esp-idf/components/driver/test/test_spi_master.c

835 lines
26 KiB
C
Raw Normal View History

/*
Tests for the spi_master device driver
*/
#include <esp_types.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "driver/spi_master.h"
#include "driver/spi_slave.h"
#include "soc/dport_reg.h"
#include "soc/spi_reg.h"
#include "soc/spi_struct.h"
#include "esp_heap_caps.h"
#include "esp_log.h"
#include "freertos/ringbuf.h"
const static char TAG[] = "test_spi";
static void check_spi_pre_n_for(int clk, int pre, int n)
{
esp_err_t ret;
spi_device_handle_t handle;
spi_device_interface_config_t devcfg={
.command_bits=0,
.address_bits=0,
.dummy_bits=0,
.clock_speed_hz=clk,
.duty_cycle_pos=128,
.mode=0,
.spics_io_num=21,
.queue_size=3
};
char sendbuf[16]="";
spi_transaction_t t;
memset(&t, 0, sizeof(t));
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
TEST_ASSERT(ret==ESP_OK);
t.length=16*8;
t.tx_buffer=sendbuf;
ret=spi_device_transmit(handle, &t);
printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1);
TEST_ASSERT(SPI2.clock.clkcnt_n+1==n);
TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre);
ret=spi_bus_remove_device(handle);
TEST_ASSERT(ret==ESP_OK);
}
TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
{
spi_bus_config_t buscfg={
.mosi_io_num=4,
.miso_io_num=26,
.sclk_io_num=25,
.quadwp_io_num=-1,
.quadhd_io_num=-1
};
esp_err_t ret;
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
TEST_ASSERT(ret==ESP_OK);
check_spi_pre_n_for(26000000, 1, 3);
check_spi_pre_n_for(20000000, 1, 4);
check_spi_pre_n_for(8000000, 1, 10);
check_spi_pre_n_for(800000, 2, 50);
check_spi_pre_n_for(100000, 16, 50);
check_spi_pre_n_for(333333, 4, 60);
2017-04-27 02:50:02 -04:00
check_spi_pre_n_for(900000, 2, 44);
check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz
check_spi_pre_n_for(26000000, 1, 3);
ret=spi_bus_free(HSPI_HOST);
TEST_ASSERT(ret==ESP_OK);
}
static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) {
spi_bus_config_t buscfg={
.mosi_io_num=4,
.miso_io_num=26,
.sclk_io_num=25,
.quadwp_io_num=-1,
.quadhd_io_num=-1,
.max_transfer_sz=4096*3
};
spi_device_interface_config_t devcfg={
.command_bits=0,
.address_bits=0,
.dummy_bits=0,
.clock_speed_hz=clkspeed,
.duty_cycle_pos=128,
.mode=0,
.spics_io_num=21,
.queue_size=3,
};
esp_err_t ret;
spi_device_handle_t handle;
printf("THIS TEST NEEDS A JUMPER BETWEEN IO4 AND IO26\n");
ret=spi_bus_initialize(HSPI_HOST, &buscfg, dma?1:0);
TEST_ASSERT(ret==ESP_OK);
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
TEST_ASSERT(ret==ESP_OK);
printf("Bus/dev inited.\n");
return handle;
}
static void spi_test(spi_device_handle_t handle, int num_bytes) {
esp_err_t ret;
int x;
srand(num_bytes);
char *sendbuf=heap_caps_malloc(num_bytes, MALLOC_CAP_DMA);
char *recvbuf=heap_caps_malloc(num_bytes, MALLOC_CAP_DMA);
for (x=0; x<num_bytes; x++) {
sendbuf[x]=rand()&0xff;
recvbuf[x]=0x55;
}
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length=num_bytes*8;
t.tx_buffer=sendbuf;
t.rx_buffer=recvbuf;
t.addr=0xA00000000000000FL;
t.cmd=0x55;
printf("Transmitting %d bytes...\n", num_bytes);
ret=spi_device_transmit(handle, &t);
TEST_ASSERT(ret==ESP_OK);
srand(num_bytes);
for (x=0; x<num_bytes; x++) {
if (sendbuf[x]!=(rand()&0xff)) {
printf("Huh? Sendbuf corrupted at byte %d\n", x);
TEST_ASSERT(0);
}
if (sendbuf[x]!=recvbuf[x]) break;
}
if (x!=num_bytes) {
int from=x-16;
if (from<0) from=0;
printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from);
for (int i=0; i<32; i++) {
if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]);
}
printf("\n");
for (int i=0; i<32; i++) {
if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]);
}
printf("\n");
