
||||
|
||||
while ( length-- ) {
|
||||
memcpy( ov, iv, 16 );
|
||||
esp_aes_block(iv, iv);
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
ov[16] = *input;
|
||||
}
|
||||
|
||||
c = *output++ = (unsigned char)( iv[0] ^ *input++ );
|
||||
|
||||
if ( mode == ESP_AES_ENCRYPT ) {
|
||||
ov[16] = c;
|
||||
}
|
||||
|
||||
memcpy( iv, ov + 1, 16 );
|
||||
}
|
||||
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CTR buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ctr( esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int c, i;
|
||||
size_t n = *nc_off;
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
|
||||
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
esp_aes_block(nonce_counter, stream_block);
|
||||
|
||||
for ( i = 16; i > 0; i-- )
|
||||
if ( ++nonce_counter[i - 1] != 0 ) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)( c ^ stream_block[n] );
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
|
||||
*nc_off = n;
|
||||
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return 0;
|
||||
}
|
184
components/mbedtls/port/esp32s2beta/sha.c
Normal file
184
components/mbedtls/port/esp32s2beta/sha.c
Normal file
@ -0,0 +1,184 @@
|
||||
/*
|
||||
* ESP32 hardware accelerated SHA1/256/512 implementation
|
||||
* based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*/
|
||||
/*
|
||||
* The SHA-1 standard was published by NIST in 1993.
|
||||
*
|
||||
* http://www.itl.nist.gov/fipspubs/fip180-1.htm
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <sys/lock.h>
|
||||
#include <byteswap.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "hwcrypto/sha.h"
|
||||
#include "rom/ets_sys.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
|
||||
/* Single lock for SHA engine
|
||||
*/
|
||||
static _lock_t s_sha_lock;
|
||||
|
||||
/* This API was designed for ESP32, which has seperate
|
||||
engines for SHA1,256,512. ESP32C has a single engine.
|
||||
*/
|
||||
|
||||
/* Return block size (in bytes) for a given SHA type */
|
||||
inline static size_t block_length(esp_sha_type type) {
|
||||
switch(type) {
|
||||
case SHA1:
|
||||
case SHA2_224:
|
||||
case SHA2_256:
|
||||
return 64;
|
||||
case SHA2_384:
|
||||
case SHA2_512:
|
||||
return 128;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Return state size (in bytes) for a given SHA type */
|
||||
inline static size_t state_length(esp_sha_type type) {
|
||||
switch(type) {
|
||||
case SHA1:
|
||||
return 160/8;
|
||||
case SHA2_224:
|
||||
case SHA2_256:
|
||||
return 256/8;
|
||||
case SHA2_384:
|
||||
case SHA2_512:
|
||||
return 512/8;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Copy words in memory (to/from a memory block), byte swapping as we go. */
|
||||
static void memcpy_endianswap(void *to, const void *from, size_t num_bytes)
|
||||
{
|
||||
uint32_t *to_words = (uint32_t *)to;
|
||||
const uint32_t *from_words = (const uint32_t *)from;
|
||||
assert(num_bytes % 4 == 0);
|
||||
for (int i = 0; i < num_bytes / 4; i++) {
|
||||
to_words[i] = __bswap_32(from_words[i]);
|
||||
}
|
||||
asm volatile ("memw");
|
||||
}
|
||||
|
||||
static void memcpy_swapwords(void *to, const void *from, size_t num_bytes)
|
||||
{
|
||||
uint32_t *to_words = (uint32_t *)to;
|
||||
const uint32_t *from_words = (const uint32_t *)from;
|
||||
assert(num_bytes % 8 == 0);
|
||||
for (int i = 0; i < num_bytes / 4; i += 2) {
|
||||
to_words[i] = from_words[i+1];
|
||||
to_words[i+1] = from_words[i];
|
||||
}
|
||||
asm volatile ("memw");
|
||||
}
|
||||
|
||||
static void esp_sha_lock_engine_inner(void);
|
||||
|
||||
bool esp_sha_try_lock_engine(esp_sha_type sha_type)
|
||||
{
|
||||
if(_lock_try_acquire(&s_sha_lock) != 0) {
|
||||
/* SHA engine is already in use */
|
||||
return false;
|
||||
} else {
|
||||
esp_sha_lock_engine_inner();
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
void esp_sha_lock_engine(esp_sha_type sha_type)
|
||||
{
|
||||
_lock_acquire(&s_sha_lock);
|
||||
esp_sha_lock_engine_inner();
|
||||
}
|
||||
|
||||
static void esp_sha_lock_engine_inner(void)
|
||||
{
|
||||
ets_sha_enable();
|
||||
}
|
||||
|
||||
void esp_sha_unlock_engine(esp_sha_type sha_type)
|
||||
{
|
||||
ets_sha_disable();
|
||||
_lock_release(&s_sha_lock);
|
||||
}
|
||||
|
||||
void esp_sha_wait_idle(void)
|
||||
{
|
||||
while(DPORT_REG_READ(SHA_BUSY_REG) != 0) { }
|
||||
}
|
||||
|
||||
void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
|
||||
{
|
||||
/* engine should be locked */
|
||||
esp_sha_wait_idle();
|
||||
if (sha_type != SHA2_512 && sha_type != SHA2_384) {
|
||||
/* <SHA-512, read out directly */
|
||||
memcpy(digest_state, (void *)SHA_H_BASE, state_length(sha_type));
|
||||
} else {
|
||||
/* SHA-512, read out with each pair of words swapped */
|
||||
memcpy_swapwords(digest_state, (void *)SHA_H_BASE, state_length(sha_type));
|
||||
}
|
||||
}
|
||||
|
||||
void esp_sha_block(esp_sha_type sha_type, const void *data_block, bool is_first_block)
|
||||
{
|
||||
/* engine should be locked */
|
||||
|
||||
REG_WRITE(SHA_MODE_REG, sha_type);
|
||||
|
||||
/* ESP32C SHA unit can be loaded while previous block is processing */
|
||||
memcpy_endianswap((void *)SHA_M_BASE, data_block, block_length(sha_type));
|
||||
|
||||
esp_sha_wait_idle();
|
||||
if (is_first_block) {
|
||||
REG_WRITE(SHA_START_REG, 1);
|
||||
} else {
|
||||
REG_WRITE(SHA_CONTINUE_REG, 1);
|
||||
}
|
||||
|
||||
/* Note: deliberately not waiting for this operation to complete,
|
||||
as a performance tweak - delay waiting until the next time we need the SHA
|
||||
unit, instead.
|
||||
*/
|
||||
}
|
||||
|
||||
void esp_sha(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output)
|
||||
{
|
||||
SHA_CTX ctx;
|
||||
|
||||
esp_sha_lock_engine(sha_type);
|
||||
|
||||
ets_sha_init(&ctx, sha_type);
|
||||
ets_sha_starts(&ctx, 0);
|
||||
ets_sha_update(&ctx, input, ilen, false);
|
||||
ets_sha_finish(&ctx, output);
|
||||
|
||||
esp_sha_unlock_engine(sha_type);
|
||||
}
|
269
components/mbedtls/port/include/esp32s2beta/aes.h
Normal file
269
components/mbedtls/port/include/esp32s2beta/aes.h
Normal file
@ -0,0 +1,269 @@
|
||||
/**
|
||||
* \brief AES block cipher, ESP32 hardware accelerated version
|
||||
* Based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef ESP_AES_H
|
||||
#define ESP_AES_H
|
||||
|
||||
#include "esp_types.h"
|
||||
#include "rom/aes.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* padlock.c and aesni.c rely on these values! */
|
||||
#define ESP_AES_ENCRYPT 1
|
||||
#define ESP_AES_DECRYPT 0
|
||||
|
||||
#define ERR_ESP_AES_INVALID_KEY_LENGTH -0x0020 /**< Invalid key length. */
|
||||
#define ERR_ESP_AES_INVALID_INPUT_LENGTH -0x0022 /**< Invalid data input length. */
|
||||
|
||||
/**
|
||||
* \brief AES context structure
|
||||
*
|
||||
* \note buf is able to hold 32 extra bytes, which can be used:
|
||||
* - for alignment purposes if VIA padlock is used, and/or
|
||||
* - to simplify key expansion in the 256-bit case by
|
||||
* generating an extra round key
|
||||
*/
|
||||
typedef struct {
|
||||
uint8_t key_bytes;
|
||||
uint8_t key[32];
|
||||
} esp_aes_context;
|
||||
|
||||
/**
|
||||
* \brief Lock access to AES hardware unit
|
||||
*
|
||||
* AES hardware unit can only be used by one
|
||||
* consumer at a time.
|
||||
*
|
||||
* esp_aes_xxx API calls automatically manage locking & unlocking of
|
||||
* hardware, this function is only needed if you want to call
|
||||
* ets_aes_xxx functions directly.
|
||||
*/
|
||||
void esp_aes_acquire_hardware( void );
|
||||
|
||||
/**
|
||||
* \brief Unlock access to AES hardware unit
|
||||
*
|
||||
* esp_aes_xxx API calls automatically manage locking & unlocking of
|
||||
* hardware, this function is only needed if you want to call
|
||||
* ets_aes_xxx functions directly.
|
||||
*/
|
||||
void esp_aes_release_hardware( void );
|
||||
|
||||
/**
|
||||
* \brief Initialize AES context
|
||||
*
|
||||
* \param ctx AES context to be initialized
|
||||
*/
|
||||
void esp_aes_init( esp_aes_context *ctx );
|
||||
|
||||
/**
|
||||
* \brief Clear AES context
|
||||
*
|
||||
* \param ctx AES context to be cleared
|
||||
*/
|
||||
void esp_aes_free( esp_aes_context *ctx );
|
||||
|
||||
/**
|
||||
* \brief AES set key schedule (encryption or decryption)
|
||||
*
|
||||
* \param ctx AES context to be initialized
|
||||
* \param key encryption key
|
||||
* \param keybits must be 128, 192 or 256
|
||||
*
|
||||
* \return 0 if successful, or ERR_AES_INVALID_KEY_LENGTH
|
||||
*/
|
||||
int esp_aes_setkey( esp_aes_context *ctx, const unsigned char *key, unsigned int keybits );
|
||||
|
||||
/**
|
||||
* \brief AES-ECB block encryption/decryption
|
||||
*
|
||||
* \param ctx AES context
|
||||
* \param mode AES_ENCRYPT or AES_DECRYPT
|
||||
* \param input 16-byte input block
|
||||
* \param output 16-byte output block
|
||||
*
|
||||
* \return 0 if successful
|
||||
*/
|
||||
int esp_aes_crypt_ecb( esp_aes_context *ctx, int mode, const unsigned char input[16], unsigned char output[16] );
|
||||
|
||||
/**
|
||||
* \brief AES-CBC buffer encryption/decryption
|
||||
* Length should be a multiple of the block
|
||||
* size (16 bytes)
|
||||
*
|
||||
* \note Upon exit, the content of the IV is updated so that you can
|
||||
* call the function same function again on the following
|
||||
* block(s) of data and get the same result as if it was
|
||||
* encrypted in one call. This allows a "streaming" usage.
|
||||
* If on the other hand you need to retain the contents of the
|
||||
* IV, you should either save it manually or use the cipher
|
||||
* module instead.
|
||||
*
|
||||
* \param ctx AES context
|
||||
* \param mode AES_ENCRYPT or AES_DECRYPT
|
||||
* \param length length of the input data
|
||||
* \param iv initialization vector (updated after use)
|
||||
* \param input buffer holding the input data
|
||||
* \param output buffer holding the output data
|
||||
*
|
||||
* \return 0 if successful, or ERR_AES_INVALID_INPUT_LENGTH
|
||||
*/
|
||||
int esp_aes_crypt_cbc( esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output );
|
||||
|
||||
|
||||
/**
|
||||
* \brief AES-CFB128 buffer encryption/decryption.
|
||||
*
|
||||
* Note: Due to the nature of CFB you should use the same key schedule for
|
||||
* both encryption and decryption. So a context initialized with
|
||||
* esp_aes_setkey_enc() for both AES_ENCRYPT and AES_DECRYPT.
|
||||
*
|
||||
* \note Upon exit, the content of the IV is updated so that you can
|
||||
* call the function same function again on the following
|
||||
* block(s) of data and get the same result as if it was
|
||||
* encrypted in one call. This allows a "streaming" usage.
|
||||
* If on the other hand you need to retain the contents of the
|
||||
* IV, you should either save it manually or use the cipher
|
||||
* module instead.
|
||||
*
|
||||
* \param ctx AES context
|
||||
* \param mode AES_ENCRYPT or AES_DECRYPT
|
||||
* \param length length of the input data
|
||||
* \param iv_off offset in IV (updated after use)
|
||||
* \param iv initialization vector (updated after use)
|
||||
* \param input buffer holding the input data
|
||||
* \param output buffer holding the output data
|
||||
*
|
||||
* \return 0 if successful
|
||||
*/
|
||||
int esp_aes_crypt_cfb128( esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output );
|
||||
|
||||
/**
|
||||
* \brief AES-CFB8 buffer encryption/decryption.
|
||||
*
|
||||
* Note: Due to the nature of CFB you should use the same key schedule for
|
||||
* both encryption and decryption. So a context initialized with
|
||||
* esp_aes_setkey_enc() for both AES_ENCRYPT and AES_DECRYPT.
|
||||
*
|
||||
* \note Upon exit, the content of the IV is updated so that you can
|
||||
* call the function same function again on the following
|
||||
* block(s) of data and get the same result as if it was
|
||||
* encrypted in one call. This allows a "streaming" usage.
|
||||
* If on the other hand you need to retain the contents of the
|
||||
* IV, you should either save it manually or use the cipher
|
||||
* module instead.
|
||||
*
|
||||
* \param ctx AES context
|
||||
* \param mode AES_ENCRYPT or AES_DECRYPT
|
||||
* \param length length of the input data
|
||||
* \param iv initialization vector (updated after use)
|
||||
* \param input buffer holding the input data
|
||||
* \param output buffer holding the output data
|
||||
*
|
||||
* \return 0 if successful
|
||||
*/
|
||||
int esp_aes_crypt_cfb8( esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output );
|
||||
|
||||
/**
|
||||
* \brief AES-CTR buffer encryption/decryption
|
||||
*
|
||||
* Warning: You have to keep the maximum use of your counter in mind!
|
||||
*
|
||||
* Note: Due to the nature of CTR you should use the same key schedule for
|
||||
* both encryption and decryption. So a context initialized with
|
||||
* esp_aes_setkey_enc() for both AES_ENCRYPT and AES_DECRYPT.
|
||||
*
|
||||
* \param ctx AES context
|
||||
* \param length The length of the data
|
||||
* \param nc_off The offset in the current stream_block (for resuming
|
||||
* within current cipher stream). The offset pointer to
|
||||
* should be 0 at the start of a stream.
|
||||
* \param nonce_counter The 128-bit nonce and counter.
|
||||
* \param stream_block The saved stream-block for resuming. Is overwritten
|
||||
* by the function.
|
||||
* \param input The input data stream
|
||||
* \param output The output data stream
|
||||
*
|
||||
* \return 0 if successful
|
||||
*/
|
||||
int esp_aes_crypt_ctr( esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output );
|
||||
|
||||
|
||||
/**
|
||||
* \brief Internal AES block encryption function
|
||||
* (Only exposed to allow overriding it,
|
||||
* see AES_ENCRYPT_ALT)
|
||||
*
|
||||
* \param ctx AES context
|
||||
* \param input Plaintext block
|
||||
* \param output Output (ciphertext) block
|
||||
*/
|
||||
int esp_internal_aes_encrypt( esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] );
|
||||
|
||||
/** Deprecated, see esp_aes_internal_encrypt */
|
||||
void esp_aes_encrypt( esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) __attribute__((deprecated));
|
||||
|
||||
/**
|
||||
* \brief Internal AES block decryption function
|
||||
* (Only exposed to allow overriding it,
|
||||
* see AES_DECRYPT_ALT)
|
||||
*
|
||||
* \param ctx AES context
|
||||
* \param input Ciphertext block
|
||||
* \param output Output (plaintext) block
|
||||
*/
|
||||
int esp_internal_aes_decrypt( esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] );
|
||||
|
||||
/** Deprecated, see esp_aes_internal_decrypt */
|
||||
void esp_aes_decrypt( esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) __attribute__((deprecated));
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* aes.h */
|
207
components/mbedtls/port/include/esp32s2beta/sha.h
Normal file
207
components/mbedtls/port/include/esp32s2beta/sha.h
Normal file
@ -0,0 +1,207 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef _ESP_SHA_H_
|
||||
#define _ESP_SHA_H_
|
||||
|
||||
#include "rom/sha.h"
|
||||
#include "esp_types.h"
|
||||
|
||||
/** @brief Low-level support functions for the hardware SHA engine
|
||||
*
|
||||
* @note If you're looking for a SHA API to use, try mbedtls component
|
||||
* mbedtls/shaXX.h. That API supports hardware acceleration.
