CONFIG_ESP_TIMER_ISR_AFFINITY can be equal to -1, whereas
ESP_SYSTEM_INIT_FN takes an uint16_t argument. To avoid overflow,
move the choice of init mask into source code and set the value
explicitly.
Similar to how the secondary init functions were already registered
via ESP_SYSTEM_INIT_FN, do the same for the core init functions.
This MR doesn't actually move the init functions into respective
components yet. This has to be carefully done in follow-up MRs.
* All components which won't build (yet) on Linux are excluded.
This enables switching to Linux in an application without
explicitly setting COMPONENTS to main in the main
CMakeLists.txt.
* ESP Timer provides headers for Linux now
* automatically disabling LWIP in Kconfig if it is not available
doc(linux): brought section
"Component Linux/Mock Support Overview" up to date
Inadequate locking in the esp_timer component allowed corruption
of the s_timers linked list:
1. timer_armed(timer) returns false
2. another task arms the timer and adds it to s_timers
3. the list is locked
4. the timer is inserted into s_timers again
The last step results in a loop in the s_timers list, which causes
an infinite loop when iterated. This change always locks the
list before checking if the timer is already armed avoiding
the data race.
Related to ESP32-C6 chip only because this chip can power down the digital domain
during the light sleep. And after wakes up, systimer gets resumed,
and the alarm value < count value, so it leads the alarm fired immediately.
We get one unnecessary interrupt at light sleep exit time.
Other chips do not power down the digital domain related to systimer.
All the partition handling API functions and data-types were moved from the 'spi_flash' component to the new one named 'esp_partition'. See Storage 5.x migration guide for more details
Timers, periodic or not, can now be restarted thanks to esp_timer_restart function.
This is done atomically, which can be used to feed a periodic timer, or simply change the period.
ESP32-C2 has a single group timer, thus it will use it for the interrupt watchdog,
which is more critical than the task watchdog. The latter is implement in
software thanks to the `esp_timer`component.
esp_light_sleep_start() will stall the other CPU via esp_ipc_isr_stall_other_cpu(). After stalling the other CPU,
will call esp_clk_... API which themselves take locks. If the other stalled CPU is holding those locks, this will
result in a deadlock.
This commit adds a workaround calling esp_clk_private_lock() to take the lock before stalling the other CPU.