// TEST_ASSERT(0);
}
printf("Success!\n");
free(sendbuf);
free(recvbuf);
}
static void destroy_spi_bus(spi_device_handle_t handle) {
esp_err_t ret;
ret=spi_bus_remove_device(handle);
TEST_ASSERT(ret==ESP_OK);
ret=spi_bus_free(HSPI_HOST);
TEST_ASSERT(ret==ESP_OK);
}
#define TEST_LEN 111
TEST_CASE("SPI Master test", "[spi][ignore]")
{
printf("Testing bus at 80KHz\n");
spi_device_handle_t handle=setup_spi_bus(80000, true);
spi_test(handle, 16); //small
spi_test(handle, 21); //small, unaligned
spi_test(handle, 36); //aligned
spi_test(handle, 128); //aligned
spi_test(handle, 129); //unaligned
spi_test(handle, 4096-2); //multiple descs, edge case 1
spi_test(handle, 4096-1); //multiple descs, edge case 2
spi_test(handle, 4096*3); //multiple descs
destroy_spi_bus(handle);
printf("Testing bus at 80KHz, non-DMA\n");
handle=setup_spi_bus(80000, false);
spi_test(handle, 4); //aligned
spi_test(handle, 16); //small
spi_test(handle, 21); //small, unaligned
destroy_spi_bus(handle);
printf("Testing bus at 26MHz\n");
handle=setup_spi_bus(20000000, true);
spi_test(handle, 128); //DMA, aligned
spi_test(handle, 4096*3); //DMA, multiple descs
destroy_spi_bus(handle);
printf("Testing bus at 900KHz\n");
handle=setup_spi_bus(9000000, true);
spi_test(handle, 128); //DMA, aligned
spi_test(handle, 4096*3); //DMA, multiple descs
destroy_spi_bus(handle);
}
TEST_CASE("SPI Master test, interaction of multiple devs", "[spi][ignore]") {
esp_err_t ret;
spi_device_interface_config_t devcfg={
.command_bits=0,
.address_bits=0,
.dummy_bits=0,
.clock_speed_hz=1000000,
.duty_cycle_pos=128,
.mode=0,
.spics_io_num=23,
.queue_size=3,
};
spi_device_handle_t handle1=setup_spi_bus(80000, true);
spi_device_handle_t handle2;
spi_bus_add_device(HSPI_HOST, &devcfg, &handle2);
printf("Sending to dev 1\n");
spi_test(handle1, 7);
printf("Sending to dev 1\n");
spi_test(handle1, 15);
printf("Sending to dev 2\n");
spi_test(handle2, 15);
printf("Sending to dev 1\n");
spi_test(handle1, 32);
printf("Sending to dev 2\n");
spi_test(handle2, 32);
printf("Sending to dev 1\n");
spi_test(handle1, 63);
printf("Sending to dev 2\n");
spi_test(handle2, 63);
printf("Sending to dev 1\n");
spi_test(handle1, 5000);
printf("Sending to dev 2\n");
spi_test(handle2, 5000);
ret=spi_bus_remove_device(handle2);
2017-04-27 02:50:02 -04:00
TEST_ASSERT(ret==ESP_OK);
destroy_spi_bus(handle1);
}
TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]")
{
//spi config
spi_bus_config_t bus_config;
spi_device_interface_config_t device_config;
spi_device_handle_t spi;
spi_host_device_t host;
int dma = 1;
memset(&bus_config, 0, sizeof(spi_bus_config_t));
memset(&device_config, 0, sizeof(spi_device_interface_config_t));
bus_config.miso_io_num = -1;
bus_config.mosi_io_num = 26;
bus_config.sclk_io_num = 25;
bus_config.quadwp_io_num = -1;
bus_config.quadhd_io_num = -1;
device_config.clock_speed_hz = 50000;
device_config.mode = 0;
device_config.spics_io_num = -1;
device_config.queue_size = 1;
device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
struct spi_transaction_t transaction = {
.flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
.length = 16,
.rx_buffer = NULL,
.tx_data = {0x04, 0x00}
};
//initialize for first host
host = 1;
TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
printf("before first xmit\n");
TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
printf("after first xmit\n");
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(host) == ESP_OK);
//for second host and failed before
host = 2;
TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
printf("before second xmit\n");
// the original version (bit mis-written) stucks here.
TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
// test case success when see this.
printf("after second xmit\n");
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(host) == ESP_OK);
}
IRAM_ATTR static uint32_t data_iram[320];
DRAM_ATTR static uint32_t data_dram[320];
//force to place in code area.
static const uint32_t data_drom[320] = {0};
#define PIN_NUM_MISO 25
#define PIN_NUM_MOSI 23
#define PIN_NUM_CLK 19
#define PIN_NUM_CS 22
#define PIN_NUM_DC 21
#define PIN_NUM_RST 18
#define PIN_NUM_BCKL 5
TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
{
uint32_t data_rxdram[320];
esp_err_t ret;
spi_device_handle_t spi;
spi_bus_config_t buscfg={
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=-1,
.quadhd_io_num=-1
};
spi_device_interface_config_t devcfg={
.clock_speed_hz=10000000, //Clock out at 10 MHz
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=7, //We want to be able to queue 7 transactions at a time
.pre_cb=NULL, //Specify pre-transfer callback to handle D/C line
};
//Initialize the SPI bus
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
TEST_ASSERT(ret==ESP_OK);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
TEST_ASSERT(ret==ESP_OK);
static spi_transaction_t trans[6];
int x;
printf("iram: %p, dram: %p, drom: %p\n", data_iram, data_dram, data_drom);
memset(trans, 0, 6*sizeof(spi_transaction_t));
trans[0].length = 320*8,
trans[0].tx_buffer = data_iram;
trans[0].rx_buffer = data_rxdram;
trans[1].length = 320*8,
trans[1].tx_buffer = data_dram;
trans[1].rx_buffer = data_rxdram;
trans[2].length = 320*8,
trans[2].tx_buffer = data_drom;
trans[2].rx_buffer = data_rxdram;
trans[3].length = 320*8,
trans[3].tx_buffer = data_drom;
trans[3].rx_buffer = data_iram;
trans[4].length = 320*8,
trans[4].rxlength = 8*4;
trans[4].tx_buffer = data_drom;
trans[4].flags = SPI_TRANS_USE_RXDATA;
trans[5].length = 8*4;
trans[5].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
//Queue all transactions.
for (x=0; x<6; x++) {
ret=spi_device_queue_trans(spi,&trans[x], portMAX_DELAY);
TEST_ASSERT(ret==ESP_OK);
}
for (x=0; x<6; x++) {
spi_transaction_t* ptr;
ret=spi_device_get_trans_result(spi,&ptr, portMAX_DELAY);
TEST_ASSERT(ret==ESP_OK);
TEST_ASSERT(ptr = trans+x);
}
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
}
static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi )
{
gpio_matrix_out( gpio, sigo, false, false );
gpio_matrix_in( gpio, sigi, false );
}
//this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
// 1. RX buffer not aligned (start and end)
// 2. not setting rx_buffer
// 3. setting rx_length != length
TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
{
uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
uint8_t rx_buf[320];
esp_err_t ret;
spi_device_handle_t spi;
spi_bus_config_t buscfg={
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=-1,
.quadhd_io_num=-1
};
spi_device_interface_config_t devcfg={
.clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=7, //We want to be able to queue 7 transactions at a time
.pre_cb=NULL,
};
//Initialize the SPI bus
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
TEST_ASSERT(ret==ESP_OK);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
TEST_ASSERT(ret==ESP_OK);
//do internal connection
int_connect( PIN_NUM_MOSI, HSPID_OUT_IDX, HSPIQ_IN_IDX );
memset(rx_buf, 0x66, 320);
for ( int i = 0; i < 8; i ++ ) {
memset( rx_buf, 0x66, sizeof(rx_buf));
spi_transaction_t t = {};
t.length = 8*(i+1);
t.rxlength = 0;
