esp-idf/components/esp_wifi/src/phy_init.c

903 lines
30 KiB
C
Raw Normal View History

2016-11-15 05:36:18 -05:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <sys/lock.h>
#include "soc/rtc.h"
2016-11-15 05:36:18 -05:00
#include "esp_err.h"
#include "esp_phy_init.h"
#include "esp_system.h"
#include "esp_log.h"
#include "nvs.h"
#include "nvs_flash.h"
2016-11-15 05:36:18 -05:00
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/portmacro.h"
#include "phy.h"
2016-11-15 05:36:18 -05:00
#include "phy_init_data.h"
#include "esp_coexist_internal.h"
#include "driver/periph_ctrl.h"
2019-03-22 02:21:15 -04:00
#include "esp_private/wifi.h"
#include "esp_rom_crc.h"
2016-11-15 05:36:18 -05:00
2019-05-09 23:34:06 -04:00
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/rtc.h"
2020-01-16 22:47:08 -05:00
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/syscon_reg.h"
2021-01-24 11:18:42 -05:00
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/rtc.h"
2021-01-24 11:18:42 -05:00
#include "soc/rtc_cntl_reg.h"
#include "soc/syscon_reg.h"
2019-05-09 23:34:06 -04:00
#endif
2019-06-16 23:50:37 -04:00
#if CONFIG_IDF_TARGET_ESP32
extern wifi_mac_time_update_cb_t s_wifi_mac_time_update_cb;
2019-06-16 23:50:37 -04:00
#endif
2016-11-15 05:36:18 -05:00
static const char* TAG = "phy_init";
static _lock_t s_phy_access_lock;
/* Indicate PHY is calibrated or not */
static bool s_is_phy_calibrated = false;
/* Reference count of enabling PHY */
static uint8_t s_phy_access_ref = 0;
#if CONFIG_MAC_BB_PD
/* Reference of powering down MAC and BB */
static bool s_mac_bb_pu = true;
#endif
2019-06-16 23:50:37 -04:00
#if CONFIG_IDF_TARGET_ESP32
/* time stamp updated when the PHY/RF is turned on */
static int64_t s_phy_rf_en_ts = 0;
2019-06-16 23:50:37 -04:00
#endif
/* PHY spinlock for libphy.a */
static DRAM_ATTR portMUX_TYPE s_phy_int_mux = portMUX_INITIALIZER_UNLOCKED;
/* Memory to store PHY digital registers */
static uint32_t* s_phy_digital_regs_mem = NULL;
#if CONFIG_MAC_BB_PD
uint32_t* s_mac_bb_pd_mem = NULL;
#endif
#if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
#if CONFIG_ESP32_MULTIPLE_PHY_DATA_BIN_EMBEDDED
extern uint8_t multi_phy_init_data_bin_start[] asm("_binary_phy_multiple_init_data_bin_start");
extern uint8_t multi_phy_init_data_bin_end[] asm("_binary_phy_multiple_init_data_bin_end");
#endif
/* The following static variables are only used by Wi-Fi tasks, so they can be handled without lock */