|
||||
*
|
||||
* The API in this header provides some building blocks for implementing a
|
||||
* full SHA API such as the one in mbedtls, and also a basic SHA function esp_sha().
|
||||
*
|
||||
* Some technical details about the hardware SHA engine:
|
||||
*
|
||||
* - SHA accelerator engine calculates one digest at a time, per SHA
|
||||
* algorithm type. It initialises and maintains the digest state
|
||||
* internally. It is possible to read out an in-progress SHA digest
|
||||
* state, but it is not possible to restore a SHA digest state
|
||||
* into the engine.
|
||||
*
|
||||
* - The memory block SHA_TEXT_BASE is shared between all SHA digest
|
||||
* engines, so all engines must be idle before this memory block is
|
||||
* modified.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Defined in rom/sha.h */
|
||||
typedef SHA_TYPE esp_sha_type;
|
||||
|
||||
/** @brief Calculate SHA1 or SHA2 sum of some data, using hardware SHA engine
|
||||
*
|
||||
* @note For more versatile SHA calculations, where data doesn't need
|
||||
* to be passed all at once, try the mbedTLS mbedtls/shaX.h APIs. The
|
||||
* hardware-accelerated mbedTLS implementation is also faster when
|
||||
* hashing large amounts of data.
|
||||
*
|
||||
* @note It is not necessary to lock any SHA hardware before calling
|
||||
* this function, thread safety is managed internally.
|
||||
*
|
||||
* @note If a TLS connection is open then this function may block
|
||||
* indefinitely waiting for a SHA engine to become available. Use the
|
||||
* mbedTLS SHA API to avoid this problem.
|
||||
*
|
||||
* @param sha_type SHA algorithm to use.
|
||||
*
|
||||
* @param input Input data buffer.
|
||||
*
|
||||
* @param ilen Length of input data in bytes.
|
||||
*
|
||||
* @param output Buffer for output SHA digest. Output is 20 bytes for
|
||||
* sha_type SHA1, 32 bytes for sha_type SHA2_256, 48 bytes for
|
||||
* sha_type SHA2_384, 64 bytes for sha_type SHA2_512.
|
||||
*/
|
||||
void esp_sha(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output);
|
||||
|
||||
/* @brief Begin to execute a single SHA block operation
|
||||
*
|
||||
* @note This is a piece of a SHA algorithm, rather than an entire SHA
|
||||
* algorithm.
|
||||
*
|
||||
* @note Call esp_sha_try_lock_engine() before calling this
|
||||
* function. Do not call esp_sha_lock_memory_block() beforehand, this
|
||||
* is done inside the function.
|
||||
*
|
||||
* @param sha_type SHA algorithm to use.
|
||||
*
|
||||
* @param data_block Pointer to block of data. Block size is
|
||||
* determined by algorithm (SHA1/SHA2_256 = 64 bytes,
|
||||
* SHA2_384/SHA2_512 = 128 bytes)
|
||||
*
|
||||
* @param is_first_block If this parameter is true, the SHA state will
|
||||
* be initialised (with the initial state of the given SHA algorithm)
|
||||
* before the block is calculated. If false, the existing state of the
|
||||
* SHA engine will be used.
|
||||
*
|
||||
* @return As a performance optimisation, this function returns before
|
||||
* the SHA block operation is complete. Both this function and
|
||||
* esp_sha_read_state() will automatically wait for any previous
|
||||
* operation to complete before they begin. If using the SHA registers
|
||||
* directly in another way, call esp_sha_wait_idle() after calling this
|
||||
* function but before accessing the SHA registers.
|
||||
*/
|
||||
void esp_sha_block(esp_sha_type sha_type, const void *data_block, bool is_first_block);
|
||||
|
||||
/** @brief Read out the current state of the SHA digest loaded in the engine.
|
||||
*
|
||||
* @note This is a piece of a SHA algorithm, rather than an entire SHA algorithm.
|
||||
*
|
||||
* @note Call esp_sha_try_lock_engine() before calling this
|
||||
* function. Do not call esp_sha_lock_memory_block() beforehand, this
|
||||
* is done inside the function.
|
||||
*
|
||||
* If the SHA suffix padding block has been executed already, the
|
||||
* value that is read is the SHA digest (in big endian
|
||||
* format). Otherwise, the value that is read is an interim SHA state.
|
||||
*
|
||||
* @note If sha_type is SHA2_384, only 48 bytes of state will be read.
|
||||
* This is enough for the final SHA2_384 digest, but if you want the
|
||||
* interim SHA-384 state (to continue digesting) then pass SHA2_512 instead.
|
||||
*
|
||||
* @param sha_type SHA algorithm in use.
|
||||
*
|
||||
* @param state Pointer to a memory buffer to hold the SHA state. Size
|
||||
* is 20 bytes (SHA1), 32 bytes (SHA2_256), 48 bytes (SHA2_384) or 64 bytes (SHA2_512).
|
||||
*
|
||||
*/
|
||||
void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state);
|
||||
|
||||
/**
|
||||
* @brief Obtain exclusive access to a particular SHA engine
|
||||
*
|
||||
* @param sha_type Type of SHA engine to use.
|
||||
*
|
||||
* Blocks until engine is available. Note: Can block indefinitely
|
||||
* while a TLS connection is open, suggest using
|
||||
* esp_sha_try_lock_engine() and failing over to software SHA.
|
||||
*/
|
||||
void esp_sha_lock_engine(esp_sha_type sha_type);
|
||||
|
||||
/**
|
||||
* @brief Try and obtain exclusive access to a particular SHA engine
|
||||
*
|
||||
* @param sha_type Type of SHA engine to use.
|
||||
*
|
||||
* @return Returns true if the SHA engine is locked for exclusive
|
||||
* use. Call esp_sha_unlock_sha_engine() when done. Returns false if
|
||||
* the SHA engine is already in use, caller should use software SHA
|
||||
* algorithm for this digest.
|
||||
*/
|
||||
bool esp_sha_try_lock_engine(esp_sha_type sha_type);
|
||||
|
||||
/**
|
||||
* @brief Unlock an engine previously locked with esp_sha_lock_engine() or esp_sha_try_lock_engine()
|
||||
*
|
||||
* @param sha_type Type of engine to release.
|
||||
*/
|
||||
void esp_sha_unlock_engine(esp_sha_type sha_type);
|
||||
|
||||
/**
|
||||
* @brief Acquire exclusive access to the SHA shared memory block at SHA_TEXT_BASE
|
||||
*
|
||||
* This memory block is shared across all the SHA algorithm types.
|
||||
*
|
||||
* Caller should have already locked a SHA engine before calling this function.
|
||||
*
|
||||
* Note that it is possible to obtain exclusive access to the memory block even
|
||||
* while it is in use by the SHA engine. Caller should use esp_sha_wait_idle()
|
||||
* to ensure the SHA engine is not reading from the memory block in hardware.
|
||||
*
|
||||
* @note You do not need to lock the memory block before calling esp_sha_block() or esp_sha_read_digest_state(), these functions handle memory block locking internally.
|
||||
*
|
||||
* Call esp_sha_unlock_memory_block() when done.
|
||||
*/
|
||||
void esp_sha_lock_memory_block(void);
|
||||
|
||||
/**
|
||||
* @brief Release exclusive access to the SHA register memory block at SHA_TEXT_BASE
|
||||
*
|
||||
* Caller should have already locked a SHA engine before calling this function.
|
||||
*
|
||||
* Call following esp_sha_lock_memory_block().
|
||||
*/
|
||||
void esp_sha_unlock_memory_block(void);
|
||||
|
||||
/** @brief Wait for the SHA engine to finish any current operation
|
||||
*
|
||||
* @note This function does not ensure exclusive access to any SHA
|
||||
* engine. Caller should use esp_sha_try_lock_engine() and
|
||||
* esp_sha_lock_memory_block() as required.
|
||||
*
|
||||
* @note Functions declared in this header file wait for SHA engine
|
||||
* completion automatically, so you don't need to use this API for
|
||||
* these. However if accessing SHA registers directly, you will need
|
||||
* to call this before accessing SHA registers if using the
|
||||
* esp_sha_block() function.
|
||||
*
|
||||
* @note This function busy-waits, so wastes CPU resources.
|
||||
* Best to delay calling until you are about to need it.
|
||||
*
|
||||
*/
|
||||
void esp_sha_wait_idle(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
712
components/xtensa/esp32s2beta/include/xtensa/config/core-isa.h
Normal file
712
components/xtensa/esp32s2beta/include/xtensa/config/core-isa.h
Normal file
@ -0,0 +1,712 @@
|
||||
/*
|
||||
* xtensa/config/core-isa.h -- HAL definitions that are dependent on Xtensa
|
||||
* processor CORE configuration
|
||||
*
|
||||
* See <xtensa/config/core.h>, which includes this file, for more details.
|
||||
*/
|
||||
|
||||
/* Xtensa processor core configuration information.
|
||||
|
||||
Copyright (c) 1999-2018 Tensilica Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
|
||||
#ifndef _XTENSA_CORE_CONFIGURATION_H
|
||||
#define _XTENSA_CORE_CONFIGURATION_H
|
||||
|
||||
|
||||
/****************************************************************************
|
||||
Parameters Useful for Any Code, USER or PRIVILEGED
|
||||
****************************************************************************/
|
||||
|
||||
/*
|
||||
* Note: Macros of the form XCHAL_HAVE_*** have a value of 1 if the option is
|
||||
* configured, and a value of 0 otherwise. These macros are always defined.
|
||||
*/
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
ISA
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
#define XCHAL_HAVE_BE 0 /* big-endian byte ordering */
|
||||
#define XCHAL_HAVE_WINDOWED 1 /* windowed registers option */
|
||||
#define XCHAL_NUM_AREGS 64 /* num of physical addr regs */
|
||||
#define XCHAL_NUM_AREGS_LOG2 6 /* log2(XCHAL_NUM_AREGS) */
|
||||
#define XCHAL_MAX_INSTRUCTION_SIZE 3 /* max instr bytes (3..8) */
|
||||
#define XCHAL_HAVE_DEBUG 1 /* debug option */
|
||||
#define XCHAL_HAVE_DENSITY 1 /* 16-bit instructions */
|
||||
#define XCHAL_HAVE_LOOPS 0 /* zero-overhead loops */
|
||||
#define XCHAL_LOOP_BUFFER_SIZE 0 /* zero-ov. loop instr buffer size */
|
||||
#define XCHAL_HAVE_NSA 1 /* NSA/NSAU instructions */
|
||||
#define XCHAL_HAVE_MINMAX 1 /* MIN/MAX instructions */
|
||||
#define XCHAL_HAVE_SEXT 1 /* SEXT instruction */
|
||||
#define XCHAL_HAVE_DEPBITS 0 /* DEPBITS instruction */
|
||||
#define XCHAL_HAVE_CLAMPS 1 /* CLAMPS instruction */
|
||||
#define XCHAL_HAVE_MUL16 1 /* MUL16S/MUL16U instructions */
|
||||
#define XCHAL_HAVE_MUL32 1 /* MULL instruction */
|
||||
#define XCHAL_HAVE_MUL32_HIGH 1 /* MULUH/MULSH instructions */
|
||||
#define XCHAL_HAVE_DIV32 1 /* QUOS/QUOU/REMS/REMU instructions */
|
||||
#define XCHAL_HAVE_L32R 1 /* L32R instruction */
|
||||
#define XCHAL_HAVE_ABSOLUTE_LITERALS 0 /* non-PC-rel (extended) L32R */
|
||||
#define XCHAL_HAVE_CONST16 0 /* CONST16 instruction */
|
||||
#define XCHAL_HAVE_ADDX 1 /* ADDX#/SUBX# instructions */
|
||||
#define XCHAL_HAVE_EXCLUSIVE 0 /* L32EX/S32EX instructions */
|
||||
#define XCHAL_HAVE_WIDE_BRANCHES 0 /* B*.W18 or B*.W15 instr's */
|
||||
#define XCHAL_HAVE_PREDICTED_BRANCHES 0 /* B[EQ/EQZ/NE/NEZ]T instr's */
|
||||
#define XCHAL_HAVE_CALL4AND12 1 /* (obsolete option) */
|
||||
#define XCHAL_HAVE_ABS 1 /* ABS instruction */
|
||||
/*#define XCHAL_HAVE_POPC 0*/ /* POPC instruction */
|
||||
/*#define XCHAL_HAVE_CRC 0*/ /* CRC instruction */
|
||||
#define XCHAL_HAVE_RELEASE_SYNC 1 /* L32AI/S32RI instructions */
|
||||
#define XCHAL_HAVE_S32C1I 0 /* S32C1I instruction */
|
||||
#define XCHAL_HAVE_SPECULATION 0 /* speculation */
|
||||