t.tx_buffer = tx_buf+2*i;
t.rx_buffer = rx_buf + i;
if ( i == 1 ) {
//test set no start
t.rx_buffer = NULL;
} else if ( i == 2 ) {
//test rx length != tx_length
t.rxlength = t.length - 8;
}
spi_device_transmit( spi, &t );
for( int i = 0; i < 16; i ++ ) {
printf("%02X ", rx_buf[i]);
}
printf("\n");
if ( i == 1 ) {
// no rx, skip check
} else if ( i == 2 ) {
//test rx length = tx length-1
TEST_ASSERT( memcmp(t.tx_buffer, t.rx_buffer, t.length/8-1)==0 );
} else {
//normal check
TEST_ASSERT( memcmp(t.tx_buffer, t.rx_buffer, t.length/8)==0 );
}
}
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
}
static const char MASTER_TAG[] = "test_master";
static const char SLAVE_TAG[] = "test_slave";
DRAM_ATTR static uint8_t master_send[] = {0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
DRAM_ATTR static uint8_t slave_send[] = { 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0 };
static void master_init( spi_device_handle_t* spi, int mode, uint32_t speed)
{
esp_err_t ret;
spi_bus_config_t buscfg={
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=-1,
.quadhd_io_num=-1
};
spi_device_interface_config_t devcfg={
.clock_speed_hz=speed, //currently only up to 4MHz for internel connect
.mode=mode, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=16, //We want to be able to queue 7 transactions at a time
.pre_cb=NULL,
.cs_ena_pretrans = 0,
};
//Initialize the SPI bus
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
TEST_ASSERT(ret==ESP_OK);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi);
TEST_ASSERT(ret==ESP_OK);
}
static void slave_init(int mode, int dma_chan)
{
//Configuration for the SPI bus
spi_bus_config_t buscfg={
.mosi_io_num=PIN_NUM_MOSI,
.miso_io_num=PIN_NUM_MISO,
.sclk_io_num=PIN_NUM_CLK
};
//Configuration for the SPI slave interface
spi_slave_interface_config_t slvcfg={
.mode=mode,
.spics_io_num=PIN_NUM_CS,
.queue_size=3,
.flags=0,
};
//Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
gpio_set_pull_mode(PIN_NUM_MOSI, GPIO_PULLUP_ONLY);
gpio_set_pull_mode(PIN_NUM_CLK, GPIO_PULLUP_ONLY);
gpio_set_pull_mode(PIN_NUM_CS, GPIO_PULLUP_ONLY);
//Initialize SPI slave interface
TEST_ESP_OK( spi_slave_initialize(VSPI_HOST, &buscfg, &slvcfg, dma_chan) );
}
typedef struct {
uint32_t len;
uint8_t *start;
} slave_txdata_t;
typedef struct {
uint32_t len;
uint8_t data[1];
} slave_rxdata_t;
typedef struct {
RingbufHandle_t data_received;
QueueHandle_t data_to_send;
} spi_slave_task_context_t;
esp_err_t init_slave_context(spi_slave_task_context_t *context)
{
context->data_to_send = xQueueCreate( 16, sizeof( slave_txdata_t ));
if ( context->data_to_send == NULL ) {
return ESP_ERR_NO_MEM;
}
context->data_received = xRingbufferCreate( 1024, RINGBUF_TYPE_NOSPLIT );
if ( context->data_received == NULL ) {
return ESP_ERR_NO_MEM;
}
return ESP_OK;
}
void deinit_slave_context(spi_slave_task_context_t *context)
{
TEST_ASSERT( context->data_to_send != NULL );
vQueueDelete( context->data_to_send );
context->data_to_send = NULL;
TEST_ASSERT( context->data_received != NULL );
vRingbufferDelete( context->data_received );
context->data_received = NULL;
}
static void task_slave(void* arg)
{
spi_slave_task_context_t* context = (spi_slave_task_context_t*) arg;
QueueHandle_t queue = context->data_to_send;
RingbufHandle_t ringbuf = context->data_received;
uint8_t recvbuf[320+4];
slave_txdata_t txdata;
ESP_LOGI( SLAVE_TAG, "slave up" );
//never quit, but blocked by the queue, waiting to be killed, when no more send from main task.