static phy_init_data_type_t s_phy_init_data_type = 0;
static phy_init_data_type_t s_current_apply_phy_init_data = 0;
static char s_phy_current_country[PHY_COUNTRY_CODE_LEN] = {0};
/* Whether it is a new bin */
static bool s_multiple_phy_init_data_bin = false;
/* PHY init data type array */
static char* s_phy_type[ESP_PHY_INIT_DATA_TYPE_NUMBER] = {"DEFAULT", "SRRC", "FCC", "CE", "NCC", "KCC", "MIC", "IC",
"ACMA", "ANATEL", "ISED", "WPC", "OFCA", "IFETEL", "RCM"};
/* Country and PHY init data type map */
static phy_country_to_bin_type_t s_country_code_map_type_table[] = {
{"AT", ESP_PHY_INIT_DATA_TYPE_CE},
{"AU", ESP_PHY_INIT_DATA_TYPE_ACMA},
{"BE", ESP_PHY_INIT_DATA_TYPE_CE},
{"BG", ESP_PHY_INIT_DATA_TYPE_CE},
{"BR", ESP_PHY_INIT_DATA_TYPE_ANATEL},
{"CA", ESP_PHY_INIT_DATA_TYPE_ISED},
{"CH", ESP_PHY_INIT_DATA_TYPE_CE},
{"CN", ESP_PHY_INIT_DATA_TYPE_SRRC},
{"CY", ESP_PHY_INIT_DATA_TYPE_CE},
{"CZ", ESP_PHY_INIT_DATA_TYPE_CE},
{"DE", ESP_PHY_INIT_DATA_TYPE_CE},
{"DK", ESP_PHY_INIT_DATA_TYPE_CE},
{"EE", ESP_PHY_INIT_DATA_TYPE_CE},
{"ES", ESP_PHY_INIT_DATA_TYPE_CE},
{"FI", ESP_PHY_INIT_DATA_TYPE_CE},
{"FR", ESP_PHY_INIT_DATA_TYPE_CE},
{"GB", ESP_PHY_INIT_DATA_TYPE_CE},
{"GR", ESP_PHY_INIT_DATA_TYPE_CE},
{"HK", ESP_PHY_INIT_DATA_TYPE_OFCA},
{"HR", ESP_PHY_INIT_DATA_TYPE_CE},
{"HU", ESP_PHY_INIT_DATA_TYPE_CE},
{"IE", ESP_PHY_INIT_DATA_TYPE_CE},
{"IN", ESP_PHY_INIT_DATA_TYPE_WPC},
{"IS", ESP_PHY_INIT_DATA_TYPE_CE},
{"IT", ESP_PHY_INIT_DATA_TYPE_CE},
{"JP", ESP_PHY_INIT_DATA_TYPE_MIC},
{"KR", ESP_PHY_INIT_DATA_TYPE_KCC},
{"LI", ESP_PHY_INIT_DATA_TYPE_CE},
{"LT", ESP_PHY_INIT_DATA_TYPE_CE},
{"LU", ESP_PHY_INIT_DATA_TYPE_CE},
{"LV", ESP_PHY_INIT_DATA_TYPE_CE},
{"MT", ESP_PHY_INIT_DATA_TYPE_CE},
{"MX", ESP_PHY_INIT_DATA_TYPE_IFETEL},
{"NL", ESP_PHY_INIT_DATA_TYPE_CE},
{"NO", ESP_PHY_INIT_DATA_TYPE_CE},
{"NZ", ESP_PHY_INIT_DATA_TYPE_RCM},
{"PL", ESP_PHY_INIT_DATA_TYPE_CE},
{"PT", ESP_PHY_INIT_DATA_TYPE_CE},
{"RO", ESP_PHY_INIT_DATA_TYPE_CE},
{"SE", ESP_PHY_INIT_DATA_TYPE_CE},
{"SI", ESP_PHY_INIT_DATA_TYPE_CE},
{"SK", ESP_PHY_INIT_DATA_TYPE_CE},
{"TW", ESP_PHY_INIT_DATA_TYPE_NCC},
{"US", ESP_PHY_INIT_DATA_TYPE_FCC},
};
#endif
uint32_t IRAM_ATTR phy_enter_critical(void)
{
if (xPortInIsrContext()) {
portENTER_CRITICAL_ISR(&s_phy_int_mux);
} else {
portENTER_CRITICAL(&s_phy_int_mux);
}
// Interrupt level will be stored in current tcb, so always return zero.
return 0;
}
void IRAM_ATTR phy_exit_critical(uint32_t level)
{
// Param level don't need any more, ignore it.
