1. Clarify THREADPTR calculation in FreeRTOS code, explaining where
the constant 0x10 offset comes from.
2. On the ESP32-S2, .flash.rodata section had different default
alignment (8 bytes instead of 16), which resulted in different offset
of the TLS sections. Unfortunately I haven’t found a way to query
section alignment from C code, or to use a constant value to define
section alignment in the linker script. The linker scripts are
modified to force a fixed 16 byte alignment for .flash.rodata on the
ESP32 and ESP32-S2beta. Note that the base address of .flash.rodata
was already 16 byte aligned, so this has not changed the actual
memory layout of the application.
Full explanation of the calculation below.
Assume we have the TLS template section base address
(tls_section_vma), the address of a TLS variable in the template
(address), and the final relocation value (offset). The linker
calculates:
offset = address - tls_section_vma + align_up(TCB_SIZE, alignment).
At run time, the TLS section gets copied from _thread_local_start
(in .rodata) to task_thread_local_start. Let’s assume that an address
of a variable in the runtime TLS section is runtime_address.
Access to this address will happen by calculating THREADPTR + offset.
So, by a series of substitutions:
THREADPTR + offset = runtime_address THREADPTR = runtime_address - offset
THREADPTR = runtime_address - (address - tls_section_vma + align_up(TCB_SIZE, alignment)) THREADPTR = (runtime_address - address) + tls_section_vma - align_up(TCB_SIZE, alignment)
The difference between runtime_address and address is same as the
difference between task_thread_local_start and _thread_local_start.
And tls_section_vma is the address of .rodata section, i.e.
_rodata_start. So we arrive to
THREADPTR = task_thread_local_start - _thread_local_start + _rodata_start - align_up(TCB_SIZE, alignment).
The idea with TCB_SIZE being added to the THREADPTR when computing
the relocation was to let the OS save TCB pointer in the TREADPTR
register. The location of the run-time TLS section was assumed to be
immediately after the TCB, aligned to whatever the section alignment
was. However in our case the problem is that the run-time TLS section
is stored not next to the TCB, but at the top of the stack. Plus,
even if it was stored next to the TCB, the size of a FreeRTOS TCB is
not equal to 8 bytes (TCB_SIZE hardcoded in the linker). So we have
to calculate THREADPTR in a slightly obscure way, to compensate for
these differences.
Closes IDF-1239
components/freertos: cleaned up multicore option scheduler.
components/freertos: more cleanup and test optimization to present realistic results
components/freertos: remove unused macros of optimized task selection when multicore is used
freertos/Kconfig: fix trailing space on optimized scheduler option
freertos/tests: moved test context variables inside of test task.
The public variables used on scheduling time test now were packed into a structure allocated on test case task stack and passed to tasks as arguments saving RAM comsumption.
DISABLED_FOR_TARGETS macros are used
Partly revert "ci: disable unavailable tests for esp32s2beta"
This partly reverts commit 76a3a5fb48.
Partly revert "ci: disable UTs for esp32s2beta without runners"
This partly reverts commit eb158e9a22.
Partly revert "fix unit test and examples for s2beta"
This partly reverts commit 9baa7826be.
Partly revert "efuse: Add support for esp32s2beta"
This partly reverts commit db84ba868c.
1. add hal and low-level layer for timer group
2. add callback functions to handle interrupt
3. add timer deinit function
4. add timer spinlock take function
Using xxx_periph.h in whole IDF instead of xxx_reg.h, xxx_struct.h, xxx_channel.h ... .
Cleaned up header files from unnecessary headers (releated to soc/... headers).
This MR removes the common dependency from every IDF components to the SOC component.
Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components.
But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components.
In CMAKE, we have two kinds of header visibilities (set by include path visibility):
(Assume component A --(depends on)--> B, B is the current component)
1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B)
2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only)
and we have two kinds of depending ways:
(Assume component A --(depends on)--> B --(depends on)--> C, B is the current component)
1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B)
2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B)
1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default.
2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it.
3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers
4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link)
This is a breaking change. Previous code may depends on the long include chain.
You may need to include the following headers for some files after this commit:
- soc/soc.h
- soc/soc_memory_layout.h
- driver/gpio.h
- esp_sleep.h
The major broken include chain includes:
1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h.
2. ets_sys.h no longer includes soc/soc.h
3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h
some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h
BREAKING CHANGE
1. separate rom include files and linkscript to esp_rom
2. modefiy "include rom/xxx.h" to "include esp32/rom/xxx.h"
3. Forward compatible
4. update mqtt
New unity component can be used for testing other applications.
