1. Rename MACROs SYSTEM_WIFI_RST_EN register bit fields to be more recognizable
2. reset Bluetooth baseband and MAC bits to fix the issue of task watchdog triggered during controller initialization due to invalid hardware state
The change fixes thread-local-storage size by removing .srodata section
from it. It initially was included in TLS section by mistake.
The issue was found when stack size increased after building applications
with GCC-11.1 compiler. Stack size became bigger because some new data
appeared in .srodata. See more details here:
adce62f53d
This bugfix contains 3 fixes:
1. .rtc_dummy section is removed (not needed for C3)
2. .rtc_text section is padded with 16B for possible CPU prefetch
3. .rtc_text section is aligned to 4B boundary to comply with PMS Memprot requirements
When the application is being debugged it should check the call result (esp_cpu_in_ocd_debug_mode())
is not given volt.glitch attack - so the result is triple-checked by ESP_FAULT_ASSERT macro. In case
the check fails, the system is reset immediately
IDF-4014
IRAM section didn't contain sufficient padding for possible CPU instruction prefetch,
ie instruction fetch could happen in DRAM section which is prohibited by the Memprot module.
This is fixed by adding 16B to the end of IRAM section in LD script (C3 CPU prefetch buffer depth is 4 words)
Closes IDF-3554
Fix the issue mentioned when using two or more encoders. Modify PCNT_CTRL_GND_IO
to avoid the affect of USB JTAG(origin pin 19 is used for USB D-). Update esp32c3.
peripherals.ld and docs for esp32s3.
Closes https://github.com/espressif/esp-idf/issues/6889
Since dd849ffc, _rodata_start label has been moved to a different
linker output section from where the TLS templates (.tdata, .tbss)
are located. Since link-time addresses of thread-local variables are
calculated relative to the section start address, this resulted in
incorrect calculation of THREADPTR/$tp registers.
Fix by introducing new linker label, _flash_rodata_start, which points
to the .flash.rodata output section where TLS variables are located,
and use it when calculating THREADPTR/$tp.
Also remove the hardcoded rodata section alignment for Xtensa targets.
Alignment of rodata can be affected by the user application, which is
the issue dd849ffc was fixing. To accommodate any possible alignment,
save it in a linker label (_flash_rodata_align) and then use when
calculating THREADPTR. Note that this is not required on RISC-V, since
this target doesn't use TPOFF.
It is now possible to have any alignment restriction on rodata in the user
applicaiton. It will not affect the first section which must be aligned
on a 16-byte bound.
Closes https://github.com/espressif/esp-idf/issues/6719
rodata dummy section has now the same alignment as flash text section,
and at least the same size. For these reasons, the cache will map
correctly the following rodata section.
The CPU might prefetch instructions, which means it in some cases
will try to fetch instruction located after the last instruction in
flash.text.
Add dummy bytes to ensure fetching these wont result in an error,
e.g. MMU exceptions
Removed the old dynamically allocated GDMA channel approach.
It proved too unreliable as we couldn't not ensure consumers of the mbedtls
would properly free the channels after use.
Replaced by a single shared GDMA channel for AES and SHA, which won't be
released unless user specifically calls API for releasing it.
On S2 the brown out detector would occasionally trigger erroneously during deep sleep.
Disable it before sleeping to circumvent this issue.
Closes https://github.com/espressif/esp-idf/issues/6179
Software support for PMS module.
Allows controlled memory access to IRAM (R/W/X) and DRAM0 (R/W)
On/locked by default, configurable in Kconfig (esp_system)
Closes https://jira.espressif.com:8443/browse/IDF-2092