if (xPortInIsrContext()) {
portEXIT_CRITICAL_ISR(&s_phy_int_mux);
} else {
portEXIT_CRITICAL(&s_phy_int_mux);
}
}
2019-06-16 23:50:37 -04:00
#if CONFIG_IDF_TARGET_ESP32
int64_t esp_phy_rf_get_on_ts(void)
{
return s_phy_rf_en_ts;
}
static inline void phy_update_wifi_mac_time(bool en_clock_stopped, int64_t now)
{
static uint32_t s_common_clock_disable_time = 0;
if (en_clock_stopped) {
s_common_clock_disable_time = (uint32_t)now;
} else {
if (s_common_clock_disable_time) {
uint32_t diff = (uint64_t)now - s_common_clock_disable_time;
if (s_wifi_mac_time_update_cb) {
s_wifi_mac_time_update_cb(diff);
}
s_common_clock_disable_time = 0;
}
}
}
#endif
IRAM_ATTR void esp_phy_common_clock_enable(void)
{
wifi_bt_common_module_enable();
}
IRAM_ATTR void esp_phy_common_clock_disable(void)
{
wifi_bt_common_module_disable();
}
static inline void phy_digital_regs_store(void)
{
if (s_phy_digital_regs_mem == NULL) {
s_phy_digital_regs_mem = (uint32_t *)malloc(SOC_PHY_DIG_REGS_MEM_SIZE);
}
if (s_phy_digital_regs_mem != NULL) {
phy_dig_reg_backup(true, s_phy_digital_regs_mem);
}
}
static inline void phy_digital_regs_load(void)
{
if (s_phy_digital_regs_mem != NULL) {
phy_dig_reg_backup(false, s_phy_digital_regs_mem);
}
}
void esp_phy_enable(void)
{
_lock_acquire(&s_phy_access_lock);
if (s_phy_access_ref == 0) {
2019-06-16 23:50:37 -04:00
#if CONFIG_IDF_TARGET_ESP32
// Update time stamp
s_phy_rf_en_ts = esp_timer_get_time();
// Update WiFi MAC time before WiFi/BT common clock is enabled
phy_update_wifi_mac_time(false, s_phy_rf_en_ts);
2019-06-16 23:50:37 -04:00
#endif
esp_phy_common_clock_enable();
if (s_is_phy_calibrated == false) {
esp_phy_load_cal_and_init();
s_is_phy_calibrated = true;
}
else {
phy_wakeup_init();
phy_digital_regs_load();
}
2019-06-16 23:50:37 -04:00
#if CONFIG_IDF_TARGET_ESP32
coex_bt_high_prio();
2019-06-16 23:50:37 -04:00
#endif
2021-01-24 11:18:42 -05:00
#if CONFIG_BT_ENABLED && (CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3)
extern void coex_pti_v2(void);
coex_pti_v2();
#endif
}
s_phy_access_ref++;
_lock_release(&s_phy_access_lock);
}
void esp_phy_disable(void)
{
_lock_acquire(&s_phy_access_lock);
s_phy_access_ref--;
if (s_phy_access_ref == 0) {
phy_digital_regs_store();
// Disable PHY and RF.
phy_close_rf();
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2
// Disable PHY temperature sensor
phy_xpd_tsens();
#endif
#if CONFIG_IDF_TARGET_ESP32
// Update WiFi MAC time before disalbe WiFi/BT common peripheral clock
phy_update_wifi_mac_time(true, esp_timer_get_time());
#endif
// Disable WiFi/BT common peripheral clock. Do not disable clock for hardware RNG
esp_phy_common_clock_disable();
}
_lock_release(&s_phy_access_lock);
}
#if CONFIG_MAC_BB_PD
void esp_mac_bb_pd_mem_init(void)
{
_lock_acquire(&s_phy_access_lock);
if (s_mac_bb_pd_mem == NULL) {
s_mac_bb_pd_mem = (uint32_t *)heap_caps_malloc(SOC_MAC_BB_PD_MEM_SIZE, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
}
_lock_release(&s_phy_access_lock);
}
IRAM_ATTR void esp_mac_bb_power_up(void)
{
if (s_mac_bb_pd_mem != NULL && (!s_mac_bb_pu)) {
esp_phy_common_clock_enable();
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_FORCE_PD);
SET_PERI_REG_MASK(SYSCON_WIFI_RST_EN_REG, SYSTEM_BB_RST | SYSTEM_FE_RST);
CLEAR_PERI_REG_MASK(SYSCON_WIFI_RST_EN_REG, SYSTEM_BB_RST | SYSTEM_FE_RST);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_WIFI_FORCE_ISO);
phy_freq_mem_backup(false, s_mac_bb_pd_mem);
esp_phy_common_clock_disable();
s_mac_bb_pu = true;
}
}
IRAM_ATTR void esp_mac_bb_power_down(void)
{
if (s_mac_bb_pd_mem != NULL && s_mac_bb_pu) {
esp_phy_common_clock_enable();
phy_freq_mem_backup(true, s_mac_bb_pd_mem);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_WIFI_FORCE_ISO);
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_FORCE_PD);
esp_phy_common_clock_disable();