#define XCHAL_HAVE_FULL_RESET 1 /* all regs/state reset */
|
||||
#define XCHAL_NUM_CONTEXTS 1 /* */
|
||||
#define XCHAL_NUM_MISC_REGS 4 /* num of scratch regs (0..4) */
|
||||
#define XCHAL_HAVE_TAP_MASTER 0 /* JTAG TAP control instr's */
|
||||
#define XCHAL_HAVE_PRID 1 /* processor ID register */
|
||||
#define XCHAL_HAVE_EXTERN_REGS 1 /* WER/RER instructions */
|
||||
#define XCHAL_HAVE_MX 0 /* MX core (Tensilica internal) */
|
||||
#define XCHAL_HAVE_MP_INTERRUPTS 0 /* interrupt distributor port */
|
||||
#define XCHAL_HAVE_MP_RUNSTALL 0 /* core RunStall control port */
|
||||
#define XCHAL_HAVE_PSO 0 /* Power Shut-Off */
|
||||
#define XCHAL_HAVE_PSO_CDM 0 /* core/debug/mem pwr domains */
|
||||
#define XCHAL_HAVE_PSO_FULL_RETENTION 0 /* all regs preserved on PSO */
|
||||
#define XCHAL_HAVE_THREADPTR 1 /* THREADPTR register */
|
||||
#define XCHAL_HAVE_BOOLEANS 0 /* boolean registers */
|
||||
#define XCHAL_HAVE_CP 1 /* CPENABLE reg (coprocessor) */
|
||||
#define XCHAL_CP_MAXCFG 8 /* max allowed cp id plus one */
|
||||
#define XCHAL_HAVE_MAC16 0 /* MAC16 package */
|
||||
|
||||
#define XCHAL_HAVE_FUSION 0 /* Fusion*/
|
||||
#define XCHAL_HAVE_FUSION_FP 0 /* Fusion FP option */
|
||||
#define XCHAL_HAVE_FUSION_LOW_POWER 0 /* Fusion Low Power option */
|
||||
#define XCHAL_HAVE_FUSION_AES 0 /* Fusion BLE/Wifi AES-128 CCM option */
|
||||
#define XCHAL_HAVE_FUSION_CONVENC 0 /* Fusion Conv Encode option */
|
||||
#define XCHAL_HAVE_FUSION_LFSR_CRC 0 /* Fusion LFSR-CRC option */
|
||||
#define XCHAL_HAVE_FUSION_BITOPS 0 /* Fusion Bit Operations Support option */
|
||||
#define XCHAL_HAVE_FUSION_AVS 0 /* Fusion AVS option */
|
||||
#define XCHAL_HAVE_FUSION_16BIT_BASEBAND 0 /* Fusion 16-bit Baseband option */
|
||||
#define XCHAL_HAVE_FUSION_VITERBI 0 /* Fusion Viterbi option */
|
||||
#define XCHAL_HAVE_FUSION_SOFTDEMAP 0 /* Fusion Soft Bit Demap option */
|
||||
#define XCHAL_HAVE_HIFIPRO 0 /* HiFiPro Audio Engine pkg */
|
||||
#define XCHAL_HAVE_HIFI4 0 /* HiFi4 Audio Engine pkg */
|
||||
#define XCHAL_HAVE_HIFI4_VFPU 0 /* HiFi4 Audio Engine VFPU option */
|
||||
#define XCHAL_HAVE_HIFI3 0 /* HiFi3 Audio Engine pkg */
|
||||
#define XCHAL_HAVE_HIFI3_VFPU 0 /* HiFi3 Audio Engine VFPU option */
|
||||
#define XCHAL_HAVE_HIFI3Z 0 /* HiFi3Z Audio Engine pkg */
|
||||
#define XCHAL_HAVE_HIFI3Z_VFPU 0 /* HiFi3Z Audio Engine VFPU option */
|
||||
#define XCHAL_HAVE_HIFI2 0 /* HiFi2 Audio Engine pkg */
|
||||
#define XCHAL_HAVE_HIFI2EP 0 /* HiFi2EP */
|
||||
#define XCHAL_HAVE_HIFI_MINI 0
|
||||
|
||||
|
||||
|
||||
#define XCHAL_HAVE_VECTORFPU2005 0 /* vector floating-point pkg */
|
||||
#define XCHAL_HAVE_USER_DPFPU 0 /* user DP floating-point pkg */
|
||||
#define XCHAL_HAVE_USER_SPFPU 0 /* user SP floating-point pkg */
|
||||
#define XCHAL_HAVE_FP 0 /* single prec floating point */
|
||||
#define XCHAL_HAVE_FP_DIV 0 /* FP with DIV instructions */
|
||||
#define XCHAL_HAVE_FP_RECIP 0 /* FP with RECIP instructions */
|
||||
#define XCHAL_HAVE_FP_SQRT 0 /* FP with SQRT instructions */
|
||||
#define XCHAL_HAVE_FP_RSQRT 0 /* FP with RSQRT instructions */
|
||||
#define XCHAL_HAVE_DFP 0 /* double precision FP pkg */
|
||||
#define XCHAL_HAVE_DFP_DIV 0 /* DFP with DIV instructions */
|
||||
#define XCHAL_HAVE_DFP_RECIP 0 /* DFP with RECIP instructions*/
|
||||
#define XCHAL_HAVE_DFP_SQRT 0 /* DFP with SQRT instructions */
|
||||
#define XCHAL_HAVE_DFP_RSQRT 0 /* DFP with RSQRT instructions*/
|
||||
#define XCHAL_HAVE_DFP_ACCEL 0 /* double precision FP acceleration pkg */
|
||||
#define XCHAL_HAVE_DFP_accel XCHAL_HAVE_DFP_ACCEL /* for backward compatibility */
|
||||
|
||||
#define XCHAL_HAVE_DFPU_SINGLE_ONLY 0 /* DFPU Coprocessor, single precision only */
|
||||
#define XCHAL_HAVE_DFPU_SINGLE_DOUBLE 0 /* DFPU Coprocessor, single and double precision */
|
||||
#define XCHAL_HAVE_VECTRA1 0 /* Vectra I pkg */
|
||||
#define XCHAL_HAVE_VECTRALX 0 /* Vectra LX pkg */
|
||||
|
||||
#define XCHAL_HAVE_FUSIONG 0 /* FusionG */
|
||||
#define XCHAL_HAVE_FUSIONG3 0 /* FusionG3 */
|
||||
#define XCHAL_HAVE_FUSIONG6 0 /* FusionG6 */
|
||||
#define XCHAL_HAVE_FUSIONG_SP_VFPU 0 /* sp_vfpu option on FusionG */
|
||||
#define XCHAL_HAVE_FUSIONG_DP_VFPU 0 /* dp_vfpu option on FusionG */
|
||||
#define XCHAL_FUSIONG_SIMD32 0 /* simd32 for FusionG */
|
||||
|
||||
#define XCHAL_HAVE_PDX 0 /* PDX */
|
||||
#define XCHAL_PDX_SIMD32 0 /* simd32 for PDX */
|
||||
#define XCHAL_HAVE_PDX4 0 /* PDX4 */
|
||||
#define XCHAL_HAVE_PDX8 0 /* PDX8 */
|
||||
#define XCHAL_HAVE_PDX16 0 /* PDX16 */
|
||||
|
||||
#define XCHAL_HAVE_CONNXD2 0 /* ConnX D2 pkg */
|
||||
#define XCHAL_HAVE_CONNXD2_DUALLSFLIX 0 /* ConnX D2 & Dual LoadStore Flix */
|
||||
#define XCHAL_HAVE_BBE16 0 /* ConnX BBE16 pkg */
|
||||
#define XCHAL_HAVE_BBE16_RSQRT 0 /* BBE16 & vector recip sqrt */
|
||||
#define XCHAL_HAVE_BBE16_VECDIV 0 /* BBE16 & vector divide */
|
||||
#define XCHAL_HAVE_BBE16_DESPREAD 0 /* BBE16 & despread */
|
||||
#define XCHAL_HAVE_BBENEP 0 /* ConnX BBENEP pkgs */
|
||||
#define XCHAL_HAVE_BBENEP_SP_VFPU 0 /* sp_vfpu option on BBE-EP */
|
||||
#define XCHAL_HAVE_BSP3 0 /* ConnX BSP3 pkg */
|
||||
#define XCHAL_HAVE_BSP3_TRANSPOSE 0 /* BSP3 & transpose32x32 */
|
||||
#define XCHAL_HAVE_SSP16 0 /* ConnX SSP16 pkg */
|
||||
#define XCHAL_HAVE_SSP16_VITERBI 0 /* SSP16 & viterbi */
|
||||
#define XCHAL_HAVE_TURBO16 0 /* ConnX Turbo16 pkg */
|
||||
#define XCHAL_HAVE_BBP16 0 /* ConnX BBP16 pkg */
|
||||
#define XCHAL_HAVE_FLIX3 0 /* basic 3-way FLIX option */
|
||||
#define XCHAL_HAVE_GRIVPEP 0 /* General Release of IVPEP */
|
||||
#define XCHAL_HAVE_GRIVPEP_HISTOGRAM 0 /* Histogram option on GRIVPEP */
|
||||
|
||||
#define XCHAL_HAVE_VISION 0 /* Vision P5/P6 */
|
||||
#define XCHAL_VISION_SIMD16 0 /* simd16 for Vision P5/P6 */
|
||||
#define XCHAL_VISION_TYPE 0 /* Vision P5, P6, or P3 */
|
||||
#define XCHAL_VISION_QUAD_MAC_TYPE 0 /* quad_mac option on Vision P6 */
|
||||
#define XCHAL_HAVE_VISION_HISTOGRAM 0 /* histogram option on Vision P5/P6 */
|
||||
#define XCHAL_HAVE_VISION_SP_VFPU 0 /* sp_vfpu option on Vision P5/P6 */
|
||||
#define XCHAL_HAVE_VISION_HP_VFPU 0 /* hp_vfpu option on Vision P6 */
|
||||
|
||||
#define XCHAL_HAVE_VISIONC 0 /* Vision C */
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
MISC
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
#define XCHAL_NUM_LOADSTORE_UNITS 1 /* load/store units */
|
||||
#define XCHAL_NUM_WRITEBUFFER_ENTRIES 4 /* size of write buffer */
|
||||
#define XCHAL_INST_FETCH_WIDTH 4 /* instr-fetch width in bytes */
|
||||
#define XCHAL_DATA_WIDTH 4 /* data width in bytes */
|
||||
#define XCHAL_DATA_PIPE_DELAY 2 /* d-side pipeline delay
|
||||
(1 = 5-stage, 2 = 7-stage) */
|
||||
#define XCHAL_CLOCK_GATING_GLOBAL 0 /* global clock gating */
|
||||
#define XCHAL_CLOCK_GATING_FUNCUNIT 0 /* funct. unit clock gating */
|
||||
/* In T1050, applies to selected core load and store instructions (see ISA): */
|
||||
#define XCHAL_UNALIGNED_LOAD_EXCEPTION 0 /* unaligned loads cause exc. */
|
||||
#define XCHAL_UNALIGNED_STORE_EXCEPTION 0 /* unaligned stores cause exc.*/
|
||||
#define XCHAL_UNALIGNED_LOAD_HW 1 /* unaligned loads work in hw */
|
||||
#define XCHAL_UNALIGNED_STORE_HW 1 /* unaligned stores work in hw*/
|
||||
|
||||
#define XCHAL_SW_VERSION 1200008 /* sw version of this header */
|
||||
|
||||
#define XCHAL_CORE_ID "test_0731_1_TIE_GPIO_f" /* alphanum core name
|
||||
(CoreID) set in the Xtensa
|
||||
Processor Generator */
|
||||
|
||||
#define XCHAL_BUILD_UNIQUE_ID 0x00075F76 /* 22-bit sw build ID */
|
||||
|
||||
/*
|
||||
* These definitions describe the hardware targeted by this software.
|
||||
*/
|
||||
#define XCHAL_HW_CONFIGID0 0xC2ECFAFE /* ConfigID hi 32 bits*/
|
||||
#define XCHAL_HW_CONFIGID1 0x22075F76 /* ConfigID lo 32 bits*/
|
||||
#define XCHAL_HW_VERSION_NAME "LX7.0.8" /* full version name */
|
||||
#define XCHAL_HW_VERSION_MAJOR 2700 /* major ver# of targeted hw */
|
||||
#define XCHAL_HW_VERSION_MINOR 8 /* minor ver# of targeted hw */
|
||||
#define XCHAL_HW_VERSION 270008 /* major*100+minor */
|
||||
#define XCHAL_HW_REL_LX7 1
|
||||
#define XCHAL_HW_REL_LX7_0 1
|
||||
#define XCHAL_HW_REL_LX7_0_8 1
|
||||
#define XCHAL_HW_CONFIGID_RELIABLE 1
|
||||
/* If software targets a *range* of hardware versions, these are the bounds: */
|
||||
#define XCHAL_HW_MIN_VERSION_MAJOR 2700 /* major v of earliest tgt hw */
|
||||
#define XCHAL_HW_MIN_VERSION_MINOR 8 /* minor v of earliest tgt hw */
|
||||
#define XCHAL_HW_MIN_VERSION 270008 /* earliest targeted hw */
|
||||
#define XCHAL_HW_MAX_VERSION_MAJOR 2700 /* major v of latest tgt hw */
|
||||
#define XCHAL_HW_MAX_VERSION_MINOR 8 /* minor v of latest tgt hw */
|
||||
#define XCHAL_HW_MAX_VERSION 270008 /* latest targeted hw */
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
CACHE
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
#define XCHAL_ICACHE_LINESIZE 4 /* I-cache line size in bytes */
|
||||
#define XCHAL_DCACHE_LINESIZE 4 /* D-cache line size in bytes */
|
||||
#define XCHAL_ICACHE_LINEWIDTH 2 /* log2(I line size in bytes) */
|
||||
#define XCHAL_DCACHE_LINEWIDTH 2 /* log2(D line size in bytes) */
|
||||
|
||||
#define XCHAL_ICACHE_SIZE 0 /* I-cache size in bytes or 0 */
|
||||
#define XCHAL_DCACHE_SIZE 0 /* D-cache size in bytes or 0 */
|
||||
|
||||
#define XCHAL_DCACHE_IS_WRITEBACK 0 /* writeback feature */
|
||||
#define XCHAL_DCACHE_IS_COHERENT 0 /* MP coherence feature */
|
||||
|
||||
#define XCHAL_HAVE_PREFETCH 0 /* PREFCTL register */
|
||||
#define XCHAL_HAVE_PREFETCH_L1 0 /* prefetch to L1 dcache */
|
||||
#define XCHAL_PREFETCH_CASTOUT_LINES 0 /* dcache pref. castout bufsz */
|
||||
#define XCHAL_PREFETCH_ENTRIES 0 /* cache prefetch entries */
|
||||
#define XCHAL_PREFETCH_BLOCK_ENTRIES 0 /* prefetch block streams */
|
||||
#define XCHAL_HAVE_CACHE_BLOCKOPS 0 /* block prefetch for caches */
|
||||
#define XCHAL_HAVE_ICACHE_TEST 0 /* Icache test instructions */
|
||||
#define XCHAL_HAVE_DCACHE_TEST 0 /* Dcache test instructions */
|
||||
#define XCHAL_HAVE_ICACHE_DYN_WAYS 0 /* Icache dynamic way support */
|
||||
#define XCHAL_HAVE_DCACHE_DYN_WAYS 0 /* Dcache dynamic way support */
|
||||
|
||||
|
||||
|
||||
|
||||
/****************************************************************************
|
||||
Parameters Useful for PRIVILEGED (Supervisory or Non-Virtualized) Code
|
||||
****************************************************************************/
|
||||
|
||||
|
||||
#ifndef XTENSA_HAL_NON_PRIVILEGED_ONLY
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
CACHE
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
#define XCHAL_HAVE_PIF 1 /* any outbound bus present */
|
||||
|
||||
#define XCHAL_HAVE_AXI 0 /* AXI bus */
|
||||
#define XCHAL_HAVE_AXI_ECC 0 /* ECC on AXI bus */
|
||||
#define XCHAL_HAVE_ACELITE 0 /* ACELite bus */
|
||||
|
||||
#define XCHAL_HAVE_PIF_WR_RESP 0 /* pif write response */
|
||||
#define XCHAL_HAVE_PIF_REQ_ATTR 1 /* pif attribute */
|
||||
|
||||
/* If present, cache size in bytes == (ways * 2^(linewidth + setwidth)). */
|
||||
|
||||
