esp-idf/components/driver/deprecated/adc_dma_legacy.c

665 lines
25 KiB
C
Raw Normal View History

2021-05-24 02:02:15 +02:00
/*
* SPDX-FileCopyrightText: 2016-2024 Espressif Systems (Shanghai) CO LTD
2021-05-24 02:02:15 +02:00
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <esp_types.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "esp_check.h"
#include "sys/lock.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "freertos/ringbuf.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/adc_share_hw_ctrl.h"
2023-01-09 17:10:04 +08:00
#include "esp_private/sar_periph_ctrl.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#include "hal/dma_types.h"
#include "hal/adc_hal_common.h"
#include "driver/gpio.h"
#include "driver/adc_types_legacy.h"
//For calibration
#if CONFIG_IDF_TARGET_ESP32S2
#include "esp_efuse_rtc_table.h"
#elif SOC_ADC_CALIBRATION_V1_SUPPORTED
#include "esp_efuse_rtc_calib.h"
#endif
//For DMA
#if SOC_GDMA_SUPPORTED
2021-01-26 11:33:51 +08:00
#include "esp_private/gdma.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "hal/spi_types.h"
#include "esp_private/spi_common_internal.h"
#elif CONFIG_IDF_TARGET_ESP32
2022-04-07 15:32:46 +08:00
#include "driver/i2s_types.h"
#include "soc/i2s_periph.h"
#include "esp_private/i2s_platform.h"
#endif
static const char *ADC_TAG = "ADC";
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
#define INTERNAL_BUF_NUM 5
#if SOC_AHB_GDMA_SUPPORTED
#define ADC_GDMA_HOST 0
#define ADC_DMA_INTR_MASK GDMA_LL_EVENT_RX_SUC_EOF
#define ADC_DMA_INTR_MASK GDMA_LL_EVENT_RX_SUC_EOF
#define adc_dma_start(adc_dma, addr) gdma_start(s_adc_digi_ctx->rx_dma_channel, (intptr_t)addr)
#define adc_dma_stop(adc_dma) gdma_stop(s_adc_digi_ctx->rx_dma_channel)
#define adc_dma_reset(adc_dma) gdma_reset(s_adc_digi_ctx->rx_dma_channel)
#define adc_dma_clear_intr(adc_dma)
#define adc_dma_enable_intr(adc_dma)
#define adc_dma_disable_intr(adc_dma)
#define adc_dma_deinit(adc_dma) do { \
gdma_disconnect(s_adc_digi_ctx->rx_dma_channel); \
gdma_del_channel(s_adc_digi_ctx->rx_dma_channel); \
} while (0)
#elif CONFIG_IDF_TARGET_ESP32S2
#define ADC_DMA_SPI_HOST SPI3_HOST
#define ADC_DMA_INTR_MASK SPI_LL_INTR_IN_SUC_EOF
#define adc_dma_start(adc_dma, addr) spi_dma_ll_rx_start(s_adc_digi_ctx->adc_spi_dev, s_adc_digi_ctx->spi_dma_ctx->rx_dma_chan.chan_id, (lldesc_t *)addr)
#define adc_dma_stop(adc_dma) spi_dma_ll_rx_stop(s_adc_digi_ctx->adc_spi_dev, s_adc_digi_ctx->spi_dma_ctx->rx_dma_chan.chan_id);
#define adc_dma_reset(adc_dma) spi_dma_ll_rx_reset(s_adc_digi_ctx->adc_spi_dev, s_adc_digi_ctx->spi_dma_ctx->rx_dma_chan.chan_id);
#define adc_dma_clear_intr(adc_dma) spi_ll_clear_intr(s_adc_digi_ctx->adc_spi_dev, ADC_DMA_INTR_MASK)
#define adc_dma_enable_intr(adc_dma) spi_ll_enable_intr(s_adc_digi_ctx->adc_spi_dev, ADC_DMA_INTR_MASK);
#define adc_dma_disable_intr(adc_dma) spi_ll_disable_intr(s_adc_digi_ctx->adc_spi_dev, ADC_DMA_INTR_MASK);
#define adc_dma_deinit(adc_dma) do { \
esp_intr_free(s_adc_digi_ctx->intr_hdl); \
spicommon_dma_chan_free(s_adc_digi_ctx->spi_dma_ctx); \
spicommon_periph_free(ADC_DMA_SPI_HOST); \
} while (0)
#elif CONFIG_IDF_TARGET_ESP32
#define ADC_DMA_I2S_HOST I2S_NUM_0
#define ADC_DMA_INTR_MASK BIT(9)
#define adc_dma_start(adc_dma, addr) do { \
i2s_ll_enable_dma(s_adc_digi_ctx->adc_i2s_dev, true); \
i2s_ll_rx_start_link(s_adc_digi_ctx->adc_i2s_dev, (uint32_t)addr); \
} while (0)
#define adc_dma_stop(adc_dma) i2s_ll_rx_stop_link(s_adc_digi_ctx->adc_i2s_dev);
#define adc_dma_reset(adc_dma) i2s_ll_rx_reset_dma(s_adc_digi_ctx->adc_i2s_dev);