s_mac_bb_pu = false;
}
}
#endif
2016-11-15 05:36:18 -05:00
// PHY init data handling functions
#if CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
#include "esp_partition.h"
const esp_phy_init_data_t* esp_phy_get_init_data(void)
2016-11-15 05:36:18 -05:00
{
esp_err_t err = ESP_OK;
const esp_partition_t* partition = NULL;
#if CONFIG_ESP32_MULTIPLE_PHY_DATA_BIN_EMBEDDED
size_t init_data_store_length = sizeof(phy_init_magic_pre) +
sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post);
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for updated country code PHY init data");
return NULL;
}
memcpy(init_data_store, multi_phy_init_data_bin_start, init_data_store_length);
ESP_LOGI(TAG, "loading embedded multiple PHY init data");
#else
partition = esp_partition_find_first(
2016-11-15 05:36:18 -05:00
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL);
if (partition == NULL) {
ESP_LOGE(TAG, "PHY data partition not found");
return NULL;
}
ESP_LOGD(TAG, "loading PHY init data from partition at offset 0x%x", partition->address);
size_t init_data_store_length = sizeof(phy_init_magic_pre) +
sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post);
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for PHY init data");
return NULL;
}
err = esp_partition_read(partition, 0, init_data_store, init_data_store_length);
2016-11-15 05:36:18 -05:00
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to read PHY data partition (0x%x)", err);
free(init_data_store);
2016-11-15 05:36:18 -05:00
return NULL;
}
#endif
2016-11-15 05:36:18 -05:00
if (memcmp(init_data_store, PHY_INIT_MAGIC, sizeof(phy_init_magic_pre)) != 0 ||
memcmp(init_data_store + init_data_store_length - sizeof(phy_init_magic_post),
PHY_INIT_MAGIC, sizeof(phy_init_magic_post)) != 0) {
ESP_LOGE(TAG, "failed to validate PHY data partition");
free(init_data_store);
2016-11-15 05:36:18 -05:00
return NULL;
}
#if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
if ((*(init_data_store + (sizeof(phy_init_magic_pre) + PHY_SUPPORT_MULTIPLE_BIN_OFFSET)))) {
s_multiple_phy_init_data_bin = true;
ESP_LOGI(TAG, "Support multiple PHY init data bins");
} else {
ESP_LOGW(TAG, "Does not support multiple PHY init data bins");
}
#endif
ESP_LOGD(TAG, "PHY data partition validated");
2016-11-15 05:36:18 -05:00
return (const esp_phy_init_data_t*) (init_data_store + sizeof(phy_init_magic_pre));
}
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
2016-11-15 05:36:18 -05:00
{
free((uint8_t*) init_data - sizeof(phy_init_magic_pre));
}
#else // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
// phy_init_data.h will declare static 'phy_init_data' variable initialized with default init data
const esp_phy_init_data_t* esp_phy_get_init_data(void)
2016-11-15 05:36:18 -05:00
{
ESP_LOGD(TAG, "loading PHY init data from application binary");
return &phy_init_data;
}
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
2016-11-15 05:36:18 -05:00
{
// no-op
}
#endif // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
// PHY calibration data handling functions
static const char* PHY_NAMESPACE = "phy";
static const char* PHY_CAL_VERSION_KEY = "cal_version";
static const char* PHY_CAL_MAC_KEY = "cal_mac";
static const char* PHY_CAL_DATA_KEY = "cal_data";
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle_t handle,
2016-11-15 05:36:18 -05:00
esp_phy_calibration_data_t* out_cal_data);
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle,
2016-11-15 05:36:18 -05:00
const esp_phy_calibration_data_t* cal_data);
esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data)
2016-11-15 05:36:18 -05:00
{
nvs_handle_t handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READONLY, &handle);
if (err == ESP_ERR_NVS_NOT_INITIALIZED) {
ESP_LOGE(TAG, "%s: NVS has not been initialized. "