while( 1 ) {
xQueueReceive( queue, &txdata, portMAX_DELAY );
ESP_LOGI( "test", "received: %p", txdata.start );
spi_slave_transaction_t t = {};
t.length = txdata.len;
t.tx_buffer = txdata.start;
t.rx_buffer = recvbuf+4;
//loop until trans_len != 0 to skip glitches
do {
TEST_ESP_OK( spi_slave_transmit( VSPI_HOST, &t, portMAX_DELAY ) );
} while ( t.trans_len == 0 );
*(uint32_t*)recvbuf = t.trans_len;
ESP_LOGI( SLAVE_TAG, "received: %d", t.trans_len );
xRingbufferSend( ringbuf, recvbuf, 4+(t.trans_len+7)/8, portMAX_DELAY );
}
}
TEST_CASE("SPI master variable cmd & addr test","[spi]")
{
uint8_t *tx_buf=master_send;
uint8_t rx_buf[320];
uint8_t *rx_buf_ptr = rx_buf;
spi_slave_task_context_t slave_context = {};
esp_err_t err = init_slave_context( &slave_context );
TEST_ASSERT( err == ESP_OK );
spi_device_handle_t spi;
//initial master, mode 0, 1MHz
master_init( &spi, 0, 1*1000*1000 );
//initial slave, mode 0, no dma
slave_init(0, 0);
//do internal connection
int_connect( PIN_NUM_MOSI, HSPID_OUT_IDX, VSPIQ_IN_IDX );
int_connect( PIN_NUM_MISO, VSPIQ_OUT_IDX, HSPID_IN_IDX );
int_connect( PIN_NUM_CS, HSPICS0_OUT_IDX, VSPICS0_IN_IDX );
int_connect( PIN_NUM_CLK, HSPICLK_OUT_IDX, VSPICLK_IN_IDX );
TaskHandle_t handle_slave;
xTaskCreate( task_slave, "spi_slave", 4096, &slave_context, 0, &handle_slave);
slave_txdata_t slave_txdata[16];
spi_transaction_ext_t trans[16];
for( int i= 0; i < 16; i ++ ) {
//prepare slave tx data
slave_txdata[i] = (slave_txdata_t) {
.start = slave_send + 4*(i%3),
.len = 256,
};
xQueueSend( slave_context.data_to_send, &slave_txdata[i], portMAX_DELAY );
//prepare master tx data
trans[i] = (spi_transaction_ext_t) {
.base = {
.flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
.addr = 0x456789ab,
.cmd = 0xcdef,
.length = 8*i,
.tx_buffer = tx_buf+i,
.rx_buffer = rx_buf_ptr,
},
.command_bits = ((i+1)%3) * 8,
.address_bits = ((i/3)%5) * 8,
};
if ( trans[i].base.length == 0 ) {
trans[i].base.tx_buffer = NULL;
trans[i].base.rx_buffer = NULL;
} else {
rx_buf_ptr += (trans[i].base.length + 31)/32*4;
}
}
vTaskDelay(10);
for ( int i = 0; i < 16; i ++ ) {
TEST_ESP_OK (spi_device_queue_trans( spi, (spi_transaction_t*)&trans[i], portMAX_DELAY ) );
vTaskDelay(10);
}
for( int i= 0; i < 16; i ++ ) {
//wait for both master and slave end
ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
spi_transaction_ext_t *t;
size_t rcv_len;
spi_device_get_trans_result( spi, (spi_transaction_t**)&t, portMAX_DELAY );
TEST_ASSERT( t == &trans[i] );
if ( trans[i].base.length != 0 ) {
ESP_LOG_BUFFER_HEX( "master tx", trans[i].base.tx_buffer, trans[i].base.length/8 );
ESP_LOG_BUFFER_HEX( "master rx", trans[i].base.rx_buffer, trans[i].base.length/8 );
} else {
ESP_LOGI( "master tx", "no data" );
ESP_LOGI( "master rx", "no data" );
}
slave_rxdata_t *rcv_data = xRingbufferReceive( slave_context.data_received, &rcv_len, portMAX_DELAY );
uint8_t *buffer = rcv_data->data;
rcv_len = rcv_data->len;
ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
ESP_LOG_BUFFER_HEX( "slave tx", slave_txdata[i].start, (rcv_len+7)/8);
ESP_LOG_BUFFER_HEX( "slave rx", buffer, (rcv_len+7)/8);
//check result
uint8_t *ptr_addr = (uint8_t*)&t->base.addr;
uint8_t *ptr_cmd = (uint8_t*)&t->base.cmd;
for ( int j = 0; j < t->command_bits/8; j ++ ) {
TEST_ASSERT_EQUAL( buffer[j], ptr_cmd[t->command_bits/8-j-1] );