#define adc_dma_clear_intr(adc_dma) i2s_ll_clear_intr_status(s_adc_digi_ctx->adc_i2s_dev, ADC_DMA_INTR_MASK);
#define adc_dma_enable_intr(adc_dma) i2s_ll_enable_intr(s_adc_digi_ctx->adc_i2s_dev, ADC_DMA_INTR_MASK, true);
#define adc_dma_disable_intr(adc_dma) i2s_ll_enable_intr(s_adc_digi_ctx->adc_i2s_dev, ADC_DMA_INTR_MASK, false);
#define adc_dma_deinit(adc_dma) do { \
esp_intr_free(s_adc_digi_ctx->intr_hdl); \
i2s_platform_release_occupation(ADC_DMA_I2S_HOST); \
} while (0)
#endif
2021-03-15 16:12:08 +08:00
/*---------------------------------------------------------------
Digital Controller Context
---------------------------------------------------------------*/
typedef struct adc_digi_context_t {
uint8_t *rx_dma_buf; //dma buffer
2022-03-08 19:26:04 +08:00
adc_hal_dma_ctx_t hal; //hal context
#if SOC_GDMA_SUPPORTED
gdma_channel_handle_t rx_dma_channel; //dma rx channel handle
#elif CONFIG_IDF_TARGET_ESP32S2
spi_host_device_t spi_host; //ADC uses this SPI DMA
spi_dma_ctx_t *spi_dma_ctx; //spi_dma context
intr_handle_t intr_hdl; //Interrupt handler
spi_dev_t *adc_spi_dev ;
#elif CONFIG_IDF_TARGET_ESP32
i2s_port_t i2s_host; //ADC uses this I2S DMA
intr_handle_t intr_hdl; //Interrupt handler
i2s_dev_t *adc_i2s_dev;
#endif
RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler
intptr_t rx_eof_desc_addr; //eof descriptor address of RX channel
bool ringbuf_overflow_flag; //1: ringbuffer overflow
bool driver_start_flag; //1: driver is started; 0: driver is stopped
bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
adc_hal_digi_ctrlr_cfg_t hal_digi_ctrlr_cfg; //Hal digital controller configuration
esp_pm_lock_handle_t pm_lock; //For power management
} adc_digi_context_t;
static adc_digi_context_t *s_adc_digi_ctx = NULL;
#ifdef CONFIG_PM_ENABLE
//Only for deprecated API
extern esp_pm_lock_handle_t adc_digi_arbiter_lock;
#endif //CONFIG_PM_ENABLE
/*---------------------------------------------------------------
ADC Continuous Read Mode (via DMA)
---------------------------------------------------------------*/
//Function to address transaction
static bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx);
#if SOC_GDMA_SUPPORTED
static bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
#else
static void adc_dma_intr_handler(void *arg);
#endif
2022-03-08 19:26:04 +08:00
static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel)
{
assert(adc_unit < SOC_ADC_PERIPH_NUM);
2022-03-08 19:26:04 +08:00
uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1;
return adc_channel_io_map[adc_n][adc_channel];
}
static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
{
esp_err_t ret = ESP_OK;
uint64_t gpio_mask = 0;
uint32_t n = 0;
int8_t io = 0;
while (channel_mask) {
if (channel_mask & 0x1) {
io = adc_digi_get_io_num(adc_unit, n);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
}
gpio_mask |= BIT64(io);
}
channel_mask = channel_mask >> 1;
n++;
}
gpio_config_t cfg = {
.pin_bit_mask = gpio_mask,
.mode = GPIO_MODE_DISABLE,
};
ret = gpio_config(&cfg);
return ret;
}
esp_err_t adc_digi_deinitialize(void)
{
if (!s_adc_digi_ctx) {
return ESP_ERR_INVALID_STATE;
}
if (s_adc_digi_ctx->driver_start_flag != 0) {
ESP_LOGE(ADC_TAG, "The driver is not stopped");
return ESP_ERR_INVALID_STATE;
}
if (s_adc_digi_ctx->ringbuf_hdl) {
vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl);
s_adc_digi_ctx->ringbuf_hdl = NULL;
}
#if CONFIG_PM_ENABLE
if (s_adc_digi_ctx->pm_lock) {
esp_pm_lock_delete(s_adc_digi_ctx->pm_lock);
}
#endif //CONFIG_PM_ENABLE
free(s_adc_digi_ctx->rx_dma_buf);
free(s_adc_digi_ctx->hal.rx_desc);