"Call nvs_flash_init before starting WiFi/BT.", __func__);
return err;
} else if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
2016-11-15 05:36:18 -05:00
return err;
}
err = load_cal_data_from_nvs_handle(handle, out_cal_data);
nvs_close(handle);
return err;
2016-11-15 05:36:18 -05:00
}
esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data)
2016-11-15 05:36:18 -05:00
{
nvs_handle_t handle;
2016-11-15 05:36:18 -05:00
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
2016-11-15 05:36:18 -05:00
return err;
}
else {
err = store_cal_data_to_nvs_handle(handle, cal_data);
2016-11-15 05:36:18 -05:00
nvs_close(handle);
return err;
}
}
esp_err_t esp_phy_erase_cal_data_in_nvs(void)
{
nvs_handle_t handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to open NVS phy namespace (0x%x)", __func__, err);
return err;
}
else {
err = nvs_erase_all(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to erase NVS phy namespace (0x%x)", __func__, err);
}
else {
err = nvs_commit(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to commit NVS phy namespace (0x%x)", __func__, err);
}
}
}
nvs_close(handle);
return err;
}
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle_t handle,
esp_phy_calibration_data_t* out_cal_data)
2016-11-15 05:36:18 -05:00
{
esp_err_t err;
uint32_t cal_data_version;
2016-11-15 05:36:18 -05:00
err = nvs_get_u32(handle, PHY_CAL_VERSION_KEY, &cal_data_version);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_version (0x%x)", __func__, err);
2016-11-15 05:36:18 -05:00
return err;
}
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
2016-11-15 05:36:18 -05:00
if (cal_data_version != cal_format_version) {
ESP_LOGD(TAG, "%s: expected calibration data format %d, found %d",
__func__, cal_format_version, cal_data_version);
return ESP_FAIL;
}
uint8_t cal_data_mac[6];
size_t length = sizeof(cal_data_mac);
err = nvs_get_blob(handle, PHY_CAL_MAC_KEY, cal_data_mac, &length);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_mac (0x%x)", __func__, err);
2016-11-15 05:36:18 -05:00
return err;
}
if (length != sizeof(cal_data_mac)) {
ESP_LOGD(TAG, "%s: invalid length of cal_mac (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}
uint8_t sta_mac[6];
esp_efuse_mac_get_default(sta_mac);
2016-11-15 05:36:18 -05:00
if (memcmp(sta_mac, cal_data_mac, sizeof(sta_mac)) != 0) {
ESP_LOGE(TAG, "%s: calibration data MAC check failed: expected " \
MACSTR ", found " MACSTR,
__func__, MAC2STR(sta_mac), MAC2STR(cal_data_mac));
return ESP_FAIL;
}
length = sizeof(*out_cal_data);
err = nvs_get_blob(handle, PHY_CAL_DATA_KEY, out_cal_data, &length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to get cal_data(0x%x)", __func__, err);
2016-11-15 05:36:18 -05:00
return err;
}
if (length != sizeof(*out_cal_data)) {
ESP_LOGD(TAG, "%s: invalid length of cal_data (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}
return ESP_OK;
}
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle,
2016-11-15 05:36:18 -05:00
const esp_phy_calibration_data_t* cal_data)
{
esp_err_t err;
err = nvs_set_blob(handle, PHY_CAL_DATA_KEY, cal_data, sizeof(*cal_data));
2016-11-15 05:36:18 -05:00
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration data failed(0x%x)\n", __func__, err);
2016-11-15 05:36:18 -05:00
return err;
}
2016-11-15 05:36:18 -05:00
uint8_t sta_mac[6];
esp_efuse_mac_get_default(sta_mac);
2016-11-15 05:36:18 -05:00
err = nvs_set_blob(handle, PHY_CAL_MAC_KEY, sta_mac, sizeof(sta_mac));
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration mac failed(0x%x)\n", __func__, err);
2016-11-15 05:36:18 -05:00
return err;
}
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
err = nvs_set_u32(handle, PHY_CAL_VERSION_KEY, cal_format_version);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration version failed(0x%x)\n", __func__, err);
return err;
}
