After ets_hmac_disable(), invalidating JTAG register process is ineffective.
So, added call to enable hmac begore invalidating JTAG REG.
And similarly disabled it after invalidation.
ESP32S2/C3/C2: fixed S2 dangerous power parameters in sleep modes and support S2/C3/C2 different sleep mode(v5.0)
See merge request espressif/esp-idf!23754
- Remove esp_cpu_in_ocd_mode() from esp_cpu.h. Users should call esp_cpu_dbgr_is_attached() instead.
- Remove esp_cpu_get_ccount() from esp_cpu.h. Users should call esp_cpu_get_cycle_count() instead.
- Remove esp_cpu_set_ccount() from esp_cpu.h. Users should call esp_cpu_set_cycle_count() instead.
- Other IDF components updated to call esp_cpu_dbgr_is_attached(), esp_cpu_get_cycle_count() and esp_cpu_set_cycle_count() as well.
This commit marks all functions in interrupt_controller_hal.h, cpu_ll.h and cpu_hal.h as deprecated.
Users should use functions from esp_cpu.h instead.
The following two functions in bootloader_support are private now:
* esp_secure_boot_verify_sbv2_signature_block()
* esp_secure_boot_verify_rsa_signature_block()
They have been moved into private header files
inside bootloader_private/
* Removed bootloader_reset_reason.h and
bootloader_common_get_reset_reason() completely.
Alternative in ROM component is available.
* made esp_efuse.h independent of target-specific rom header
When creating G0 layer, some regi2c_*.h headers were moved out from
esp_hw_support (G1) to soc (G0). In order to be consistent with that change,
move all the remaining regi2c_*.h headers to soc too.
introduced in e44ead535640525969c7e85892f38ca349d5ddf4
1. The int8M power domain config by default is PD. While LEDC is using
RTC8M as clock source, this power domain will be kept on.
But when 8MD256 is used as RTC clock source, the power domain should
also be kept on.
On ESP32, there was protection for it, but broken by commit
e44ead535640525969c7e85892f38ca349d5ddf4. Currently the power domain
will be forced on when LEDC is using RTC8M as clock source &&
!int8m_pd_en (user enable ESP_PDP_DOMAIN_RTC8M in lightsleep). Otherwise
the power domain will be powered off, regardless of RTC clock source.
In other words, int8M domain will be forced off (even when 8MD256
used as RTC clock source) if LEDC not using RTC8M as clock source, user
doesn't enable ESP_PDP_DOMAIN_RTC8M, or in deep sleep.
On later chips, there's no such protection, so 8MD256 could't be used as
RTC clock source in sleep modes.
This commit adds protection of 8MD256 clock to other chips. Fixes the
incorrect protection logic overriding on ESP32. Now the power domain
will be determiend by the logic below (order by priority):
1. When RTC clock source uses 8MD256, power up
2. When LEDC uses RTC8M clock source, power up
3. In deepsleep, power down
4. Otherwise determined by user config of ESP_PDP_DOMAIN_RTC8M,
power down by default. (This is preferred to have highest
priority, but it's kept as is because of current code structure.)
2. Before, after the macro `RTC_SLEEP_CONFIG_DEFAULT` decides dbias, the
protection above may force the int8m PU. This may cause the inconsistent
of dbias and the int8m PU status.
This commit lifts the logic of pd int8m/xtal fpu logic to upper layer
(sleep_modes.c).
Related: https://github.com/espressif/esp-idf/issues/8007, https://github.com/espressif/esp-idf/pull/8089
temp
Moved the following kconfig options out of the target component:
* CONFIG_ESP*_DEFAULT_CPU_FREQ* -> esp_system
* ESP*_REV_MIN -> esp_hw_support
* ESP*_TIME_SYSCALL -> newlib
* ESP*_RTC_* -> esp_hw_support
Where applicable these target specific konfig names were merged into
a single common config, e.g;
CONFIG_ESP*_DEFAULT_CPU_FREQ -> CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