free(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern);
adc_dma_deinit(s_adc_digi_ctx);
free(s_adc_digi_ctx);
s_adc_digi_ctx = NULL;
adc_apb_periph_free();
return ESP_OK;
}
esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
{
esp_err_t ret = ESP_OK;
ESP_RETURN_ON_FALSE((init_config->conv_num_each_intr % SOC_ADC_DIGI_DATA_BYTES_PER_CONV == 0), ESP_ERR_INVALID_ARG, ADC_TAG, "conv_frame_size should be in multiples of `SOC_ADC_DIGI_DATA_BYTES_PER_CONV`");
s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t));
if (s_adc_digi_ctx == NULL) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//ringbuffer
s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF);
if (!s_adc_digi_ctx->ringbuf_hdl) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
2021-01-26 11:33:51 +08:00
//malloc internal buffer used by DMA
s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, init_config->conv_num_each_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
if (!s_adc_digi_ctx->rx_dma_buf) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc dma descriptor
uint32_t dma_desc_num_per_frame = (init_config->conv_num_each_intr + DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED - 1) / DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
uint32_t dma_desc_max_num = dma_desc_num_per_frame * INTERNAL_BUF_NUM;
s_adc_digi_ctx->hal.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * dma_desc_max_num, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
if (!s_adc_digi_ctx->hal.rx_desc) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc pattern table
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_config_t));
if (!s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
#if CONFIG_PM_ENABLE
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_ctx->pm_lock);
if (ret != ESP_OK) {
goto cleanup;
}
#endif //CONFIG_PM_ENABLE
2021-01-26 11:33:51 +08:00
//init gpio pins
if (init_config->adc1_chan_mask) {
2022-03-08 19:26:04 +08:00
ret = adc_digi_gpio_init(ADC_UNIT_1, init_config->adc1_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
}
if (init_config->adc2_chan_mask) {
2022-03-08 19:26:04 +08:00
ret = adc_digi_gpio_init(ADC_UNIT_2, init_config->adc2_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
}
#if SOC_GDMA_SUPPORTED
2021-01-26 11:33:51 +08:00
//alloc rx gdma channel
gdma_channel_alloc_config_t rx_alloc_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
};
ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel);
if (ret != ESP_OK) {
goto cleanup;
}
gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0));
gdma_strategy_config_t strategy_config = {
.auto_update_desc = true,
.owner_check = true
};
gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config);
gdma_rx_event_callbacks_t cbs = {
.on_recv_eof = adc_dma_in_suc_eof_callback
};
gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx);
#elif CONFIG_IDF_TARGET_ESP32S2
//ADC utilises SPI3 DMA on ESP32S2
bool spi_success = false;
spi_success = spicommon_periph_claim(ADC_DMA_SPI_HOST, "adc");
ret = spicommon_dma_chan_alloc(ADC_DMA_SPI_HOST, SPI_DMA_CH_AUTO, &(s_adc_digi_ctx->spi_dma_ctx));
if (ret != ESP_OK || spi_success != ESP_OK) {
goto cleanup;
}
if (!spi_success || (s_adc_digi_ctx->spi_host != ADC_DMA_SPI_HOST)) {
goto cleanup;
}
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(ADC_DMA_SPI_HOST), 0, adc_dma_intr_handler,
(void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
if (ret != ESP_OK) {
goto cleanup;
}
s_adc_digi_ctx->adc_spi_dev = SPI_LL_GET_HW(ADC_DMA_SPI_HOST);
#elif CONFIG_IDF_TARGET_ESP32