err = nvs_commit(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration nvs commit failed(0x%x)\n", __func__, err);
}
2019-05-09 23:34:06 -04:00
2016-11-15 05:36:18 -05:00
return err;
}
#if CONFIG_ESP32_REDUCE_PHY_TX_POWER
2020-01-16 22:47:08 -05:00
// TODO: fix the esp_phy_reduce_tx_power unused warning for esp32s2 - IDF-759
static void __attribute((unused)) esp_phy_reduce_tx_power(esp_phy_init_data_t* init_data)
{
uint8_t i;
2019-05-09 23:34:06 -04:00
for(i = 0; i < PHY_TX_POWER_NUM; i++) {
// LOWEST_PHY_TX_POWER is the lowest tx power
2019-05-09 23:34:06 -04:00
init_data->params[PHY_TX_POWER_OFFSET+i] = PHY_TX_POWER_LOWEST;
}
}
#endif
void esp_phy_load_cal_and_init(void)
{
2020-11-13 03:11:11 -05:00
char * phy_version = get_phy_version_str();
ESP_LOGI(TAG, "phy_version %s", phy_version);
esp_phy_calibration_data_t* cal_data =
(esp_phy_calibration_data_t*) calloc(sizeof(esp_phy_calibration_data_t), 1);
if (cal_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for RF calibration data");
abort();
}
#if CONFIG_ESP32_REDUCE_PHY_TX_POWER
const esp_phy_init_data_t* phy_init_data = esp_phy_get_init_data();
if (phy_init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}
esp_phy_init_data_t* init_data = (esp_phy_init_data_t*) malloc(sizeof(esp_phy_init_data_t));
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for phy init data");
abort();
}
memcpy(init_data, phy_init_data, sizeof(esp_phy_init_data_t));
2019-06-16 23:50:37 -04:00
#if CONFIG_IDF_TARGET_ESP32
// ToDo: remove once esp_reset_reason is supported on esp32s2
if (esp_reset_reason() == ESP_RST_BROWNOUT) {
esp_phy_reduce_tx_power(init_data);
}
2019-06-16 23:50:37 -04:00
#endif
#else
const esp_phy_init_data_t* init_data = esp_phy_get_init_data();
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}
#endif
#if CONFIG_ESP_PHY_ENABLE_USB
phy_bbpll_en_usb(true);
#endif
#ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
esp_phy_calibration_mode_t calibration_mode = PHY_RF_CAL_PARTIAL;
uint8_t sta_mac[6];
if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) {
calibration_mode = PHY_RF_CAL_NONE;
}
esp_err_t err = esp_phy_load_cal_data_from_nvs(cal_data);
if (err != ESP_OK) {
ESP_LOGW(TAG, "failed to load RF calibration data (0x%x), falling back to full calibration", err);
calibration_mode = PHY_RF_CAL_FULL;
}
esp_efuse_mac_get_default(sta_mac);
memcpy(cal_data->mac, sta_mac, 6);
esp_err_t ret = register_chipv7_phy(init_data, cal_data, calibration_mode);
if (ret == ESP_CAL_DATA_CHECK_FAIL) {
ESP_LOGW(TAG, "saving new calibration data because of checksum failure, mode(%d)", calibration_mode);
}
if ((calibration_mode != PHY_RF_CAL_NONE && err != ESP_OK) ||
(calibration_mode != PHY_RF_CAL_FULL && ret == ESP_CAL_DATA_CHECK_FAIL)) {
err = esp_phy_store_cal_data_to_nvs(cal_data);
} else {
err = ESP_OK;
}
#else
register_chipv7_phy(init_data, cal_data, PHY_RF_CAL_FULL);
#endif
#if CONFIG_ESP32_REDUCE_PHY_TX_POWER
esp_phy_release_init_data(phy_init_data);
free(init_data);
#else
esp_phy_release_init_data(init_data);
#endif
free(cal_data); // PHY maintains a copy of calibration data, so we can free this
}
#if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
static esp_err_t phy_crc_check_init_data(uint8_t* init_data, const uint8_t* checksum, size_t init_data_length)
{
uint32_t crc_data = 0;
crc_data = esp_rom_crc32_le(crc_data, init_data, init_data_length);
uint32_t crc_size_conversion = htonl(crc_data);
if (crc_size_conversion != *(uint32_t*)(checksum)) {
return ESP_FAIL;
}
return ESP_OK;
}
static uint8_t phy_find_bin_type_according_country(const char* country)
{
uint32_t i = 0;
uint8_t phy_init_data_type = 0;
for (i = 0; i < sizeof(s_country_code_map_type_table)/sizeof(phy_country_to_bin_type_t); i++)
{
if (!memcmp(country, s_country_code_map_type_table[i].cc, sizeof(s_phy_current_country))) {