/* Number of cache sets in log2(lines per way): */
|
||||
#define XCHAL_ICACHE_SETWIDTH 0
|
||||
#define XCHAL_DCACHE_SETWIDTH 0
|
||||
|
||||
/* Cache set associativity (number of ways): */
|
||||
#define XCHAL_ICACHE_WAYS 1
|
||||
#define XCHAL_DCACHE_WAYS 1
|
||||
|
||||
/* Cache features: */
|
||||
#define XCHAL_ICACHE_LINE_LOCKABLE 0
|
||||
#define XCHAL_DCACHE_LINE_LOCKABLE 0
|
||||
#define XCHAL_ICACHE_ECC_PARITY 0
|
||||
#define XCHAL_DCACHE_ECC_PARITY 0
|
||||
|
||||
/* Cache access size in bytes (affects operation of SICW instruction): */
|
||||
#define XCHAL_ICACHE_ACCESS_SIZE 1
|
||||
#define XCHAL_DCACHE_ACCESS_SIZE 1
|
||||
|
||||
#define XCHAL_DCACHE_BANKS 0 /* number of banks */
|
||||
|
||||
/* Number of encoded cache attr bits (see <xtensa/hal.h> for decoded bits): */
|
||||
#define XCHAL_CA_BITS 4
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
INTERNAL I/D RAM/ROMs and XLMI
|
||||
----------------------------------------------------------------------*/
|
||||
#define XCHAL_NUM_INSTROM 1 /* number of core instr. ROMs */
|
||||
#define XCHAL_NUM_INSTRAM 2 /* number of core instr. RAMs */
|
||||
#define XCHAL_NUM_DATAROM 1 /* number of core data ROMs */
|
||||
#define XCHAL_NUM_DATARAM 2 /* number of core data RAMs */
|
||||
#define XCHAL_NUM_URAM 0 /* number of core unified RAMs*/
|
||||
#define XCHAL_NUM_XLMI 1 /* number of core XLMI ports */
|
||||
|
||||
/* Instruction ROM 0: */
|
||||
#define XCHAL_INSTROM0_VADDR 0x40800000 /* virtual address */
|
||||
#define XCHAL_INSTROM0_PADDR 0x40800000 /* physical address */
|
||||
#define XCHAL_INSTROM0_SIZE 4194304 /* size in bytes */
|
||||
#define XCHAL_INSTROM0_ECC_PARITY 0 /* ECC/parity type, 0=none */
|
||||
|
||||
/* Instruction RAM 0: */
|
||||
#define XCHAL_INSTRAM0_VADDR 0x40000000 /* virtual address */
|
||||
#define XCHAL_INSTRAM0_PADDR 0x40000000 /* physical address */
|
||||
#define XCHAL_INSTRAM0_SIZE 4194304 /* size in bytes */
|
||||
#define XCHAL_INSTRAM0_ECC_PARITY 0 /* ECC/parity type, 0=none */
|
||||
#define XCHAL_HAVE_INSTRAM0 1
|
||||
#define XCHAL_INSTRAM0_HAVE_IDMA 0 /* idma supported by this local memory */
|
||||
|
||||
/* Instruction RAM 1: */
|
||||
#define XCHAL_INSTRAM1_VADDR 0x40400000 /* virtual address */
|
||||
#define XCHAL_INSTRAM1_PADDR 0x40400000 /* physical address */
|
||||
#define XCHAL_INSTRAM1_SIZE 4194304 /* size in bytes */
|
||||
#define XCHAL_INSTRAM1_ECC_PARITY 0 /* ECC/parity type, 0=none */
|
||||
#define XCHAL_HAVE_INSTRAM1 1
|
||||
#define XCHAL_INSTRAM1_HAVE_IDMA 0 /* idma supported by this local memory */
|
||||
|
||||
/* Data ROM 0: */
|
||||
#define XCHAL_DATAROM0_VADDR 0x3F400000 /* virtual address */
|
||||
#define XCHAL_DATAROM0_PADDR 0x3F400000 /* physical address */
|
||||
#define XCHAL_DATAROM0_SIZE 4194304 /* size in bytes */
|
||||
#define XCHAL_DATAROM0_ECC_PARITY 0 /* ECC/parity type, 0=none */
|
||||
#define XCHAL_DATAROM0_BANKS 1 /* number of banks */
|
||||
|
||||
/* Data RAM 0: */
|
||||
#define XCHAL_DATARAM0_VADDR 0x3FF80000 /* virtual address */
|
||||
#define XCHAL_DATARAM0_PADDR 0x3FF80000 /* physical address */
|
||||
#define XCHAL_DATARAM0_SIZE 524288 /* size in bytes */
|
||||
#define XCHAL_DATARAM0_ECC_PARITY 0 /* ECC/parity type, 0=none */
|
||||
#define XCHAL_DATARAM0_BANKS 1 /* number of banks */
|
||||
#define XCHAL_HAVE_DATARAM0 1
|
||||
#define XCHAL_DATARAM0_HAVE_IDMA 0 /* idma supported by this local memory */
|
||||
|
||||
/* Data RAM 1: */
|
||||
#define XCHAL_DATARAM1_VADDR 0x3F800000 /* virtual address */
|
||||
#define XCHAL_DATARAM1_PADDR 0x3F800000 /* physical address */
|
||||
#define XCHAL_DATARAM1_SIZE 4194304 /* size in bytes */
|
||||
#define XCHAL_DATARAM1_ECC_PARITY 0 /* ECC/parity type, 0=none */
|
||||
#define XCHAL_DATARAM1_BANKS 1 /* number of banks */
|
||||
#define XCHAL_HAVE_DATARAM1 1
|
||||
#define XCHAL_DATARAM1_HAVE_IDMA 0 /* idma supported by this local memory */
|
||||
|
||||
/* XLMI Port 0: */
|
||||
#define XCHAL_XLMI0_VADDR 0x3FE00000 /* virtual address */
|
||||
#define XCHAL_XLMI0_PADDR 0x3FE00000 /* physical address */
|
||||
#define XCHAL_XLMI0_SIZE 1048576 /* size in bytes */
|
||||
#define XCHAL_XLMI0_ECC_PARITY 0 /* ECC/parity type, 0=none */
|
||||
|
||||
#define XCHAL_HAVE_IDMA 0
|
||||
#define XCHAL_HAVE_IDMA_TRANSPOSE 0
|
||||
|
||||
#define XCHAL_HAVE_IMEM_LOADSTORE 1 /* can load/store to IROM/IRAM*/
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
INTERRUPTS and TIMERS
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
#define XCHAL_HAVE_INTERRUPTS 1 /* interrupt option */
|
||||
#define XCHAL_HAVE_HIGHPRI_INTERRUPTS 1 /* med/high-pri. interrupts */
|
||||
#define XCHAL_HAVE_NMI 1 /* non-maskable interrupt */
|
||||
#define XCHAL_HAVE_CCOUNT 1 /* CCOUNT reg. (timer option) */
|
||||
#define XCHAL_NUM_TIMERS 3 /* number of CCOMPAREn regs */
|
||||
#define XCHAL_NUM_INTERRUPTS 32 /* number of interrupts */
|
||||
#define XCHAL_NUM_INTERRUPTS_LOG2 5 /* ceil(log2(NUM_INTERRUPTS)) */
|
||||
#define XCHAL_NUM_EXTINTERRUPTS 26 /* num of external interrupts */
|
||||
#define XCHAL_NUM_INTLEVELS 6 /* number of interrupt levels
|
||||
(not including level zero) */
|
||||
#define XCHAL_EXCM_LEVEL 3 /* level masked by PS.EXCM */
|
||||
/* (always 1 in XEA1; levels 2 .. EXCM_LEVEL are "medium priority") */
|
||||
|
||||
/* Masks of interrupts at each interrupt level: */
|
||||
#define XCHAL_INTLEVEL1_MASK 0x000637FF
|
||||
#define XCHAL_INTLEVEL2_MASK 0x00380000
|
||||
#define XCHAL_INTLEVEL3_MASK 0x28C08800
|
||||
#define XCHAL_INTLEVEL4_MASK 0x53000000
|
||||
#define XCHAL_INTLEVEL5_MASK 0x84010000
|
||||
#define XCHAL_INTLEVEL6_MASK 0x00000000
|
||||
#define XCHAL_INTLEVEL7_MASK 0x00004000
|
||||
|
||||
/* Masks of interrupts at each range 1..n of interrupt levels: */
|
||||
#define XCHAL_INTLEVEL1_ANDBELOW_MASK 0x000637FF
|
||||
#define XCHAL_INTLEVEL2_ANDBELOW_MASK 0x003E37FF
|
||||
#define XCHAL_INTLEVEL3_ANDBELOW_MASK 0x28FEBFFF
|
||||
#define XCHAL_INTLEVEL4_ANDBELOW_MASK 0x7BFEBFFF
|
||||
#define XCHAL_INTLEVEL5_ANDBELOW_MASK 0xFFFFBFFF
|
||||
#define XCHAL_INTLEVEL6_ANDBELOW_MASK 0xFFFFBFFF
|
||||
#define XCHAL_INTLEVEL7_ANDBELOW_MASK 0xFFFFFFFF
|
||||
|
||||
/* Level of each interrupt: */
|
||||
#define XCHAL_INT0_LEVEL 1
|
||||
#define XCHAL_INT1_LEVEL 1
|
||||
#define XCHAL_INT2_LEVEL 1
|
||||
#define XCHAL_INT3_LEVEL 1
|
||||
#define XCHAL_INT4_LEVEL 1
|
||||
#define XCHAL_INT5_LEVEL 1
|
||||
#define XCHAL_INT6_LEVEL 1
|
||||
#define XCHAL_INT7_LEVEL 1
|
||||
#define XCHAL_INT8_LEVEL 1
|
||||
#define XCHAL_INT9_LEVEL 1
|
||||
#define XCHAL_INT10_LEVEL 1
|
||||
#define XCHAL_INT11_LEVEL 3
|
||||
#define XCHAL_INT12_LEVEL 1
|
||||
#define XCHAL_INT13_LEVEL 1
|
||||
#define XCHAL_INT14_LEVEL 7
|
||||
#define XCHAL_INT15_LEVEL 3
|
||||
#define XCHAL_INT16_LEVEL 5
|
||||
#define XCHAL_INT17_LEVEL 1
|
||||
#define XCHAL_INT18_LEVEL 1
|
||||
#define XCHAL_INT19_LEVEL 2
|
||||
#define XCHAL_INT20_LEVEL 2
|
||||
#define XCHAL_INT21_LEVEL 2
|
||||
#define XCHAL_INT22_LEVEL 3
|
||||
#define XCHAL_INT23_LEVEL 3
|
||||
#define XCHAL_INT24_LEVEL 4
|
||||
#define XCHAL_INT25_LEVEL 4
|
||||
#define XCHAL_INT26_LEVEL 5
|
||||
#define XCHAL_INT27_LEVEL 3
|
||||
#define XCHAL_INT28_LEVEL 4
|
||||
#define XCHAL_INT29_LEVEL 3
|
||||
#define XCHAL_INT30_LEVEL 4
|
||||
#define XCHAL_INT31_LEVEL 5
|
||||
#define XCHAL_DEBUGLEVEL 6 /* debug interrupt level */
|
||||
#define XCHAL_HAVE_DEBUG_EXTERN_INT 1 /* OCD external db interrupt */
|
||||
#define XCHAL_NMILEVEL 7 /* NMI "level" (for use with
|
||||
EXCSAVE/EPS/EPC_n, RFI n) */
|
||||
|
||||
/* Type of each interrupt: */
|
||||
#define XCHAL_INT0_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT1_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT2_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT3_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT4_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT5_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT6_TYPE XTHAL_INTTYPE_TIMER
|
||||
#define XCHAL_INT7_TYPE XTHAL_INTTYPE_SOFTWARE
|
||||
#define XCHAL_INT8_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT9_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT10_TYPE XTHAL_INTTYPE_EXTERN_EDGE
|
||||
#define XCHAL_INT11_TYPE XTHAL_INTTYPE_PROFILING
|
||||
#define XCHAL_INT12_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT13_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT14_TYPE XTHAL_INTTYPE_NMI
|
||||
#define XCHAL_INT15_TYPE XTHAL_INTTYPE_TIMER
|
||||
#define XCHAL_INT16_TYPE XTHAL_INTTYPE_TIMER
|
||||
#define XCHAL_INT17_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT18_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT19_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT20_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT21_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT22_TYPE XTHAL_INTTYPE_EXTERN_EDGE
|
||||
#define XCHAL_INT23_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT24_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT25_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT26_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT27_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
#define XCHAL_INT28_TYPE XTHAL_INTTYPE_EXTERN_EDGE
|
||||
#define XCHAL_INT29_TYPE XTHAL_INTTYPE_SOFTWARE
|
||||
#define XCHAL_INT30_TYPE XTHAL_INTTYPE_EXTERN_EDGE
|
||||
#define XCHAL_INT31_TYPE XTHAL_INTTYPE_EXTERN_LEVEL
|
||||
|
||||
/* Masks of interrupts for each type of interrupt: */
|
||||
#define XCHAL_INTTYPE_MASK_UNCONFIGURED 0x00000000
|
||||
#define XCHAL_INTTYPE_MASK_SOFTWARE 0x20000080
|
||||
#define XCHAL_INTTYPE_MASK_EXTERN_EDGE 0x50400400
|
||||
#define XCHAL_INTTYPE_MASK_EXTERN_LEVEL 0x8FBE333F
|
||||
#define XCHAL_INTTYPE_MASK_TIMER 0x00018040
|
||||
#define XCHAL_INTTYPE_MASK_NMI 0x00004000
|
||||
#define XCHAL_INTTYPE_MASK_WRITE_ERROR 0x00000000
|
||||
#define XCHAL_INTTYPE_MASK_PROFILING 0x00000800
|
||||
#define XCHAL_INTTYPE_MASK_IDMA_DONE 0x00000000
|
||||
#define XCHAL_INTTYPE_MASK_IDMA_ERR 0x00000000
|
||||
#define XCHAL_INTTYPE_MASK_GS_ERR 0x00000000
|
||||
|
||||
/* Interrupt numbers assigned to specific interrupt sources: */
|
||||
#define XCHAL_TIMER0_INTERRUPT 6 /* CCOMPARE0 */
|
||||
#define XCHAL_TIMER1_INTERRUPT 15 /* CCOMPARE1 */
|
||||
#define XCHAL_TIMER2_INTERRUPT 16 /* CCOMPARE2 */
|
||||
#define XCHAL_TIMER3_INTERRUPT XTHAL_TIMER_UNCONFIGURED
|
||||
#define XCHAL_NMI_INTERRUPT 14 /* non-maskable interrupt */
|
||||
#define XCHAL_PROFILING_INTERRUPT 11
|
||||
|
||||
/* Interrupt numbers for levels at which only one interrupt is configured: */
|
||||
#define XCHAL_INTLEVEL7_NUM 14
|
||||
/* (There are many interrupts each at level(s) 1, 2, 3, 4, 5.) */
|
||||
|
||||
|
||||
/*
|
||||
* External interrupt mapping.
|
||||
* These macros describe how Xtensa processor interrupt numbers
|
||||
* (as numbered internally, eg. in INTERRUPT and INTENABLE registers)
|
||||
* map to external BInterrupt<n> pins, for those interrupts
|
||||
* configured as external (level-triggered, edge-triggered, or NMI).
|
||||
* See the Xtensa processor databook for more details.
|
||||
*/
|
||||
|
||||
/* Core interrupt numbers mapped to each EXTERNAL BInterrupt pin number: */
|
||||
#define XCHAL_EXTINT0_NUM 0 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT1_NUM 1 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT2_NUM 2 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT3_NUM 3 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT4_NUM 4 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT5_NUM 5 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT6_NUM 8 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT7_NUM 9 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT8_NUM 10 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT9_NUM 12 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT10_NUM 13 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT11_NUM 14 /* (intlevel 7) */
|
||||
#define XCHAL_EXTINT12_NUM 17 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT13_NUM 18 /* (intlevel 1) */
|
||||
#define XCHAL_EXTINT14_NUM 19 /* (intlevel 2) */
|
||||
#define XCHAL_EXTINT15_NUM 20 /* (intlevel 2) */
|
||||
#define XCHAL_EXTINT16_NUM 21 /* (intlevel 2) */
|
||||
#define XCHAL_EXTINT17_NUM 22 /* (intlevel 3) */
|
||||
#define XCHAL_EXTINT18_NUM 23 /* (intlevel 3) */
|
||||
#define XCHAL_EXTINT19_NUM 24 /* (intlevel 4) */
|
||||
#define XCHAL_EXTINT20_NUM 25 /* (intlevel 4) */
|
||||
#define XCHAL_EXTINT21_NUM 26 /* (intlevel 5) */
|
||||
#define XCHAL_EXTINT22_NUM 27 /* (intlevel 3) */
|
||||
#define XCHAL_EXTINT23_NUM 28 /* (intlevel 4) */
|
||||
#define XCHAL_EXTINT24_NUM 30 /* (intlevel 4) */
|
||||
#define XCHAL_EXTINT25_NUM 31 /* (intlevel 5) */
|
||||
/* EXTERNAL BInterrupt pin numbers mapped to each core interrupt number: */
|
||||
#define XCHAL_INT0_EXTNUM 0 /* (intlevel 1) */
|
||||
#define XCHAL_INT1_EXTNUM 1 /* (intlevel 1) */
|
||||
#define XCHAL_INT2_EXTNUM 2 /* (intlevel 1) */
|
||||
#define XCHAL_INT3_EXTNUM 3 /* (intlevel 1) */
|
||||
#define XCHAL_INT4_EXTNUM 4 /* (intlevel 1) */
|
||||
#define XCHAL_INT5_EXTNUM 5 /* (intlevel 1) */
|
||||
#define XCHAL_INT8_EXTNUM 6 /* (intlevel 1) */
|
||||
#define XCHAL_INT9_EXTNUM 7 /* (intlevel 1) */
|
||||
#define XCHAL_INT10_EXTNUM 8 /* (intlevel 1) */
|
||||
#define XCHAL_INT12_EXTNUM 9 /* (intlevel 1) */
|
||||
#define XCHAL_INT13_EXTNUM 10 /* (intlevel 1) */
|
||||
#define XCHAL_INT14_EXTNUM 11 /* (intlevel 7) */
|
||||
#define XCHAL_INT17_EXTNUM 12 /* (intlevel 1) */
|
||||
#define XCHAL_INT18_EXTNUM 13 /* (intlevel 1) */
|
||||
#define XCHAL_INT19_EXTNUM 14 /* (intlevel 2) */
|
||||
#define XCHAL_INT20_EXTNUM 15 /* (intlevel 2) */
|
||||
#define XCHAL_INT21_EXTNUM 16 /* (intlevel 2) */
|
||||
#define XCHAL_INT22_EXTNUM 17 /* (intlevel 3) */
|
||||
#define XCHAL_INT23_EXTNUM 18 /* (intlevel 3) */
|
||||
#define XCHAL_INT24_EXTNUM 19 /* (intlevel 4) */
|
||||
#define XCHAL_INT25_EXTNUM 20 /* (intlevel 4) */
|
||||
#define XCHAL_INT26_EXTNUM 21 /* (intlevel 5) */
|
||||
#define XCHAL_INT27_EXTNUM 22 /* (intlevel 3) */
|
||||
#define XCHAL_INT28_EXTNUM 23 /* (intlevel 4) */
|
||||
#define XCHAL_INT30_EXTNUM 24 /* (intlevel 4) */
|
||||
#define XCHAL_INT31_EXTNUM 25 /* (intlevel 5) */
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
EXCEPTIONS and VECTORS
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
#define XCHAL_XEA_VERSION 2 /* Xtensa Exception Architecture
|
||||
number: 1 == XEA1 (old)
|
||||
2 == XEA2 (new)
|
||||
0 == XEAX (extern) or TX */
|
||||
#define XCHAL_HAVE_XEA1 0 /* Exception Architecture 1 */
|
||||
#define XCHAL_HAVE_XEA2 1 /* Exception Architecture 2 */
|
||||
#define XCHAL_HAVE_XEAX 0 /* External Exception Arch. */
|
||||
#define XCHAL_HAVE_EXCEPTIONS 1 /* exception option */
|
||||
#define XCHAL_HAVE_HALT 0 /* halt architecture option */
|
||||
#define XCHAL_HAVE_BOOTLOADER 0 /* boot loader (for TX) */
|
||||
#define XCHAL_HAVE_MEM_ECC_PARITY 0 /* local memory ECC/parity */
|
||||
#define XCHAL_HAVE_VECTOR_SELECT 1 /* relocatable vectors */
|
||||
#define XCHAL_HAVE_VECBASE 1 /* relocatable vectors */
|
||||
#define XCHAL_VECBASE_RESET_VADDR 0x40000000 /* VECBASE reset value */
|
||||
#define XCHAL_VECBASE_RESET_PADDR 0x40000000
|
||||
#define XCHAL_RESET_VECBASE_OVERLAP 0
|
||||
|
||||
#define XCHAL_RESET_VECTOR0_VADDR 0x50000000
|
||||
#define XCHAL_RESET_VECTOR0_PADDR 0x50000000
|
||||
#define XCHAL_RESET_VECTOR1_VADDR 0x40000400
|
||||
#define XCHAL_RESET_VECTOR1_PADDR 0x40000400
|
||||
#define XCHAL_RESET_VECTOR_VADDR 0x40000400
|
||||
#define XCHAL_RESET_VECTOR_PADDR 0x40000400
|
||||
#define XCHAL_USER_VECOFS 0x00000340
|
||||
#define XCHAL_USER_VECTOR_VADDR 0x40000340
|
||||
#define XCHAL_USER_VECTOR_PADDR 0x40000340
|
||||
#define XCHAL_KERNEL_VECOFS 0x00000300
|
||||
#define XCHAL_KERNEL_VECTOR_VADDR 0x40000300
|
||||
#define XCHAL_KERNEL_VECTOR_PADDR 0x40000300
|
||||
#define XCHAL_DOUBLEEXC_VECOFS 0x000003C0
|
||||
#define XCHAL_DOUBLEEXC_VECTOR_VADDR 0x400003C0
|
||||
#define XCHAL_DOUBLEEXC_VECTOR_PADDR 0x400003C0
|
||||
#define XCHAL_WINDOW_OF4_VECOFS 0x00000000
|
||||
#define XCHAL_WINDOW_UF4_VECOFS 0x00000040
|
||||
#define XCHAL_WINDOW_OF8_VECOFS 0x00000080
|
||||
#define XCHAL_WINDOW_UF8_VECOFS 0x000000C0
|
||||
#define XCHAL_WINDOW_OF12_VECOFS 0x00000100
|
||||
#define XCHAL_WINDOW_UF12_VECOFS 0x00000140
|
||||
#define XCHAL_WINDOW_VECTORS_VADDR 0x40000000
|
||||
#define XCHAL_WINDOW_VECTORS_PADDR 0x40000000
|
||||
#define XCHAL_INTLEVEL2_VECOFS 0x00000180
|
||||
#define XCHAL_INTLEVEL2_VECTOR_VADDR 0x40000180
|
||||
#define XCHAL_INTLEVEL2_VECTOR_PADDR 0x40000180
|
||||
#define XCHAL_INTLEVEL3_VECOFS 0x000001C0
|
||||
#define XCHAL_INTLEVEL3_VECTOR_VADDR 0x400001C0
|
||||
#define XCHAL_INTLEVEL3_VECTOR_PADDR 0x400001C0
|
||||
#define XCHAL_INTLEVEL4_VECOFS 0x00000200
|
||||
#define XCHAL_INTLEVEL4_VECTOR_VADDR 0x40000200
|
||||
#define XCHAL_INTLEVEL4_VECTOR_PADDR 0x40000200
|
||||
#define XCHAL_INTLEVEL5_VECOFS 0x00000240
|
||||
#define XCHAL_INTLEVEL5_VECTOR_VADDR 0x40000240
|
||||
#define XCHAL_INTLEVEL5_VECTOR_PADDR 0x40000240
|
||||
#define XCHAL_INTLEVEL6_VECOFS 0x00000280
|
||||
#define XCHAL_INTLEVEL6_VECTOR_VADDR 0x40000280
|
||||
#define XCHAL_INTLEVEL6_VECTOR_PADDR 0x40000280
|
||||
#define XCHAL_DEBUG_VECOFS XCHAL_INTLEVEL6_VECOFS
|
||||
#define XCHAL_DEBUG_VECTOR_VADDR XCHAL_INTLEVEL6_VECTOR_VADDR
|
||||
#define XCHAL_DEBUG_VECTOR_PADDR XCHAL_INTLEVEL6_VECTOR_PADDR
|
||||
#define XCHAL_NMI_VECOFS 0x000002C0
|
||||
#define XCHAL_NMI_VECTOR_VADDR 0x400002C0
|
||||
#define XCHAL_NMI_VECTOR_PADDR 0x400002C0
|
||||
#define XCHAL_INTLEVEL7_VECOFS XCHAL_NMI_VECOFS
|
||||
#define XCHAL_INTLEVEL7_VECTOR_VADDR XCHAL_NMI_VECTOR_VADDR
|
||||
#define XCHAL_INTLEVEL7_VECTOR_PADDR XCHAL_NMI_VECTOR_PADDR
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
DEBUG MODULE
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
/* Misc */
|
||||
#define XCHAL_HAVE_DEBUG_ERI 1 /* ERI to debug module */
|
||||
#define XCHAL_HAVE_DEBUG_APB 0 /* APB to debug module */
|
||||
#define XCHAL_HAVE_DEBUG_JTAG 1 /* JTAG to debug module */
|
||||
|
||||
/* On-Chip Debug (OCD) */
|
||||
#define XCHAL_HAVE_OCD 1 /* OnChipDebug option */
|
||||
#define XCHAL_NUM_IBREAK 2 /* number of IBREAKn regs */
|
||||
#define XCHAL_NUM_DBREAK 2 /* number of DBREAKn regs */
|
||||
#define XCHAL_HAVE_OCD_DIR_ARRAY 0 /* faster OCD option (to LX4) */
|
||||
#define XCHAL_HAVE_OCD_LS32DDR 1 /* L32DDR/S32DDR (faster OCD) */
|
||||
|
||||
/* TRAX (in core) */
|
||||
#define XCHAL_HAVE_TRAX 1 /* TRAX in debug module */
|
||||
#define XCHAL_TRAX_MEM_SIZE 16384 /* TRAX memory size in bytes */
|
||||
#define XCHAL_TRAX_MEM_SHAREABLE 1 /* start/end regs; ready sig. */
|
||||
#define XCHAL_TRAX_ATB_WIDTH 0 /* ATB width (bits), 0=no ATB */
|
||||
#define XCHAL_TRAX_TIME_WIDTH 0 /* timestamp bitwidth, 0=none */
|
||||
|
||||
/* Perf counters */
|
||||
#define XCHAL_NUM_PERF_COUNTERS 2 /* performance counters */
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
MMU
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
/* See core-matmap.h header file for more details. */
|
||||
|
||||
#define XCHAL_HAVE_TLBS 1 /* inverse of HAVE_CACHEATTR */
|
||||
#define XCHAL_HAVE_SPANNING_WAY 1 /* one way maps I+D 4GB vaddr */
|
||||
#define XCHAL_SPANNING_WAY 0 /* TLB spanning way number */
|
||||
#define XCHAL_HAVE_IDENTITY_MAP 1 /* vaddr == paddr always */
|
||||
#define XCHAL_HAVE_CACHEATTR 0 /* CACHEATTR register present */
|
||||
#define XCHAL_HAVE_MIMIC_CACHEATTR 1 /* region protection */
|
||||
#define XCHAL_HAVE_XLT_CACHEATTR 0 /* region prot. w/translation */
|
||||
#define XCHAL_HAVE_PTP_MMU 0 /* full MMU (with page table
|
||||
[autorefill] and protection)
|
||||
usable for an MMU-based OS */
|
||||
|
||||
/* If none of the above last 5 are set, it's a custom TLB configuration. */
|
||||
|
||||
#define XCHAL_MMU_ASID_BITS 0 /* number of bits in ASIDs */
|
||||
#define XCHAL_MMU_RINGS 1 /* number of rings (1..4) */
|
||||
#define XCHAL_MMU_RING_BITS 0 /* num of bits in RING field */
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
MPU
|
||||
----------------------------------------------------------------------*/
|
||||
#define XCHAL_HAVE_MPU 0
|
||||
#define XCHAL_MPU_ENTRIES 0
|
||||
|
||||
#define XCHAL_MPU_ALIGN_REQ 1 /* MPU requires alignment of entries to background map */
|
||||
#define XCHAL_MPU_BACKGROUND_ENTRIES 0 /* number of entries in bg map*/
|
||||
#define XCHAL_MPU_BG_CACHEADRDIS 0 /* default CACHEADRDIS for bg */
|
||||
|
||||
#define XCHAL_MPU_ALIGN_BITS 0
|
||||
#define XCHAL_MPU_ALIGN 0
|
||||
|
||||
#endif /* !XTENSA_HAL_NON_PRIVILEGED_ONLY */
|
||||
|
||||
|
||||
#endif /* _XTENSA_CORE_CONFIGURATION_H */
|
||||
|
@ -0,0 +1,322 @@
|
||||
/*
|
||||
* xtensa/config/core-matmap.h -- Memory access and translation mapping
|
||||
* parameters (CHAL) of the Xtensa processor core configuration.
|
||||
*
|
||||
* If you are using Xtensa Tools, see <xtensa/config/core.h> (which includes
|
||||
* this file) for more details.
|
||||
*
|
||||
* In the Xtensa processor products released to date, all parameters
|
||||
* defined in this file are derivable (at least in theory) from
|
||||
* information contained in the core-isa.h header file.
|
||||
* In particular, the following core configuration parameters are relevant:
|
||||
* XCHAL_HAVE_CACHEATTR
|
||||
* XCHAL_HAVE_MIMIC_CACHEATTR
|
||||
* XCHAL_HAVE_XLT_CACHEATTR
|
||||
* XCHAL_HAVE_PTP_MMU
|
||||
* XCHAL_ITLB_ARF_ENTRIES_LOG2
|
||||
* XCHAL_DTLB_ARF_ENTRIES_LOG2
|
||||
* XCHAL_DCACHE_IS_WRITEBACK
|
||||
* XCHAL_ICACHE_SIZE (presence of I-cache)
|
||||
* XCHAL_DCACHE_SIZE (presence of D-cache)
|
||||
* XCHAL_HW_VERSION_MAJOR
|
||||
* XCHAL_HW_VERSION_MINOR
|
||||
*/
|
||||
|
||||
/* Copyright (c) 1999-2018 Tensilica Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
|
||||
|
||||
#ifndef XTENSA_CONFIG_CORE_MATMAP_H
|
||||
#define XTENSA_CONFIG_CORE_MATMAP_H
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
CACHE (MEMORY ACCESS) ATTRIBUTES
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
|
||||
|
||||
/* Cache Attribute encodings -- lists of access modes for each cache attribute: */
|
||||
#define XCHAL_FCA_LIST XTHAL_FAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_FAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_FAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_FAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_FAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_FAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_FAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_FAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_FAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_FAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_FAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_FAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_FAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_FAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_FAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_FAM_EXCEPTION
|
||||
#define XCHAL_LCA_LIST XTHAL_LAM_BYPASSG XCHAL_SEP \
|
||||
XTHAL_LAM_BYPASSG XCHAL_SEP \
|
||||
XTHAL_LAM_BYPASSG XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_LAM_BYPASSG XCHAL_SEP \
|
||||
XTHAL_LAM_BYPASSG XCHAL_SEP \
|
||||
XTHAL_LAM_BYPASSG XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_LAM_EXCEPTION
|
||||
#define XCHAL_SCA_LIST XTHAL_SAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_SAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_SAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_SAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_SAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_SAM_BYPASS XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION XCHAL_SEP \
|
||||
XTHAL_SAM_EXCEPTION
|
||||
|
||||
#define XCHAL_CA_R (0xC0 | 0x40000000)
|
||||
#define XCHAL_CA_RX (0xD0 | 0x40000000)
|
||||
#define XCHAL_CA_RW (0xE0 | 0x40000000)
|
||||
#define XCHAL_CA_RWX (0xF0 | 0x40000000)
|
||||
|
||||
/*
|
||||
* Specific encoded cache attribute values of general interest.
|
||||
* If a specific cache mode is not available, the closest available
|
||||
* one is returned instead (eg. writethru instead of writeback,
|
||||
* bypass instead of writethru).
|
||||
*/
|
||||
#define XCHAL_CA_BYPASS 2 /* cache disabled (bypassed) mode */
|
||||
#define XCHAL_CA_BYPASSBUF 6 /* cache disabled (bypassed) bufferable mode */
|
||||
#define XCHAL_CA_WRITETHRU 1 /* cache enabled (write-through) mode */
|
||||
#define XCHAL_CA_WRITEBACK 2 /* cache enabled (write-back) mode */
|
||||
#define XCHAL_HAVE_CA_WRITEBACK_NOALLOC 0 /* write-back no-allocate availability */
|
||||
#define XCHAL_CA_WRITEBACK_NOALLOC 2 /* cache enabled (write-back no-allocate) mode */
|
||||
#define XCHAL_CA_BYPASS_RW 0 /* cache disabled (bypassed) mode (no exec) */
|
||||
#define XCHAL_CA_WRITETHRU_RW 0 /* cache enabled (write-through) mode (no exec) (FALLBACK) */
|
||||
#define XCHAL_CA_WRITEBACK_RW 0 /* cache enabled (write-back) mode (no exec) */
|
||||
#define XCHAL_CA_WRITEBACK_NOALLOC_RW 0 /* cache enabled (write-back no-allocate) mode (no exec) */
|
||||
#define XCHAL_CA_ILLEGAL 15 /* no access allowed (all cause exceptions) mode */
|
||||
#define XCHAL_CA_ISOLATE 0 /* cache isolate (accesses go to cache not memory) mode */
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
MMU
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* General notes on MMU parameters.
|
||||
*
|
||||
* Terminology:
|
||||
* ASID = address-space ID (acts as an "extension" of virtual addresses)
|
||||
* VPN = virtual page number
|
||||
* PPN = physical page number
|
||||
* CA = encoded cache attribute (access modes)
|
||||
* TLB = translation look-aside buffer (term is stretched somewhat here)
|
||||
* I = instruction (fetch accesses)
|
||||
* D = data (load and store accesses)
|
||||
* way = each TLB (ITLB and DTLB) consists of a number of "ways"
|
||||
* that simultaneously match the virtual address of an access;
|
||||
* a TLB successfully translates a virtual address if exactly
|
||||
* one way matches the vaddr; if none match, it is a miss;
|
||||
* if multiple match, one gets a "multihit" exception;
|
||||
* each way can be independently configured in terms of number of
|
||||
* entries, page sizes, which fields are writable or constant, etc.
|
||||
* set = group of contiguous ways with exactly identical parameters
|
||||
* ARF = auto-refill; hardware services a 1st-level miss by loading a PTE
|
||||
* from the page table and storing it in one of the auto-refill ways;
|
||||
* if this PTE load also misses, a miss exception is posted for s/w.
|
||||
* min-wired = a "min-wired" way can be used to map a single (minimum-sized)
|
||||
* page arbitrarily under program control; it has a single entry,
|
||||
* is non-auto-refill (some other way(s) must be auto-refill),
|
||||
* all its fields (VPN, PPN, ASID, CA) are all writable, and it
|
||||
* supports the XCHAL_MMU_MIN_PTE_PAGE_SIZE page size (a current
|
||||
* restriction is that this be the only page size it supports).
|
||||
*
|
||||
* TLB way entries are virtually indexed.