//ADC utilises I2S0 DMA on ESP32
ret = i2s_platform_acquire_occupation(ADC_DMA_I2S_HOST, "adc");
if (ret != ESP_OK) {
ret = ESP_ERR_NOT_FOUND;
goto cleanup;
}
s_adc_digi_ctx->i2s_host = I2S_NUM_0;
ret = esp_intr_alloc(i2s_periph_signal[ADC_DMA_I2S_HOST].irq, 0, adc_dma_intr_handler,
(void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
if (ret != ESP_OK) {
goto cleanup;
}
s_adc_digi_ctx->adc_i2s_dev = I2S_LL_GET_HW(ADC_DMA_I2S_HOST);
#endif
2022-03-08 19:26:04 +08:00
adc_hal_dma_config_t config = {
.eof_desc_num = INTERNAL_BUF_NUM,
.eof_step = dma_desc_num_per_frame,
.eof_num = init_config->conv_num_each_intr / SOC_ADC_DIGI_DATA_BYTES_PER_CONV
};
2022-03-08 19:26:04 +08:00
adc_hal_dma_ctx_config(&s_adc_digi_ctx->hal, &config);
2021-01-26 11:33:51 +08:00
adc_apb_periph_claim();
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
2022-03-08 19:26:04 +08:00
adc_hal_calibration_init(ADC_UNIT_1);
adc_hal_calibration_init(ADC_UNIT_2);
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
return ret;
cleanup:
adc_digi_deinitialize();
return ret;
}
#if SOC_GDMA_SUPPORTED
2021-01-26 11:33:51 +08:00
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
assert(event_data);
s_adc_digi_ctx->rx_eof_desc_addr = event_data->rx_eof_desc_addr;
return s_adc_dma_intr(user_data);
}
#else
static IRAM_ATTR void adc_dma_intr_handler(void *arg)
{
adc_digi_context_t *ctx = (adc_digi_context_t *)arg;
bool need_yield = false;
#if CONFIG_IDF_TARGET_ESP32S2
bool conversion_finish = spi_ll_get_intr(s_adc_digi_ctx->adc_spi_dev, ADC_DMA_INTR_MASK);
if (conversion_finish) {
spi_ll_clear_intr(s_adc_digi_ctx->adc_spi_dev, ADC_DMA_INTR_MASK);
intptr_t desc_addr = spi_dma_ll_get_in_suc_eof_desc_addr(s_adc_digi_ctx->adc_spi_dev, s_adc_digi_ctx->spi_dma_ctx->rx_dma_chan.chan_id);
ctx->rx_eof_desc_addr = desc_addr;
need_yield = s_adc_dma_intr(ctx);
}
#elif CONFIG_IDF_TARGET_ESP32
bool conversion_finish = i2s_ll_get_intr_status(s_adc_digi_ctx->adc_i2s_dev) & ADC_DMA_INTR_MASK;
if (conversion_finish) {
i2s_ll_clear_intr_status(s_adc_digi_ctx->adc_i2s_dev, ADC_DMA_INTR_MASK);
uint32_t desc_addr;
i2s_ll_rx_get_eof_des_addr(s_adc_digi_ctx->adc_i2s_dev, &desc_addr);
ctx->rx_eof_desc_addr = (intptr_t)desc_addr;
need_yield = s_adc_dma_intr(ctx);
}
#endif
if (need_yield) {
portYIELD_FROM_ISR();
}
2021-01-26 11:33:51 +08:00
}
#endif
2021-01-26 11:33:51 +08:00
static IRAM_ATTR bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx)
{
BaseType_t taskAwoken = 0;
BaseType_t ret;
adc_hal_dma_desc_status_t status = false;
uint8_t *finished_buffer = NULL;
uint32_t finished_size = 0;
while (1) {
status = adc_hal_get_reading_result(&adc_digi_ctx->hal, adc_digi_ctx->rx_eof_desc_addr, &finished_buffer, &finished_size);
if (status != ADC_HAL_DMA_DESC_VALID) {
break;
}
ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, finished_buffer, finished_size, &taskAwoken);
if (ret == pdFALSE) {
//ringbuffer overflow
2021-01-26 11:33:51 +08:00
adc_digi_ctx->ringbuf_overflow_flag = 1;
}
}
return (taskAwoken == pdTRUE);
}
esp_err_t adc_digi_start(void)
{
if (s_adc_digi_ctx->driver_start_flag != 0) {
ESP_LOGE(ADC_TAG, "The driver is already started");
return ESP_ERR_INVALID_STATE;
}
//reset ADC digital part to reset ADC sampling EOF counter
ADC_BUS_CLK_ATOMIC() {
adc_ll_reset_register();
}
2023-01-09 17:10:04 +08:00
sar_periph_ctrl_adc_continuous_power_acquire();
//reset flags
s_adc_digi_ctx->ringbuf_overflow_flag = 0;
s_adc_digi_ctx->driver_start_flag = 1;
if (s_adc_digi_ctx->use_adc1) {
adc_lock_acquire(ADC_UNIT_1);
}
if (s_adc_digi_ctx->use_adc2) {