phy_init_data_type = s_country_code_map_type_table[i].type;
ESP_LOGD(TAG, "Current country is %c%c, PHY init data type is %s\n", s_country_code_map_type_table[i].cc[0],
s_country_code_map_type_table[i].cc[1], s_phy_type[s_country_code_map_type_table[i].type]);
break;
}
}
if (i == sizeof(s_country_code_map_type_table)/sizeof(phy_country_to_bin_type_t)) {
phy_init_data_type = ESP_PHY_INIT_DATA_TYPE_DEFAULT;
ESP_LOGW(TAG, "Use the default certification code beacuse %c%c doesn't have a certificate", country[0], country[1]);
}
return phy_init_data_type;
}
static esp_err_t phy_find_bin_data_according_type(uint8_t* out_init_data_store,
const phy_control_info_data_t* init_data_control_info,
const uint8_t* init_data_multiple,
phy_init_data_type_t init_data_type)
{
int i = 0;
for (i = 0; i < init_data_control_info->number; i++) {
if (init_data_type == *(init_data_multiple + (i * sizeof(esp_phy_init_data_t)) + PHY_INIT_DATA_TYPE_OFFSET)) {
memcpy(out_init_data_store + sizeof(phy_init_magic_pre),
init_data_multiple + (i * sizeof(esp_phy_init_data_t)), sizeof(esp_phy_init_data_t));
break;
}
}
if (i == init_data_control_info->number) {
return ESP_FAIL;
}
return ESP_OK;
}
static esp_err_t phy_get_multiple_init_data(const esp_partition_t* partition,
uint8_t* init_data_store,
size_t init_data_store_length,
phy_init_data_type_t init_data_type)
{
phy_control_info_data_t* init_data_control_info = (phy_control_info_data_t*) malloc(sizeof(phy_control_info_data_t));
if (init_data_control_info == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for PHY init data control info");
return ESP_FAIL;
}
esp_err_t err = ESP_OK;
#if CONFIG_ESP32_MULTIPLE_PHY_DATA_BIN_EMBEDDED
memcpy(init_data_control_info, multi_phy_init_data_bin_start + init_data_store_length, sizeof(phy_control_info_data_t));
#else
err = esp_partition_read(partition, init_data_store_length, init_data_control_info, sizeof(phy_control_info_data_t));
if (err != ESP_OK) {
free(init_data_control_info);
ESP_LOGE(TAG, "failed to read PHY control info data partition (0x%x)", err);
return ESP_FAIL;
}
#endif
if ((init_data_control_info->check_algorithm) == PHY_CRC_ALGORITHM) {
err = phy_crc_check_init_data(init_data_control_info->multiple_bin_checksum, init_data_control_info->control_info_checksum,
sizeof(phy_control_info_data_t) - sizeof(init_data_control_info->control_info_checksum));
if (err != ESP_OK) {
free(init_data_control_info);
ESP_LOGE(TAG, "PHY init data control info check error");
return ESP_FAIL;
}
} else {
free(init_data_control_info);
ESP_LOGE(TAG, "Check algorithm not CRC, PHY init data update failed");
return ESP_FAIL;
}
uint8_t* init_data_multiple = (uint8_t*) malloc(sizeof(esp_phy_init_data_t) * init_data_control_info->number);
if (init_data_multiple == NULL) {
free(init_data_control_info);
ESP_LOGE(TAG, "failed to allocate memory for PHY init data multiple bin");
return ESP_FAIL;
}
#if CONFIG_ESP32_MULTIPLE_PHY_DATA_BIN_EMBEDDED
memcpy(init_data_multiple, multi_phy_init_data_bin_start + init_data_store_length + sizeof(phy_control_info_data_t), sizeof(esp_phy_init_data_t) * init_data_control_info->number);
#else
err = esp_partition_read(partition, init_data_store_length + sizeof(phy_control_info_data_t),
init_data_multiple, sizeof(esp_phy_init_data_t) * init_data_control_info->number);
if (err != ESP_OK) {
free(init_data_multiple);
free(init_data_control_info);
ESP_LOGE(TAG, "failed to read PHY init data multiple bin partition (0x%x)", err);
return ESP_FAIL;
}
#endif
if ((init_data_control_info->check_algorithm) == PHY_CRC_ALGORITHM) {
err = phy_crc_check_init_data(init_data_multiple, init_data_control_info->multiple_bin_checksum,
sizeof(esp_phy_init_data_t) * init_data_control_info->number);
if (err != ESP_OK) {
free(init_data_multiple);
free(init_data_control_info);