Upstream version of Unity is included as a submodule.
Utilities specific to ESP-IDF unit tests (partitions, leak checking
setup/teardown functions, etc) are kept only in unit-test-app.
Kconfig options are added to allow disabling certain Unity features.
This fixes multiple bugs with ring buffers and re-factors the code. The public
API has not changed, however the underlying implementation have various private
functions have been changed. The following behavioral changes have been made
- Size of ring buffers for No-Split/Allow-Split buffers will not be rounded
up to the nearest 32-bit aligned size. This was done to simplify the
implementation
- Item size for No-Split/Allow-Split buffers will also be rounded up to the
nearest 32-bit aligned size.
The following bugs have been fixed
- In copyItemToRingbufAllowSplit(), when copying an item where the aligned
size is smaller than the remaining length, the function does not consider
the case where the true size of the item is less than 4 bytes.
- The copy functions will automatically wrap around the write pointers when
the remaining length of the buffer is not large enough to fit a header, but
does not consider if wrapping around will cause an overlap with the read
pointer. This will make a full buffer be mistaken for an empty buffer
closes#1711
- xRingbufferSend() can get stuck in a infinite loop when the size of the
free memory is larger than the needed_size, but too small to fit in the ring
buffer due to alignment and extra overhead of wrapping around.
closes#1846
- Fixed documentation with ring buffer queue set API
- Adding and removing from queue set does not consider the case where the
read/write semaphores actually hold a value.
The following functions have been deprecated
- xRingbufferIsNextItemWrapped() due to lack of thread safety
- xRingbufferAddToQueueSetWrite() and xRingbufferRemoveFromQueueSetWrite()
as adding the queue sets only work under receive operations.
The following functions have been added
- xRingbufferReceiveSplit() and xRingbufferReceiveSplitFromISR() as a thread
safe way to receive from allow-split buffers
- vRingbufferGetInfo()
Documentation for ring buffers has also been added.
Bugfix to prevent a self deleting no affinity task's memory from being freed by the
idle task of the other core before the self deleting no affinity task is able to context
switch out. prvCheckTasksWaitingTermination now checks if the task is still on
pxCurrentTCB before freeing task memory.
This commit backports vTaskDelete() behavior from FreeRTOS v9.0.0 which
allows for the immediate freeing of task memory if the task being deleted
is not currently running and not pinned to the other core. This commit also
fixes a bug in prvCheckTasksWaitingTermination which prevented the
Idle Task from cleaning up all tasks awaiting deletion. Each iteration of the Idle
Task should traverse the xTasksWaitingTermination list and clean up all tasks
not pinned to the other core. The previous implementation would cause
prvCheckTasksWaitingTermination to return when encountering a task
pinned to the other core whilst traversing the xTasksWaitingTermination list.
The test case for vTaskDelete() has been updated to test for the bugfix and
backported deletion behavior.
This commit backports the following features from FreeRTOS v9.0.0
- uxSemaphoreGetCount()
- vTimerSetTimerId(), xTimerGetPeriod(), xTimerGetExpiryTime()
- xTimerCreateStatic()
- xEventGroupCreateStatic()
- uxSemaphoreGetCount()
Functions backported previously
- xTaskCreateStatic()
- xQueueCreateStatic()
- xSemaphoreCreateBinaryStatic(), xSemaphoreCreateCountingStatic()
- xSemaphoreCreateMutexStatic(), xSemaphoreCreateRecursiveMutexStatic()
- pcQueueGetName()
- vTaskSetThreadLocalStoragePointer()
- pvTaskGetThreadLocalStoragePointer()
Unit tests were also written for the functions above (except for pcQueueGetName
which is tested in a separate Queue Registry MR). The original tlsp and del cb test case
was deleted and integrated into the test cases of this MR.
In the queue registry test, start_sem is given twice to let both tasks
start the test. Each task takes start_sem, does some work, gives done_sem,
and goes on to wait for start_sem again.
It may happen that one task can grab start_sem, add queues to the
registry, give done_sem, then grab start_sem again, delete the queues
from the registry, and give done_sem again. At this point, main test
task takes done_sem twice and proceeds to verify that queues have been
added to the registry. But in fact, the first task has already deleted
its queues from the registry, and the second one might not have added
the queues yet. This causes test to fail.