}
for ( int j = 0; j < t->address_bits/8; j ++ ) {
TEST_ASSERT_EQUAL( buffer[t->command_bits/8+j], ptr_addr[t->address_bits/8-j-1] );
}
if ( t->base.length != 0) {
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->base.tx_buffer, buffer + (t->command_bits + t->address_bits)/8, t->base.length/8);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_txdata[i].start + (t->command_bits + t->address_bits)/8, t->base.rx_buffer, t->base.length/8);
}
TEST_ASSERT_EQUAL( t->base.length + t->command_bits + t->address_bits, rcv_len );
//clean
vRingbufferReturnItem( slave_context.data_received, buffer );
}
vTaskDelete( handle_slave );
handle_slave = 0;
deinit_slave_context(&slave_context);
TEST_ASSERT(spi_slave_free(VSPI_HOST) == ESP_OK);
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
ESP_LOGI(MASTER_TAG, "test passed.");
}
#define RECORD_TIME_PREPARE() uint32_t __t1, __t2
#define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0)
#define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1)/240;}while(0)
static void speed_setup(spi_device_handle_t* spi, bool use_dma)
{
esp_err_t ret;
spi_bus_config_t buscfg={
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=-1,
.quadhd_io_num=-1
};
spi_device_interface_config_t devcfg={
.clock_speed_hz=10*1000*1000, //currently only up to 4MHz for internel connect
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=8, //We want to be able to queue 7 transactions at a time
.pre_cb=NULL,
.cs_ena_pretrans = 0,
};
//Initialize the SPI bus and the device to test
ret=spi_bus_initialize(HSPI_HOST, &buscfg, (use_dma?1:0));
TEST_ASSERT(ret==ESP_OK);
ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi);
TEST_ASSERT(ret==ESP_OK);
}
static void speed_deinit(spi_device_handle_t spi)
{
TEST_ESP_OK( spi_bus_remove_device(spi) );
TEST_ESP_OK( spi_bus_free(HSPI_HOST) );
}
static void sorted_array_insert(uint32_t* array, int* size, uint32_t item)
{
int pos;
for (pos = *size; pos>0; pos--) {
if (array[pos-1] < item) break;
array[pos] = array[pos-1];
}
array[pos]=item;
(*size)++;
}
#define TEST_TIMES 11
TEST_CASE("spi_speed","[spi]")
{
RECORD_TIME_PREPARE();
uint32_t t_flight;
//to get rid of the influence of randomly interrupts, we measured the performance by median value
uint32_t t_flight_sorted[TEST_TIMES];
int t_flight_num = 0;
spi_device_handle_t spi;
const bool use_dma = true;
WORD_ALIGNED_ATTR spi_transaction_t trans = {
.length = 1*8,
.flags = SPI_TRANS_USE_TXDATA,
};
//first work with DMA
speed_setup(&spi, use_dma);
//first time introduces a device switch, which costs more time. we skip this
spi_device_transmit(spi, &trans);
//record flight time by isr, with DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
RECORD_TIME_START();
spi_device_transmit(spi, &trans);
RECORD_TIME_END(&t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
}
speed_deinit(spi);
speed_setup(&spi, !use_dma);
//first time introduces a device switch, which costs more time. we skip this
spi_device_transmit(spi, &trans);
//record flight time by isr, without DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
RECORD_TIME_START();
spi_device_transmit(spi, &trans);
RECORD_TIME_END(&t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
TEST_PERFORMANCE_LESS_THAN( SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
}
speed_deinit(spi);
}