|
||||
* TLB ways that support multiple page sizes:
|
||||
* - must have all writable VPN and PPN fields;
|
||||
* - can only use one page size at any given time (eg. setup at startup),
|
||||
* selected by the respective ITLBCFG or DTLBCFG special register,
|
||||
* whose bits n*4+3 .. n*4 index the list of page sizes for way n
|
||||
* (XCHAL_xTLB_SETm_PAGESZ_LOG2_LIST for set m corresponding to way n);
|
||||
* this list may be sparse for auto-refill ways because auto-refill
|
||||
* ways have independent lists of supported page sizes sharing a
|
||||
* common encoding with PTE entries; the encoding is the index into
|
||||
* this list; unsupported sizes for a given way are zero in the list;
|
||||
* selecting unsupported sizes results in undefine hardware behaviour;
|
||||
* - is only possible for ways 0 thru 7 (due to ITLBCFG/DTLBCFG definition).
|
||||
*/
|
||||
|
||||
#define XCHAL_MMU_ASID_INVALID 0 /* ASID value indicating invalid address space */
|
||||
#define XCHAL_MMU_ASID_KERNEL 0 /* ASID value indicating kernel (ring 0) address space */
|
||||
#define XCHAL_MMU_SR_BITS 0 /* number of size-restriction bits supported */
|
||||
#define XCHAL_MMU_CA_BITS 4 /* number of bits needed to hold cache attribute encoding */
|
||||
#define XCHAL_MMU_MAX_PTE_PAGE_SIZE 29 /* max page size in a PTE structure (log2) */
|
||||
#define XCHAL_MMU_MIN_PTE_PAGE_SIZE 29 /* min page size in a PTE structure (log2) */
|
||||
|
||||
|
||||
/*** Instruction TLB: ***/
|
||||
|
||||
#define XCHAL_ITLB_WAY_BITS 0 /* number of bits holding the ways */
|
||||
#define XCHAL_ITLB_WAYS 1 /* number of ways (n-way set-associative TLB) */
|
||||
#define XCHAL_ITLB_ARF_WAYS 0 /* number of auto-refill ways */
|
||||
#define XCHAL_ITLB_SETS 1 /* number of sets (groups of ways with identical settings) */
|
||||
|
||||
/* Way set to which each way belongs: */
|
||||
#define XCHAL_ITLB_WAY0_SET 0
|
||||
|
||||
/* Ways sets that are used by hardware auto-refill (ARF): */
|
||||
#define XCHAL_ITLB_ARF_SETS 0 /* number of auto-refill sets */
|
||||
|
||||
/* Way sets that are "min-wired" (see terminology comment above): */
|
||||
#define XCHAL_ITLB_MINWIRED_SETS 0 /* number of "min-wired" sets */
|
||||
|
||||
|
||||
/* ITLB way set 0 (group of ways 0 thru 0): */
|
||||
#define XCHAL_ITLB_SET0_WAY 0 /* index of first way in this way set */
|
||||
#define XCHAL_ITLB_SET0_WAYS 1 /* number of (contiguous) ways in this way set */
|
||||
#define XCHAL_ITLB_SET0_ENTRIES_LOG2 3 /* log2(number of entries in this way) */
|
||||
#define XCHAL_ITLB_SET0_ENTRIES 8 /* number of entries in this way (always a power of 2) */
|
||||
#define XCHAL_ITLB_SET0_ARF 0 /* 1=autorefill by h/w, 0=non-autorefill (wired/constant/static) */
|
||||
#define XCHAL_ITLB_SET0_PAGESIZES 1 /* number of supported page sizes in this way */
|
||||
#define XCHAL_ITLB_SET0_PAGESZ_BITS 0 /* number of bits to encode the page size */
|
||||
#define XCHAL_ITLB_SET0_PAGESZ_LOG2_MIN 29 /* log2(minimum supported page size) */
|
||||
#define XCHAL_ITLB_SET0_PAGESZ_LOG2_MAX 29 /* log2(maximum supported page size) */
|
||||
#define XCHAL_ITLB_SET0_PAGESZ_LOG2_LIST 29 /* list of log2(page size)s, separated by XCHAL_SEP;
|
||||
2^PAGESZ_BITS entries in list, unsupported entries are zero */
|
||||
#define XCHAL_ITLB_SET0_ASID_CONSTMASK 0 /* constant ASID bits; 0 if all writable */
|
||||
#define XCHAL_ITLB_SET0_VPN_CONSTMASK 0x00000000 /* constant VPN bits, not including entry index bits; 0 if all writable */
|
||||
#define XCHAL_ITLB_SET0_PPN_CONSTMASK 0xE0000000 /* constant PPN bits, including entry index bits; 0 if all writable */
|
||||
#define XCHAL_ITLB_SET0_CA_CONSTMASK 0 /* constant CA bits; 0 if all writable */
|
||||
#define XCHAL_ITLB_SET0_ASID_RESET 0 /* 1 if ASID reset values defined (and all writable); 0 otherwise */
|
||||
#define XCHAL_ITLB_SET0_VPN_RESET 0 /* 1 if VPN reset values defined (and all writable); 0 otherwise */
|
||||
#define XCHAL_ITLB_SET0_PPN_RESET 0 /* 1 if PPN reset values defined (and all writable); 0 otherwise */
|
||||
#define XCHAL_ITLB_SET0_CA_RESET 1 /* 1 if CA reset values defined (and all writable); 0 otherwise */
|
||||
/* Constant VPN values for each entry of ITLB way set 0 (because VPN_CONSTMASK is non-zero): */
|
||||
#define XCHAL_ITLB_SET0_E0_VPN_CONST 0x00000000
|
||||
#define XCHAL_ITLB_SET0_E1_VPN_CONST 0x20000000
|
||||
#define XCHAL_ITLB_SET0_E2_VPN_CONST 0x40000000
|
||||
#define XCHAL_ITLB_SET0_E3_VPN_CONST 0x60000000
|
||||
#define XCHAL_ITLB_SET0_E4_VPN_CONST 0x80000000
|
||||
#define XCHAL_ITLB_SET0_E5_VPN_CONST 0xA0000000
|
||||
#define XCHAL_ITLB_SET0_E6_VPN_CONST 0xC0000000
|
||||
#define XCHAL_ITLB_SET0_E7_VPN_CONST 0xE0000000
|
||||
/* Constant PPN values for each entry of ITLB way set 0 (because PPN_CONSTMASK is non-zero): */
|
||||
#define XCHAL_ITLB_SET0_E0_PPN_CONST 0x00000000
|
||||
#define XCHAL_ITLB_SET0_E1_PPN_CONST 0x20000000
|
||||
#define XCHAL_ITLB_SET0_E2_PPN_CONST 0x40000000
|
||||
#define XCHAL_ITLB_SET0_E3_PPN_CONST 0x60000000
|
||||
#define XCHAL_ITLB_SET0_E4_PPN_CONST 0x80000000
|
||||
#define XCHAL_ITLB_SET0_E5_PPN_CONST 0xA0000000
|
||||
#define XCHAL_ITLB_SET0_E6_PPN_CONST 0xC0000000
|
||||
#define XCHAL_ITLB_SET0_E7_PPN_CONST 0xE0000000
|
||||
/* Reset CA values for each entry of ITLB way set 0 (because SET0_CA_RESET is non-zero): */
|
||||
#define XCHAL_ITLB_SET0_E0_CA_RESET 0x02
|
||||
#define XCHAL_ITLB_SET0_E1_CA_RESET 0x02
|
||||
#define XCHAL_ITLB_SET0_E2_CA_RESET 0x02
|
||||
#define XCHAL_ITLB_SET0_E3_CA_RESET 0x02
|
||||
#define XCHAL_ITLB_SET0_E4_CA_RESET 0x02
|
||||
#define XCHAL_ITLB_SET0_E5_CA_RESET 0x02
|
||||
#define XCHAL_ITLB_SET0_E6_CA_RESET 0x02
|
||||
#define XCHAL_ITLB_SET0_E7_CA_RESET 0x02
|
||||
|
||||
|
||||
/*** Data TLB: ***/
|
||||
|
||||
#define XCHAL_DTLB_WAY_BITS 0 /* number of bits holding the ways */
|
||||
#define XCHAL_DTLB_WAYS 1 /* number of ways (n-way set-associative TLB) */
|
||||
#define XCHAL_DTLB_ARF_WAYS 0 /* number of auto-refill ways */
|
||||
#define XCHAL_DTLB_SETS 1 /* number of sets (groups of ways with identical settings) */
|
||||
|
||||
/* Way set to which each way belongs: */
|
||||
#define XCHAL_DTLB_WAY0_SET 0
|
||||
|
||||
/* Ways sets that are used by hardware auto-refill (ARF): */
|
||||
#define XCHAL_DTLB_ARF_SETS 0 /* number of auto-refill sets */
|
||||
|
||||
/* Way sets that are "min-wired" (see terminology comment above): */
|
||||
#define XCHAL_DTLB_MINWIRED_SETS 0 /* number of "min-wired" sets */
|
||||
|
||||
|
||||
/* DTLB way set 0 (group of ways 0 thru 0): */
|
||||
#define XCHAL_DTLB_SET0_WAY 0 /* index of first way in this way set */
|
||||
#define XCHAL_DTLB_SET0_WAYS 1 /* number of (contiguous) ways in this way set */
|
||||
#define XCHAL_DTLB_SET0_ENTRIES_LOG2 3 /* log2(number of entries in this way) */
|
||||
#define XCHAL_DTLB_SET0_ENTRIES 8 /* number of entries in this way (always a power of 2) */
|
||||
#define XCHAL_DTLB_SET0_ARF 0 /* 1=autorefill by h/w, 0=non-autorefill (wired/constant/static) */
|
||||
#define XCHAL_DTLB_SET0_PAGESIZES 1 /* number of supported page sizes in this way */
|
||||
#define XCHAL_DTLB_SET0_PAGESZ_BITS 0 /* number of bits to encode the page size */
|
||||
#define XCHAL_DTLB_SET0_PAGESZ_LOG2_MIN 29 /* log2(minimum supported page size) */
|
||||
#define XCHAL_DTLB_SET0_PAGESZ_LOG2_MAX 29 /* log2(maximum supported page size) */
|
||||
#define XCHAL_DTLB_SET0_PAGESZ_LOG2_LIST 29 /* list of log2(page size)s, separated by XCHAL_SEP;
|
||||
2^PAGESZ_BITS entries in list, unsupported entries are zero */
|
||||
#define XCHAL_DTLB_SET0_ASID_CONSTMASK 0 /* constant ASID bits; 0 if all writable */
|
||||
#define XCHAL_DTLB_SET0_VPN_CONSTMASK 0x00000000 /* constant VPN bits, not including entry index bits; 0 if all writable */
|
||||
#define XCHAL_DTLB_SET0_PPN_CONSTMASK 0xE0000000 /* constant PPN bits, including entry index bits; 0 if all writable */
|
||||
#define XCHAL_DTLB_SET0_CA_CONSTMASK 0 /* constant CA bits; 0 if all writable */
|
||||
#define XCHAL_DTLB_SET0_ASID_RESET 0 /* 1 if ASID reset values defined (and all writable); 0 otherwise */
|
||||
#define XCHAL_DTLB_SET0_VPN_RESET 0 /* 1 if VPN reset values defined (and all writable); 0 otherwise */
|
||||
#define XCHAL_DTLB_SET0_PPN_RESET 0 /* 1 if PPN reset values defined (and all writable); 0 otherwise */
|
||||
#define XCHAL_DTLB_SET0_CA_RESET 1 /* 1 if CA reset values defined (and all writable); 0 otherwise */
|
||||
/* Constant VPN values for each entry of DTLB way set 0 (because VPN_CONSTMASK is non-zero): */
|
||||
#define XCHAL_DTLB_SET0_E0_VPN_CONST 0x00000000
|
||||
#define XCHAL_DTLB_SET0_E1_VPN_CONST 0x20000000
|
||||
#define XCHAL_DTLB_SET0_E2_VPN_CONST 0x40000000
|
||||
#define XCHAL_DTLB_SET0_E3_VPN_CONST 0x60000000
|
||||
#define XCHAL_DTLB_SET0_E4_VPN_CONST 0x80000000
|
||||
#define XCHAL_DTLB_SET0_E5_VPN_CONST 0xA0000000
|
||||
#define XCHAL_DTLB_SET0_E6_VPN_CONST 0xC0000000
|
||||
#define XCHAL_DTLB_SET0_E7_VPN_CONST 0xE0000000
|
||||
/* Constant PPN values for each entry of DTLB way set 0 (because PPN_CONSTMASK is non-zero): */
|
||||
#define XCHAL_DTLB_SET0_E0_PPN_CONST 0x00000000
|
||||
#define XCHAL_DTLB_SET0_E1_PPN_CONST 0x20000000
|
||||
#define XCHAL_DTLB_SET0_E2_PPN_CONST 0x40000000
|
||||
#define XCHAL_DTLB_SET0_E3_PPN_CONST 0x60000000
|
||||
#define XCHAL_DTLB_SET0_E4_PPN_CONST 0x80000000
|
||||
#define XCHAL_DTLB_SET0_E5_PPN_CONST 0xA0000000
|
||||
#define XCHAL_DTLB_SET0_E6_PPN_CONST 0xC0000000
|
||||
#define XCHAL_DTLB_SET0_E7_PPN_CONST 0xE0000000
|
||||
/* Reset CA values for each entry of DTLB way set 0 (because SET0_CA_RESET is non-zero): */
|
||||
#define XCHAL_DTLB_SET0_E0_CA_RESET 0x02
|
||||
#define XCHAL_DTLB_SET0_E1_CA_RESET 0x02
|
||||
#define XCHAL_DTLB_SET0_E2_CA_RESET 0x02
|
||||
#define XCHAL_DTLB_SET0_E3_CA_RESET 0x02
|
||||
#define XCHAL_DTLB_SET0_E4_CA_RESET 0x02
|
||||
#define XCHAL_DTLB_SET0_E5_CA_RESET 0x02
|
||||
#define XCHAL_DTLB_SET0_E6_CA_RESET 0x02
|
||||
#define XCHAL_DTLB_SET0_E7_CA_RESET 0x02
|
||||
|
||||
|
||||
|
||||
|
||||
#endif /*XTENSA_CONFIG_CORE_MATMAP_H*/
|
||||
|
1408
components/xtensa/esp32s2beta/include/xtensa/config/core.h
Normal file
1408
components/xtensa/esp32s2beta/include/xtensa/config/core.h
Normal file
File diff suppressed because it is too large
Load Diff
37
components/xtensa/esp32s2beta/include/xtensa/config/defs.h
Normal file
37
components/xtensa/esp32s2beta/include/xtensa/config/defs.h
Normal file
@ -0,0 +1,37 @@
|
||||
/* Definitions for Xtensa instructions, types, and protos. */
|
||||
|
||||
/* Copyright (c) 2003-2004 Tensilica Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
|
||||
/* NOTE: This file exists only for backward compatibility with T1050
|
||||
and earlier Xtensa releases. It includes only a subset of the
|
||||
available header files. */
|
||||
|
||||
#ifndef _XTENSA_BASE_HEADER
|
||||
#define _XTENSA_BASE_HEADER
|
||||
|
||||
#ifdef __XTENSA__
|
||||
|
||||
#include <xtensa/tie/xt_core.h>
|
||||
#include <xtensa/tie/xt_misc.h>
|
||||
|
||||
#endif /* __XTENSA__ */
|
||||
#endif /* !_XTENSA_BASE_HEADER */
|
103
components/xtensa/esp32s2beta/include/xtensa/config/specreg.h
Normal file
103
components/xtensa/esp32s2beta/include/xtensa/config/specreg.h
Normal file
@ -0,0 +1,103 @@
|
||||
/*
|
||||
* Xtensa Special Register symbolic names
|
||||
*/
|
||||
|
||||
/* $Id: //depot/rel/Foxhill/dot.8/Xtensa/SWConfig/hal/specreg.h.tpp#1 $ */
|
||||
|
||||
/* Copyright (c) 1998-2002 Tensilica Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
|
||||
#ifndef XTENSA_SPECREG_H
|
||||
#define XTENSA_SPECREG_H
|
||||
|
||||
/* Include these special register bitfield definitions, for historical reasons: */
|
||||
#include <xtensa/corebits.h>
|
||||
|
||||
|
||||
/* Special registers: */
|
||||
#define SAR 3
|
||||
#define WINDOWBASE 72
|
||||
#define WINDOWSTART 73
|
||||
#define IBREAKENABLE 96
|
||||
#define DDR 104
|
||||
#define IBREAKA_0 128
|
||||
#define IBREAKA_1 129
|
||||
#define DBREAKA_0 144
|
||||
#define DBREAKA_1 145
|
||||
#define DBREAKC_0 160
|
||||
#define DBREAKC_1 161
|
||||
#define EPC_1 177
|
||||
#define EPC_2 178
|
||||
#define EPC_3 179
|
||||
#define EPC_4 180
|
||||
#define EPC_5 181
|
||||
#define EPC_6 182
|
||||
#define EPC_7 183
|
||||
#define DEPC 192
|
||||
#define EPS_2 194
|
||||
#define EPS_3 195
|
||||
#define EPS_4 196
|
||||
#define EPS_5 197
|
||||
#define EPS_6 198
|
||||
#define EPS_7 199
|
||||
#define EXCSAVE_1 209
|
||||
#define EXCSAVE_2 210
|
||||
#define EXCSAVE_3 211
|
||||
#define EXCSAVE_4 212
|
||||
#define EXCSAVE_5 213
|
||||
#define EXCSAVE_6 214
|
||||
#define EXCSAVE_7 215
|
||||
#define CPENABLE 224
|
||||
#define INTERRUPT 226
|
||||
#define INTENABLE 228
|
||||
#define PS 230
|
||||
#define VECBASE 231
|
||||
#define EXCCAUSE 232
|
||||
#define DEBUGCAUSE 233
|
||||
#define CCOUNT 234
|
||||
#define PRID 235
|
||||
#define ICOUNT 236
|
||||
#define ICOUNTLEVEL 237
|
||||
#define EXCVADDR 238
|
||||
#define CCOMPARE_0 240
|
||||
#define CCOMPARE_1 241
|
||||
#define CCOMPARE_2 242
|
||||
#define MISC_REG_0 244
|
||||
#define MISC_REG_1 245
|
||||
#define MISC_REG_2 246
|
||||
#define MISC_REG_3 247
|
||||
|
||||
/* Special cases (bases of special register series): */
|
||||
#define IBREAKA 128
|
||||
#define DBREAKA 144
|
||||
#define DBREAKC 160
|
||||
#define EPC 176
|
||||
#define EPS 192
|
||||
#define EXCSAVE 208
|
||||
#define CCOMPARE 240
|
||||
|
||||
/* Special names for read-only and write-only interrupt registers: */
|
||||
#define INTREAD 226
|
||||
#define INTSET 226
|
||||
#define INTCLEAR 227
|
||||
|
||||
#endif /* XTENSA_SPECREG_H */
|
||||
|
277
components/xtensa/esp32s2beta/include/xtensa/config/system.h
Normal file
277
components/xtensa/esp32s2beta/include/xtensa/config/system.h
Normal file
@ -0,0 +1,277 @@
|
||||
/*
|
||||
* xtensa/config/system.h -- HAL definitions that are dependent on SYSTEM configuration
|
||||
*
|
||||
* NOTE: The location and contents of this file are highly subject to change.
|
||||
*
|
||||
* Source for configuration-independent binaries (which link in a
|
||||
* configuration-specific HAL library) must NEVER include this file.
|
||||
* The HAL itself has historically included this file in some instances,
|
||||
* but this is not appropriate either, because the HAL is meant to be
|
||||
* core-specific but system independent.
|
||||
*/
|
||||
|
||||
/* Copyright (c) 2000-2010 Tensilica Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
|
||||
|
||||
#ifndef XTENSA_CONFIG_SYSTEM_H
|
||||
#define XTENSA_CONFIG_SYSTEM_H
|
||||
|
||||
/*#include <xtensa/hal.h>*/
|
||||
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
CONFIGURED SOFTWARE OPTIONS
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
#define XSHAL_USE_ABSOLUTE_LITERALS 0 /* (sw-only option, whether software uses absolute literals) */
|
||||
#define XSHAL_HAVE_TEXT_SECTION_LITERALS 1 /* Set if there is some memory that allows both code and literals. */
|
||||
|
||||
#define XSHAL_ABI XTHAL_ABI_WINDOWED /* (sw-only option, selected ABI) */
|
||||
/* The above maps to one of the following constants: */
|
||||
#define XTHAL_ABI_WINDOWED 0
|
||||
#define XTHAL_ABI_CALL0 1
|
||||
/* Alternatives: */
|
||||
/*#define XSHAL_WINDOWED_ABI 1*/ /* set if windowed ABI selected */
|
||||
/*#define XSHAL_CALL0_ABI 0*/ /* set if call0 ABI selected */
|
||||
|
||||
#define XSHAL_CLIB XTHAL_CLIB_NEWLIB /* (sw-only option, selected C library) */
|
||||
/* The above maps to one of the following constants: */
|
||||
#define XTHAL_CLIB_NEWLIB 0
|
||||
#define XTHAL_CLIB_UCLIBC 1
|
||||
#define XTHAL_CLIB_XCLIB 2
|
||||
/* Alternatives: */
|
||||
/*#define XSHAL_NEWLIB 1*/ /* set if newlib C library selected */
|
||||
/*#define XSHAL_UCLIBC 0*/ /* set if uCLibC C library selected */
|
||||
/*#define XSHAL_XCLIB 0*/ /* set if Xtensa C library selected */
|
||||
|
||||
#define XSHAL_USE_FLOATING_POINT 1
|
||||
|
||||
#define XSHAL_FLOATING_POINT_ABI 0
|
||||
|
||||
/* SW workarounds enabled for HW errata: */
|
||||
|
||||
/* SW options for functional safety: */
|
||||
#define XSHAL_FUNC_SAFETY_ENABLED 0
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
DEVICE ADDRESSES
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* Strange place to find these, but the configuration GUI
|
||||
* allows moving these around to account for various core
|
||||
* configurations. Specific boards (and their BSP software)
|
||||
* will have specific meanings for these components.
|
||||
*/
|
||||
|
||||
/* I/O Block areas: */
|
||||
#define XSHAL_IOBLOCK_CACHED_VADDR 0x70000000
|
||||
#define XSHAL_IOBLOCK_CACHED_PADDR 0x70000000
|
||||
#define XSHAL_IOBLOCK_CACHED_SIZE 0x0E000000
|
||||
|
||||
#define XSHAL_IOBLOCK_BYPASS_VADDR 0x90000000
|
||||
#define XSHAL_IOBLOCK_BYPASS_PADDR 0x90000000
|
||||
#define XSHAL_IOBLOCK_BYPASS_SIZE 0x0E000000
|
||||
|
||||
/* System ROM: */
|
||||
#define XSHAL_ROM_VADDR 0x50000000
|
||||
#define XSHAL_ROM_PADDR 0x50000000
|
||||
#define XSHAL_ROM_SIZE 0x01000000
|
||||
/* Largest available area (free of vectors): */
|
||||
#define XSHAL_ROM_AVAIL_VADDR 0x50000000
|
||||
#define XSHAL_ROM_AVAIL_VSIZE 0x01000000
|
||||
|
||||
/* System RAM: */
|
||||
#define XSHAL_RAM_VADDR 0x60000000
|
||||
#define XSHAL_RAM_PADDR 0x60000000
|
||||
#define XSHAL_RAM_VSIZE 0x20000000
|
||||
#define XSHAL_RAM_PSIZE 0x20000000
|
||||
#define XSHAL_RAM_SIZE XSHAL_RAM_PSIZE
|
||||
/* Largest available area (free of vectors): */
|
||||
#define XSHAL_RAM_AVAIL_VADDR 0x60000000
|
||||
#define XSHAL_RAM_AVAIL_VSIZE 0x20000000
|
||||
|
||||
/*
|
||||
* Shadow system RAM (same device as system RAM, at different address).
|
||||
* (Emulation boards need this for the SONIC Ethernet driver
|
||||
* when data caches are configured for writeback mode.)
|
||||
* NOTE: on full MMU configs, this points to the BYPASS virtual address
|
||||
* of system RAM, ie. is the same as XSHAL_RAM_* except that virtual
|
||||
* addresses are viewed through the BYPASS static map rather than
|
||||
* the CACHED static map.
|
||||
*/
|
||||
#define XSHAL_RAM_BYPASS_VADDR 0xA0000000
|
||||
#define XSHAL_RAM_BYPASS_PADDR 0xA0000000
|
||||
#define XSHAL_RAM_BYPASS_PSIZE 0x20000000
|
||||
|
||||
/* Alternate system RAM (different device than system RAM): */
|
||||
/*#define XSHAL_ALTRAM_[VP]ADDR ...not configured...*/
|
||||
/*#define XSHAL_ALTRAM_SIZE ...not configured...*/
|
||||
|
||||
/* Some available location in which to place devices in a simulation (eg. XTMP): */
|
||||
#define XSHAL_SIMIO_CACHED_VADDR 0xC0000000
|
||||
#define XSHAL_SIMIO_BYPASS_VADDR 0xC0000000
|
||||
#define XSHAL_SIMIO_PADDR 0xC0000000
|
||||
#define XSHAL_SIMIO_SIZE 0x20000000
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
* For use by reference testbench exit and diagnostic routines.
|
||||
*/
|
||||
#define XSHAL_MAGIC_EXIT 0x0
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
* DEVICE-ADDRESS DEPENDENT...
|
||||
*
|
||||
* Values written to CACHEATTR special register (or its equivalent)
|
||||
* to enable and disable caches in various modes.
|
||||
*----------------------------------------------------------------------*/
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
BACKWARD COMPATIBILITY ...
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* NOTE: the following two macros are DEPRECATED. Use the latter
|
||||
* board-specific macros instead, which are specially tuned for the
|
||||
* particular target environments' memory maps.
|
||||
*/
|
||||
#define XSHAL_CACHEATTR_BYPASS XSHAL_XT2000_CACHEATTR_BYPASS /* disable caches in bypass mode */
|
||||
#define XSHAL_CACHEATTR_DEFAULT XSHAL_XT2000_CACHEATTR_DEFAULT /* default setting to enable caches (no writeback!) */
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
GENERIC
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
/* For the following, a 512MB region is used if it contains a system (PIF) RAM,
|
||||
* system (PIF) ROM, local memory, or XLMI. */
|
||||
|
||||
/* These set any unused 512MB region to cache-BYPASS attribute: */
|
||||
#define XSHAL_ALLVALID_CACHEATTR_WRITEBACK 0x22221112 /* enable caches in write-back mode */
|
||||
#define XSHAL_ALLVALID_CACHEATTR_WRITEALLOC 0x22221112 /* enable caches in write-allocate mode */
|
||||
#define XSHAL_ALLVALID_CACHEATTR_WRITETHRU 0x22221112 /* enable caches in write-through mode */
|
||||
#define XSHAL_ALLVALID_CACHEATTR_BYPASS 0x22222222 /* disable caches in bypass mode */
|
||||
#define XSHAL_ALLVALID_CACHEATTR_DEFAULT XSHAL_ALLVALID_CACHEATTR_WRITEBACK /* default setting to enable caches */
|
||||
|
||||
/* These set any unused 512MB region to ILLEGAL attribute: */
|
||||
#define XSHAL_STRICT_CACHEATTR_WRITEBACK 0xFFFF111F /* enable caches in write-back mode */
|
||||
#define XSHAL_STRICT_CACHEATTR_WRITEALLOC 0xFFFF111F /* enable caches in write-allocate mode */
|
||||
#define XSHAL_STRICT_CACHEATTR_WRITETHRU 0xFFFF111F /* enable caches in write-through mode */
|
||||
#define XSHAL_STRICT_CACHEATTR_BYPASS 0xFFFF222F /* disable caches in bypass mode */
|
||||
#define XSHAL_STRICT_CACHEATTR_DEFAULT XSHAL_STRICT_CACHEATTR_WRITEBACK /* default setting to enable caches */
|
||||
|
||||
/* These set the first 512MB, if unused, to ILLEGAL attribute to help catch
|
||||
* NULL-pointer dereference bugs; all other unused 512MB regions are set
|
||||
* to cache-BYPASS attribute: */
|
||||
#define XSHAL_TRAPNULL_CACHEATTR_WRITEBACK 0x2222111F /* enable caches in write-back mode */
|
||||
#define XSHAL_TRAPNULL_CACHEATTR_WRITEALLOC 0x2222111F /* enable caches in write-allocate mode */
|
||||
#define XSHAL_TRAPNULL_CACHEATTR_WRITETHRU 0x2222111F /* enable caches in write-through mode */
|
||||
#define XSHAL_TRAPNULL_CACHEATTR_BYPASS 0x2222222F /* disable caches in bypass mode */
|
||||
#define XSHAL_TRAPNULL_CACHEATTR_DEFAULT XSHAL_TRAPNULL_CACHEATTR_WRITEBACK /* default setting to enable caches */
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
ISS (Instruction Set Simulator) SPECIFIC ...
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
/* For now, ISS defaults to the TRAPNULL settings: */
|
||||
#define XSHAL_ISS_CACHEATTR_WRITEBACK XSHAL_TRAPNULL_CACHEATTR_WRITEBACK
|
||||
#define XSHAL_ISS_CACHEATTR_WRITEALLOC XSHAL_TRAPNULL_CACHEATTR_WRITEALLOC
|
||||
#define XSHAL_ISS_CACHEATTR_WRITETHRU XSHAL_TRAPNULL_CACHEATTR_WRITETHRU
|
||||
#define XSHAL_ISS_CACHEATTR_BYPASS XSHAL_TRAPNULL_CACHEATTR_BYPASS
|
||||
#define XSHAL_ISS_CACHEATTR_DEFAULT XSHAL_TRAPNULL_CACHEATTR_WRITEBACK
|
||||
|
||||
#define XSHAL_ISS_PIPE_REGIONS 0
|
||||
#define XSHAL_ISS_SDRAM_REGIONS 0
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
XT2000 BOARD SPECIFIC ...
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
/* For the following, a 512MB region is used if it contains any system RAM,
|
||||
* system ROM, local memory, XLMI, or other XT2000 board device or memory.
|
||||
* Regions containing devices are forced to cache-BYPASS mode regardless
|
||||
* of whether the macro is _WRITEBACK vs. _BYPASS etc. */
|
||||
|
||||
/* These set any 512MB region unused on the XT2000 to ILLEGAL attribute: */
|
||||
#define XSHAL_XT2000_CACHEATTR_WRITEBACK 0xFF22111F /* enable caches in write-back mode */
|
||||
#define XSHAL_XT2000_CACHEATTR_WRITEALLOC 0xFF22111F /* enable caches in write-allocate mode */
|
||||
#define XSHAL_XT2000_CACHEATTR_WRITETHRU 0xFF22111F /* enable caches in write-through mode */
|
||||
#define XSHAL_XT2000_CACHEATTR_BYPASS 0xFF22222F /* disable caches in bypass mode */
|
||||
#define XSHAL_XT2000_CACHEATTR_DEFAULT XSHAL_XT2000_CACHEATTR_WRITEBACK /* default setting to enable caches */
|
||||
|
||||
#define XSHAL_XT2000_PIPE_REGIONS 0x00000000 /* BusInt pipeline regions */
|
||||
#define XSHAL_XT2000_SDRAM_REGIONS 0x00000440 /* BusInt SDRAM regions */
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------
|
||||
VECTOR INFO AND SIZES
|
||||
----------------------------------------------------------------------*/
|
||||
|
||||
#define XSHAL_VECTORS_PACKED 0
|
||||
#define XSHAL_STATIC_VECTOR_SELECT 1
|
||||
#define XSHAL_RESET_VECTOR_VADDR 0x40000400
|
||||
#define XSHAL_RESET_VECTOR_PADDR 0x40000400
|
||||
|
||||
/*
|
||||
* Sizes allocated to vectors by the system (memory map) configuration.
|
||||
* These sizes are constrained by core configuration (eg. one vector's
|
||||
* code cannot overflow into another vector) but are dependent on the
|
||||
* system or board (or LSP) memory map configuration.
|
||||
*
|
||||
* Whether or not each vector happens to be in a system ROM is also
|
||||
* a system configuration matter, sometimes useful, included here also:
|
||||
*/
|
||||
#define XSHAL_RESET_VECTOR_SIZE 0x00000300
|
||||
#define XSHAL_RESET_VECTOR_ISROM 0
|
||||
#define XSHAL_USER_VECTOR_SIZE 0x00000038
|
||||
#define XSHAL_USER_VECTOR_ISROM 0
|
||||
#define XSHAL_PROGRAMEXC_VECTOR_SIZE XSHAL_USER_VECTOR_SIZE /* for backward compatibility */
|
||||
#define XSHAL_USEREXC_VECTOR_SIZE XSHAL_USER_VECTOR_SIZE /* for backward compatibility */
|
||||
#define XSHAL_KERNEL_VECTOR_SIZE 0x00000038
|
||||
#define XSHAL_KERNEL_VECTOR_ISROM 0
|
||||
#define XSHAL_STACKEDEXC_VECTOR_SIZE XSHAL_KERNEL_VECTOR_SIZE /* for backward compatibility */
|
||||
#define XSHAL_KERNELEXC_VECTOR_SIZE XSHAL_KERNEL_VECTOR_SIZE /* for backward compatibility */
|
||||
#define XSHAL_DOUBLEEXC_VECTOR_SIZE 0x00000040
|
||||
#define XSHAL_DOUBLEEXC_VECTOR_ISROM 0
|
||||
#define XSHAL_WINDOW_VECTORS_SIZE 0x00000178
|
||||
#define XSHAL_WINDOW_VECTORS_ISROM 0
|
||||
#define XSHAL_INTLEVEL2_VECTOR_SIZE 0x00000038
|
||||
#define XSHAL_INTLEVEL2_VECTOR_ISROM 0
|
||||
#define XSHAL_INTLEVEL3_VECTOR_SIZE 0x00000038
|
||||
#define XSHAL_INTLEVEL3_VECTOR_ISROM 0
|
||||
#define XSHAL_INTLEVEL4_VECTOR_SIZE 0x00000038
|
||||
#define XSHAL_INTLEVEL4_VECTOR_ISROM 0
|
||||
#define XSHAL_INTLEVEL5_VECTOR_SIZE 0x00000038
|
||||
#define XSHAL_INTLEVEL5_VECTOR_ISROM 0
|
||||
#define XSHAL_INTLEVEL6_VECTOR_SIZE 0x00000038
|
||||
#define XSHAL_INTLEVEL6_VECTOR_ISROM 0
|
||||
#define XSHAL_DEBUG_VECTOR_SIZE XSHAL_INTLEVEL6_VECTOR_SIZE
|
||||
#define XSHAL_DEBUG_VECTOR_ISROM XSHAL_INTLEVEL6_VECTOR_ISROM
|
||||
#define XSHAL_NMI_VECTOR_SIZE 0x00000038
|
||||
#define XSHAL_NMI_VECTOR_ISROM 0
|
||||
#define XSHAL_INTLEVEL7_VECTOR_SIZE XSHAL_NMI_VECTOR_SIZE
|
||||
|
||||
|
||||
#endif /*XTENSA_CONFIG_SYSTEM_H*/
|
||||
|
130
components/xtensa/esp32s2beta/include/xtensa/config/tie-asm.h
Normal file
130
components/xtensa/esp32s2beta/include/xtensa/config/tie-asm.h
Normal file
@ -0,0 +1,130 @@
|
||||
/*
|
||||
* tie-asm.h -- compile-time HAL assembler definitions dependent on CORE & TIE
|
||||
*
|
||||
* NOTE: This header file is not meant to be included directly.
|
||||
*/
|
||||
|
||||
/* This header file contains assembly-language definitions (assembly
|
||||
macros, etc.) for this specific Xtensa processor's TIE extensions
|
||||
and options. It is customized to this Xtensa processor configuration.
|
||||
|
||||
Copyright (c) 1999-2018 Cadence Design Systems Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
|
||||
#ifndef _XTENSA_CORE_TIE_ASM_H
|
||||
#define _XTENSA_CORE_TIE_ASM_H
|
||||
|
||||
/* Selection parameter values for save-area save/restore macros: */
|
||||
/* Option vs. TIE: */
|
||||
#define XTHAL_SAS_TIE 0x0001 /* custom extension or coprocessor */
|
||||
#define XTHAL_SAS_OPT 0x0002 /* optional (and not a coprocessor) */
|
||||
#define XTHAL_SAS_ANYOT 0x0003 /* both of the above */
|
||||
/* Whether used automatically by compiler: */
|
||||
#define XTHAL_SAS_NOCC 0x0004 /* not used by compiler w/o special opts/code */
|
||||
#define XTHAL_SAS_CC 0x0008 /* used by compiler without special opts/code */
|
||||
#define XTHAL_SAS_ANYCC 0x000C /* both of the above */
|
||||
/* ABI handling across function calls: */
|
||||
#define XTHAL_SAS_CALR 0x0010 /* caller-saved */
|
||||
#define XTHAL_SAS_CALE 0x0020 /* callee-saved */
|
||||
#define XTHAL_SAS_GLOB 0x0040 /* global across function calls (in thread) */
|
||||
#define XTHAL_SAS_ANYABI 0x0070 /* all of the above three */
|
||||
/* Misc */
|
||||
#define XTHAL_SAS_ALL 0xFFFF /* include all default NCP contents */
|
||||
#define XTHAL_SAS3(optie,ccuse,abi) ( ((optie) & XTHAL_SAS_ANYOT) \
|
||||
| ((ccuse) & XTHAL_SAS_ANYCC) \
|
||||
| ((abi) & XTHAL_SAS_ANYABI) )
|
||||
|
||||
|
||||
/*
|
||||
* Macro to store all non-coprocessor (extra) custom TIE and optional state
|
||||
* (not including zero-overhead loop registers).
|
||||
* Required parameters:
|
||||
* ptr Save area pointer address register (clobbered)
|
||||
* (register must contain a 4 byte aligned address).
|
||||
* at1..at4 Four temporary address registers (first XCHAL_NCP_NUM_ATMPS
|
||||
* registers are clobbered, the remaining are unused).
|
||||
* Optional parameters:
|
||||
* continue If macro invoked as part of a larger store sequence, set to 1
|
||||
* if this is not the first in the sequence. Defaults to 0.
|
||||
* ofs Offset from start of larger sequence (from value of first ptr
|
||||
* in sequence) at which to store. Defaults to next available space
|
||||
* (or 0 if <continue> is 0).
|
||||
* select Select what category(ies) of registers to store, as a bitmask
|
||||
* (see XTHAL_SAS_xxx constants). Defaults to all registers.
|
||||
* alloc Select what category(ies) of registers to allocate; if any
|
||||
* category is selected here that is not in <select>, space for
|
||||
* the corresponding registers is skipped without doing any store.
|
||||
*/
|
||||
.macro xchal_ncp_store ptr at1 at2 at3 at4 continue=0 ofs=-1 select=XTHAL_SAS_ALL alloc=0
|
||||
xchal_sa_start \continue, \ofs
|
||||
// Optional global registers used by default by the compiler:
|
||||
.ifeq (XTHAL_SAS_OPT | XTHAL_SAS_CC | XTHAL_SAS_GLOB) & ~(\select)
|
||||
xchal_sa_align \ptr, 0, 1016, 4, 4
|
||||
rur.THREADPTR \at1 // threadptr option
|
||||
s32i \at1, \ptr, .Lxchal_ofs_+0
|
||||
.set .Lxchal_ofs_, .Lxchal_ofs_ + 4
|
||||
.elseif ((XTHAL_SAS_OPT | XTHAL_SAS_CC | XTHAL_SAS_GLOB) & ~(\alloc)) == 0
|
||||
xchal_sa_align \ptr, 0, 1016, 4, 4
|
||||
.set .Lxchal_ofs_, .Lxchal_ofs_ + 4
|
||||
.endif
|
||||
.endm // xchal_ncp_store
|
||||
|
||||
/*
|
||||
* Macro to load all non-coprocessor (extra) custom TIE and optional state
|
||||
* (not including zero-overhead loop registers).
|
||||
* Required parameters:
|
||||
* ptr Save area pointer address register (clobbered)
|
||||
* (register must contain a 4 byte aligned address).
|
||||
* at1..at4 Four temporary address registers (first XCHAL_NCP_NUM_ATMPS
|
||||
* registers are clobbered, the remaining are unused).
|
||||
* Optional parameters:
|
||||
* continue If macro invoked as part of a larger load sequence, set to 1
|
||||
* if this is not the first in the sequence. Defaults to 0.
|
||||
* ofs Offset from start of larger sequence (from value of first ptr
|
||||
* in sequence) at which to load. Defaults to next available space
|
||||
* (or 0 if <continue> is 0).
|
||||
* select Select what category(ies) of registers to load, as a bitmask
|
||||
* (see XTHAL_SAS_xxx constants). Defaults to all registers.
|
||||
* alloc Select what category(ies) of registers to allocate; if any
|
||||
* category is selected here that is not in <select>, space for
|
||||
* the corresponding registers is skipped without doing any load.
|
||||
*/
|
||||
.macro xchal_ncp_load ptr at1 at2 at3 at4 continue=0 ofs=-1 select=XTHAL_SAS_ALL alloc=0
|
||||
xchal_sa_start \continue, \ofs
|
||||
// Optional global registers used by default by the compiler:
|
||||
.ifeq (XTHAL_SAS_OPT | XTHAL_SAS_CC | XTHAL_SAS_GLOB) & ~(\select)
|
||||
xchal_sa_align \ptr, 0, 1016, 4, 4
|
||||
l32i \at1, \ptr, .Lxchal_ofs_+0
|
||||
wur.THREADPTR \at1 // threadptr option
|
||||
.set .Lxchal_ofs_, .Lxchal_ofs_ + 4
|
||||
.elseif ((XTHAL_SAS_OPT | XTHAL_SAS_CC | XTHAL_SAS_GLOB) & ~(\alloc)) == 0
|
||||
xchal_sa_align \ptr, 0, 1016, 4, 4
|
||||
.set .Lxchal_ofs_, .Lxchal_ofs_ + 4
|
||||
.endif
|
||||
.endm // xchal_ncp_load
|
||||
|
||||
|
||||
#define XCHAL_NCP_NUM_ATMPS 1
|
||||
|
||||
#define XCHAL_SA_NUM_ATMPS 1
|
||||
|
||||
#endif /*_XTENSA_CORE_TIE_ASM_H*/
|
||||
|
130
components/xtensa/esp32s2beta/include/xtensa/config/tie.h
Normal file
130
components/xtensa/esp32s2beta/include/xtensa/config/tie.h
Normal file
@ -0,0 +1,130 @@
|
||||
/*
|
||||
* tie.h -- compile-time HAL definitions dependent on CORE & TIE configuration
|
||||
*
|
||||
* NOTE: This header file is not meant to be included directly.
|
||||
*/
|
||||
|
||||
/* This header file describes this specific Xtensa processor's TIE extensions
|
||||
that extend basic Xtensa core functionality. It is customized to this
|
||||
Xtensa processor configuration.
|
||||
|
||||
Copyright (c) 1999-2018 Cadence Design Systems Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
|
||||
#ifndef _XTENSA_CORE_TIE_H
|
||||
#define _XTENSA_CORE_TIE_H
|
||||
|
||||
#define XCHAL_CP_NUM 0 /* number of coprocessors */
|
||||
#define XCHAL_CP_MAX 0 /* max CP ID + 1 (0 if none) */
|
||||
#define XCHAL_CP_MASK 0x00 /* bitmask of all CPs by ID */
|
||||
#define XCHAL_CP_PORT_MASK 0x00 /* bitmask of only port CPs */
|
||||
|
||||
/* Save area for non-coprocessor optional and custom (TIE) state: */
|
||||
#define XCHAL_NCP_SA_SIZE 4
|
||||
#define XCHAL_NCP_SA_ALIGN 4
|
||||
|
||||
/* Total save area for optional and custom state (NCP + CPn): */
|
||||
#define XCHAL_TOTAL_SA_SIZE 16 /* with 16-byte align padding */
|
||||
#define XCHAL_TOTAL_SA_ALIGN 4 /* actual minimum alignment */
|
||||
|
||||
/*
|
||||
* Detailed contents of save areas.
|
||||
* NOTE: caller must define the XCHAL_SA_REG macro (not defined here)
|
||||
* before expanding the XCHAL_xxx_SA_LIST() macros.
|
||||
*
|
||||
* XCHAL_SA_REG(s,ccused,abikind,kind,opt,name,galign,align,asize,
|
||||
* dbnum,base,regnum,bitsz,gapsz,reset,x...)
|
||||
*
|
||||
* s = passed from XCHAL_*_LIST(s), eg. to select how to expand
|
||||
* ccused = set if used by compiler without special options or code
|
||||
* abikind = 0 (caller-saved), 1 (callee-saved), or 2 (thread-global)
|
||||
* kind = 0 (special reg), 1 (TIE user reg), or 2 (TIE regfile reg)
|
||||
* opt = 0 (custom TIE extension or coprocessor), or 1 (optional reg)
|
||||
* name = lowercase reg name (no quotes)
|
||||
* galign = group byte alignment (power of 2) (galign >= align)
|
||||
* align = register byte alignment (power of 2)
|
||||
* asize = allocated size in bytes (asize*8 == bitsz + gapsz + padsz)
|
||||
* (not including any pad bytes required to galign this or next reg)
|
||||
* dbnum = unique target number f/debug (see <xtensa-libdb-macros.h>)
|
||||
* base = reg shortname w/o index (or sr=special, ur=TIE user reg)
|
||||
* regnum = reg index in regfile, or special/TIE-user reg number
|
||||
* bitsz = number of significant bits (regfile width, or ur/sr mask bits)
|
||||
* gapsz = intervening bits, if bitsz bits not stored contiguously
|
||||
* (padsz = pad bits at end [TIE regfile] or at msbits [ur,sr] of asize)
|
||||
* reset = register reset value (or 0 if undefined at reset)
|
||||
* x = reserved for future use (0 until then)
|
||||
*
|
||||
* To filter out certain registers, e.g. to expand only the non-global
|
||||
* registers used by the compiler, you can do something like this:
|
||||
*
|
||||
* #define XCHAL_SA_REG(s,ccused,p...) SELCC##ccused(p)
|
||||
* #define SELCC0(p...)
|
||||
* #define SELCC1(abikind,p...) SELAK##abikind(p)
|
||||
* #define SELAK0(p...) REG(p)
|
||||
* #define SELAK1(p...) REG(p)
|
||||
* #define SELAK2(p...)
|
||||
* #define REG(kind,tie,name,galn,aln,asz,csz,dbnum,base,rnum,bsz,rst,x...) \
|
||||
* ...what you want to expand...
|
||||
*/
|
||||
|
||||
#define XCHAL_NCP_SA_NUM 1
|
||||
#define XCHAL_NCP_SA_LIST(s) \
|
||||
XCHAL_SA_REG(s,1,2,1,1, threadptr, 4, 4, 4,0x03E7, ur,231, 32,0,0,0)
|
||||
|
||||
#define XCHAL_CP0_SA_NUM 0
|
||||
#define XCHAL_CP0_SA_LIST(s) /* empty */
|
||||
|
||||
#define XCHAL_CP1_SA_NUM 0
|
||||
#define XCHAL_CP1_SA_LIST(s) /* empty */
|
||||
|
||||
#define XCHAL_CP2_SA_NUM 0
|
||||
#define XCHAL_CP2_SA_LIST(s) /* empty */
|
||||
|
||||
#define XCHAL_CP3_SA_NUM 0
|
||||
#define XCHAL_CP3_SA_LIST(s) /* empty */
|
||||
|
||||
#define XCHAL_CP4_SA_NUM 0
|
||||
#define XCHAL_CP4_SA_LIST(s) /* empty */
|
||||
|
||||
#define XCHAL_CP5_SA_NUM 0
|
||||
#define XCHAL_CP5_SA_LIST(s) /* empty */
|
||||
|
||||
#define XCHAL_CP6_SA_NUM 0
|
||||
#define XCHAL_CP6_SA_LIST(s) /* empty */
|
||||
|
||||
#define XCHAL_CP7_SA_NUM 0
|
||||
#define XCHAL_CP7_SA_LIST(s) /* empty */
|
||||
|
||||
/* Byte length of instruction from its first nibble (op0 field), per FLIX. */
|
||||
#define XCHAL_OP0_FORMAT_LENGTHS 3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3
|
||||
/* Byte length of instruction from its first byte, per FLIX. */
|
||||
#define XCHAL_BYTE0_FORMAT_LENGTHS \
|
||||
3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3, 3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3,\
|
||||
3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3, 3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3,\
|
||||
3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3, 3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3,\
|
||||
3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3, 3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3,\
|
||||
3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3, 3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3,\
|
||||
3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3, 3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3,\
|
||||
3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3, 3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3,\
|
||||
3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3, 3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3
|
||||
|
||||
#endif /*_XTENSA_CORE_TIE_H*/
|
||||
|
BIN
components/xtensa/esp32s2beta/libhal.a
Normal file
BIN
components/xtensa/esp32s2beta/libhal.a
Normal file
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user