This changes the test to use separate start semaphores for each task,
to avoid the race condition.
This commit makes the configQUEUE_REGISTRY_SIZE and
configGENERATE_RUN_TIME_STATS configurable in menuconfig.
- configQUEUE_REGISTRY_SIZE can now be set in menuconfig.
- The functions vQueueAddToRegistry() and vQueueUnregisterQueue() were made
SMP compatbile
- pcQueueGetName() was backported from FreeRTOS v9.0.0
- Added test case for Queue Registry functions
- configGENERATE_RUN_TIME_STATS can now be enabled in menuconfig. CCOUNT or
esp_timer can be selected as the FreeRTOS run time clock in menuconfig as
well, although CCOUNT will overflow quickly.
- Run time stats collection (in vTaskSwitchContext) and generation (in
uxTaskGetSystemState) have been made SMP compatible. Therefore
vTaskGetRunTimeStats() now displays the run time usage of each task as a
percentage of total runtime of both CPUs
Squash
Test cases were added for the following functions
- xTaskNotify(), xTaskNotifyGive(), xTaskNotifyFromISR(), vTaskNotifyGiveFromISR(),
- xTaskNotifyWait(), ulTaskNotifyTake()
- vTaskDelayUntil()
The following function was made smp compatible and tested as well
- eTaskGetState()
This commit updates various test cases throughout esp-idf such that
the values used for timer divider pass the assertions in the timer component.
Timer divider values must be between 2 to 65536
This commit makes configUSE_TRACE_FACILITY and
configUSE_STATS_FORMATTING_FUNCTIONS configurable in kconfig. Test cases fro the
functions enabled by the two configurations above have also been added.
Test cases for the following functions have been added...
- uxTaskGetSystemState()
- uxTaskGetTaskNumber()
- vTaskSetTaskNumber()
- xEventGroupClearBitsFromISR()
- xEventGroupSetBitsFromISR()
- uxEventGroupGetNumber()
- uxQueueGetQueueNumber()
- vQueueSetQueueNumber()
- ucQueueGetQueueType()
Test cases for the following functions were not required...
- prvListTaskWithinSingleList()
- prvWriteNameToBuffer()
- vTaskList()
Previously if multiple tasks had been added to xPendingReadyList for the CPU, only the first one was resumed.
Includes a test case for resuming multiple (pending) tasks on xTaskResumeAll().
Document the limitation that while scheduler is suspended on one CPU, it can't wake tasks on either CPU.
Updated test case to include configASSERT cases (+1 squashed commits)
Squashed commits:
[871ec26f] Freertos:Bugfix uxTaskGetSystemState
Bug (github #12142) with uxTaskGetSystemState where
if called immediately after creating a bunch of tasks,
those tasks would be added twice into the TaskStatusArray.
Bug caused due to use old implementation using vTaskSuspendAll
which did not stop newly created task on other core from accessing the
read/waiting task lists whilst the list were being read by
uxTaskGetSystemState. Fixed bug by replacing vTaskSuspendAll
with taskENTER_CRITICAL and added test case for the bugfix
component/esp32 : fix dualcore bug
1. When dual core cpu run access DPORT register, must do protection.
2. If access DPORT register, must use DPORT_REG_READ/DPORT_REG_WRITE and DPORT_XXX register operation macro.
See merge request !742
1. When dual core cpu run access DPORT register, must do protection.
2. If access DPORT register, must use DPORT_REG_READ/DPORT_REG_WRITE and DPORT_XXX register operation macro.
FreeRTOS: Fix cross-core event group sync
As above
Also includes fixes which allowed removing some semi-hacky bits from the event group unit tests - specifically, higher priority tasks will always be started immediately even if they run on the opposite core.
See merge request !535
“Full” printf uses more stack space than “nano” printf, and more space than available in the idle task.
This caused stack overflow in TLS delete test. Replacing printf with ets_printf.
rename nvs host test folder, modify .gitlab-ci.yml
remove unit-test-app build
re-format unit test files
remove extra newlines in project.mk
some refactoring for unit test part in project.mk
add build files of unit-test-app in gitignore
add README.md for unit test app
correct headings in README.md
remove files and make minor tweaks in unit test app
update .gitlab-ci.yml to use unit test app
delete unused lines in component_wrapper.mk
delete periph_i2s.h and lcd test
add text floating point in components/esp32/test/Kconfig
correct idf test build paths in .gitlab-ci.yml