adc_lock_acquire(ADC_UNIT_2);
}
#if CONFIG_PM_ENABLE
// Lock APB frequency while ADC driver is in use
esp_pm_lock_acquire(s_adc_digi_ctx->pm_lock);
#endif
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
if (s_adc_digi_ctx->use_adc1) {
adc_set_hw_calibration_code(ADC_UNIT_1, s_adc_digi_ctx->adc1_atten);
}
if (s_adc_digi_ctx->use_adc2) {
adc_set_hw_calibration_code(ADC_UNIT_2, s_adc_digi_ctx->adc2_atten);
}
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
2020-12-23 12:29:57 +08:00
#if SOC_ADC_ARBITER_SUPPORTED
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
#endif //#if SOC_ADC_ARBITER_SUPPORTED
adc_hal_set_controller(ADC_UNIT_1, ADC_HAL_CONTINUOUS_READ_MODE);
adc_hal_set_controller(ADC_UNIT_2, ADC_HAL_CONTINUOUS_READ_MODE);
adc_hal_digi_init(&s_adc_digi_ctx->hal);
adc_hal_digi_controller_config(&s_adc_digi_ctx->hal, &s_adc_digi_ctx->hal_digi_ctrlr_cfg);
adc_dma_stop(s_adc_digi_ctx);
adc_hal_digi_connect(false);
adc_dma_reset(s_adc_digi_ctx);
adc_hal_digi_reset();
adc_hal_digi_dma_link(&s_adc_digi_ctx->hal, s_adc_digi_ctx->rx_dma_buf);
adc_dma_start(s_adc_digi_ctx, s_adc_digi_ctx->hal.rx_desc);
adc_hal_digi_connect(true);
adc_hal_digi_enable(true);
return ESP_OK;
}
esp_err_t adc_digi_stop(void)
{
if (s_adc_digi_ctx->driver_start_flag != 1) {
ESP_LOGE(ADC_TAG, "The driver is already stopped");
return ESP_ERR_INVALID_STATE;
}
s_adc_digi_ctx->driver_start_flag = 0;
adc_dma_stop(s_adc_digi_ctx);
adc_hal_digi_enable(false);
adc_hal_digi_connect(false);
adc_hal_digi_deinit();
#if CONFIG_PM_ENABLE
if (s_adc_digi_ctx->pm_lock) {
esp_pm_lock_release(s_adc_digi_ctx->pm_lock);
}
#endif //CONFIG_PM_ENABLE
if (s_adc_digi_ctx->use_adc2) {
adc_lock_release(ADC_UNIT_2);
2021-03-15 16:12:08 +08:00
}
if (s_adc_digi_ctx->use_adc1) {
adc_lock_release(ADC_UNIT_1);
}
2023-01-09 17:10:04 +08:00
sar_periph_ctrl_adc_continuous_power_release();
return ESP_OK;
}
esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms)
{
TickType_t ticks_to_wait;
esp_err_t ret = ESP_OK;
uint8_t *data = NULL;
size_t size = 0;
ticks_to_wait = timeout_ms / portTICK_PERIOD_MS;
if (timeout_ms == ADC_MAX_DELAY) {
ticks_to_wait = portMAX_DELAY;
}
data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
if (!data) {
ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
ret = ESP_ERR_TIMEOUT;
*out_length = 0;
return ret;
}
memcpy(buf, data, size);
vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data);
assert((size % 4) == 0);
*out_length = size;
if (s_adc_digi_ctx->ringbuf_overflow_flag) {
ret = ESP_ERR_INVALID_STATE;
}
2020-12-08 14:50:32 +08:00
return ret;
}
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
esp_err_t adc_digi_controller_configure(const adc_digi_configuration_t *config)
{
if (!s_adc_digi_ctx) {
return ESP_ERR_INVALID_STATE;
}
//Pattern related check
ESP_RETURN_ON_FALSE(config->pattern_num <= SOC_ADC_PATT_LEN_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "Max pattern num is %d", SOC_ADC_PATT_LEN_MAX);
#if CONFIG_IDF_TARGET_ESP32
for (int i = 0; i < config->pattern_num; i++) {
ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width >= SOC_ADC_DIGI_MIN_BITWIDTH && config->adc_pattern->bit_width <= SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
ESP_RETURN_ON_FALSE(config->adc_pattern[i].unit == 0, ESP_ERR_INVALID_ARG, ADC_TAG, "Only support using ADC1 DMA mode");
}
#else
for (int i = 0; i < config->pattern_num; i++) {
ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width == SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
}
#endif