ESP_LOGE(TAG, "PHY init data multiple bin check error");
return ESP_FAIL;
}
} else {
free(init_data_multiple);
free(init_data_control_info);
ESP_LOGE(TAG, "Check algorithm not CRC, PHY init data update failed");
return ESP_FAIL;
}
err = phy_find_bin_data_according_type(init_data_store, init_data_control_info, init_data_multiple, init_data_type);
if (err != ESP_OK) {
ESP_LOGW(TAG, "%s has not been certified, use DEFAULT PHY init data", s_phy_type[init_data_type]);
s_phy_init_data_type = ESP_PHY_INIT_DATA_TYPE_DEFAULT;
} else {
s_phy_init_data_type = init_data_type;
}
free(init_data_multiple);
free(init_data_control_info);
return ESP_OK;
}
esp_err_t esp_phy_update_init_data(phy_init_data_type_t init_data_type)
{
#if CONFIG_ESP32_MULTIPLE_PHY_DATA_BIN_EMBEDDED
esp_err_t err = ESP_OK;
const esp_partition_t* partition = NULL;
size_t init_data_store_length = sizeof(phy_init_magic_pre) +
sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post);
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for updated country code PHY init data");
return ESP_ERR_NO_MEM;
}
memcpy(init_data_store, multi_phy_init_data_bin_start, init_data_store_length);
ESP_LOGI(TAG, "load embedded multi phy init data");
#else
const esp_partition_t* partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL);
if (partition == NULL) {
ESP_LOGE(TAG, "Updated country code PHY data partition not found");
return ESP_FAIL;
}
size_t init_data_store_length = sizeof(phy_init_magic_pre) +
sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post);
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for updated country code PHY init data");
return ESP_ERR_NO_MEM;
}
esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length);
if (err != ESP_OK) {
free(init_data_store);
ESP_LOGE(TAG, "failed to read updated country code PHY data partition (0x%x)", err);
return ESP_FAIL;
}
#endif
if (memcmp(init_data_store, PHY_INIT_MAGIC, sizeof(phy_init_magic_pre)) != 0 ||
memcmp(init_data_store + init_data_store_length - sizeof(phy_init_magic_post),
PHY_INIT_MAGIC, sizeof(phy_init_magic_post)) != 0) {
free(init_data_store);
ESP_LOGE(TAG, "failed to validate updated country code PHY data partition");
return ESP_FAIL;
}
//find init data bin according init data type
if (init_data_type != ESP_PHY_INIT_DATA_TYPE_DEFAULT) {
err = phy_get_multiple_init_data(partition, init_data_store, init_data_store_length, init_data_type);
if (err != ESP_OK) {
free(init_data_store);
#if CONFIG_ESP32_PHY_INIT_DATA_ERROR
abort();
#else
return ESP_FAIL;
#endif
}
} else {
s_phy_init_data_type = ESP_PHY_INIT_DATA_TYPE_DEFAULT;
}
if (s_current_apply_phy_init_data != s_phy_init_data_type) {
err = esp_phy_apply_phy_init_data(init_data_store + sizeof(phy_init_magic_pre));
if (err != ESP_OK) {
ESP_LOGE(TAG, "PHY init data failed to load");
free(init_data_store);
return ESP_FAIL;
}
ESP_LOGI(TAG, "PHY init data type updated from %s to %s",
s_phy_type[s_current_apply_phy_init_data], s_phy_type[s_phy_init_data_type]);
s_current_apply_phy_init_data = s_phy_init_data_type;
}
free(init_data_store);
return ESP_OK;
}
#endif
esp_err_t esp_phy_update_country_info(const char *country)
{
#if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
uint8_t phy_init_data_type_map = 0;
if (!s_multiple_phy_init_data_bin) {
ESP_LOGD(TAG, "Does not support multiple PHY init data bins");
return ESP_FAIL;
}
//if country equal s_phy_current_country, return;
if (!memcmp(country, s_phy_current_country, sizeof(s_phy_current_country))) {
return ESP_OK;
}
memcpy(s_phy_current_country, country, sizeof(s_phy_current_country));
phy_init_data_type_map = phy_find_bin_type_according_country(country);
if (phy_init_data_type_map == s_phy_init_data_type) {
return ESP_OK;
}
esp_err_t err = esp_phy_update_init_data(phy_init_data_type_map);
if (err != ESP_OK) {
return err;
}
#endif
return ESP_OK;
}