ESP_RETURN_ON_FALSE(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC sampling frequency out of range");
#if CONFIG_IDF_TARGET_ESP32
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
#elif CONFIG_IDF_TARGET_ESP32S2
if (config->conv_mode == ADC_CONV_BOTH_UNIT || config->conv_mode == ADC_CONV_ALTER_UNIT) {
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
} else if (config->conv_mode == ADC_CONV_SINGLE_UNIT_1 || config->conv_mode == ADC_CONV_SINGLE_UNIT_2) {
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
}
#else
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
#endif
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern_len = config->pattern_num;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.sample_freq_hz = config->sample_freq_hz;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_mode = config->conv_mode;
memcpy(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern, config->adc_pattern, config->pattern_num * sizeof(adc_digi_pattern_config_t));
const int atten_uninitialized = 999;
s_adc_digi_ctx->adc1_atten = atten_uninitialized;
s_adc_digi_ctx->adc2_atten = atten_uninitialized;
s_adc_digi_ctx->use_adc1 = 0;
s_adc_digi_ctx->use_adc2 = 0;
for (int i = 0; i < config->pattern_num; i++) {
const adc_digi_pattern_config_t *pat = &config->adc_pattern[i];
2022-03-08 19:26:04 +08:00
if (pat->unit == ADC_UNIT_1) {
s_adc_digi_ctx->use_adc1 = 1;
if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
s_adc_digi_ctx->adc1_atten = pat->atten;
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
2022-03-08 19:26:04 +08:00
} else if (pat->unit == ADC_UNIT_2) {
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
s_adc_digi_ctx->use_adc2 = 1;
if (s_adc_digi_ctx->adc2_atten == atten_uninitialized) {
s_adc_digi_ctx->adc2_atten = pat->atten;
} else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
}
}
return ESP_OK;
}
/**
* @brief This function will be called during start up, to check that adc_continuous driver is not running along with the legacy adc_continuous driver
*/
__attribute__((constructor))
static void check_adc_continuous_driver_conflict(void)
{
// This function was declared as weak here. adc_continuous driver has one implementation.
// So if adc_continuous driver is not linked in, then `adc_continuous_new_handle` should be NULL at runtime.
extern __attribute__((weak)) esp_err_t adc_continuous_new_handle(const void *init_config, void **ret_handle);
if ((void *)adc_continuous_new_handle != NULL) {
ESP_EARLY_LOGE(ADC_TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver");
abort();
}
ESP_EARLY_LOGW(ADC_TAG, "legacy driver is deprecated, please migrate to `esp_adc/adc_continuous.h`");
}
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
/*---------------------------------------------------------------
ADC Hardware Calibration
---------------------------------------------------------------*/
static __attribute__((constructor)) void adc_hw_calibration(void)
{
//Calculate all ICode
for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) {
adc_hal_calibration_init(i);
for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) {
/**
* This may get wrong when attenuations are NOT consecutive on some chips,
* update this when bringing up the calibration on that chip
*/
adc_calc_hw_calibration_code(i, j);
#if SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED
/* Load the channel compensation from efuse */
for (int k = 0; k < SOC_ADC_CHANNEL_NUM(i); k++) {
adc_load_hw_calibration_chan_compens(i, k, j);
}
#endif
}
}
}
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED