adc_digi: add dma drivers

This commit is contained in:
Armando 2020-12-08 14:50:32 +08:00 committed by bot
parent 76bb9565af
commit b38f4646de
13 changed files with 656 additions and 124 deletions

View File

@ -238,6 +238,7 @@ static IRAM_ATTR void adc_dma_intr(void *arg)
s_adc_digi_ctx->hal_dma_config.desc_cnt = 0;
//start next turns of dma operation
adc_hal_digi_dma_multi_descriptor(&s_adc_digi_ctx->hal_dma_config, s_adc_digi_ctx->rx_dma_buf, s_adc_digi_ctx->bytes_between_intr, s_adc_digi_ctx->hal_dma_config.desc_max_num);
adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
}
@ -326,7 +327,7 @@ esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_l
data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
if (!data) {
ESP_LOGW(ADC_DMA_TAG, "No data, increase timeout or reduce conv_num_each_intr");
ESP_LOGV(ADC_DMA_TAG, "No data, increase timeout or reduce conv_num_each_intr");
ret = ESP_ERR_TIMEOUT;
*out_length = 0;
return ret;
@ -340,6 +341,7 @@ esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_l
if (s_adc_digi_ctx->ringbuf_overflow_flag) {
ret = ESP_ERR_INVALID_STATE;
}
return ret;
}
@ -382,8 +384,8 @@ static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuat
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
//On ESP32C3, the data width is always 13-bits.
if (width_bit != ADC_WIDTH_BIT_13) {
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
@ -404,40 +406,41 @@ esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
int adc1_get_raw(adc1_channel_t channel)
{
int result = 0;
int raw_out = 0;
adc_digi_config_t dig_cfg = {
.conv_limit_en = 0,
.conv_limit_num = 250,
.interval = 40,
.dig_clk.use_apll = 0,
.dig_clk.div_num = 1,
.dig_clk.div_num = 15,
.dig_clk.div_a = 0,
.dig_clk.div_b = 1,
};
ADC_DIGI_LOCK_ACQUIRE();
periph_module_enable(PERIPH_SARADC_MODULE);
adc_hal_digi_controller_config(&dig_cfg);
adc_hal_intr_clear(ADC_EVENT_ADC1_DONE);
adc_hal_onetime_channel(ADC_NUM_1, channel);
adc_hal_set_onetime_atten(s_atten1_single[channel]);
adc_hal_adc1_onetime_sample_enable(true);
//Trigger single read.
adc_hal_adc1_onetime_sample_enable(true);
adc_hal_onetime_start(&dig_cfg);
while (!adc_hal_intr_get_raw(ADC_EVENT_ADC1_DONE));
adc_hal_intr_clear(ADC_EVENT_ADC1_DONE);
adc_hal_adc1_onetime_sample_enable(false);
result = adc_hal_adc1_read();
adc_hal_single_read(ADC_NUM_1, &raw_out);
adc_hal_digi_deinit();
periph_module_disable(PERIPH_SARADC_MODULE);
ADC_DIGI_LOCK_RELEASE();
return result;
return raw_out;
}
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
@ -454,17 +457,18 @@ esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
{
//On ESP32C3, the data width is always 13-bits.
if (width_bit != ADC_WIDTH_BIT_13) {
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
adc_digi_config_t dig_cfg = {
.conv_limit_en = 0,
.conv_limit_num = 250,
.interval = 40,
.dig_clk.use_apll = 0,
.dig_clk.div_num = 1,
.dig_clk.div_num = 15,
.dig_clk.div_a = 0,
.dig_clk.div_b = 1,
};
@ -472,23 +476,27 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
SAC_ADC2_LOCK_ACQUIRE();
ADC_DIGI_LOCK_ACQUIRE();
periph_module_enable(PERIPH_SARADC_MODULE);
adc_hal_digi_controller_config(&dig_cfg);
adc_hal_intr_clear(ADC_EVENT_ADC2_DONE);
adc_hal_onetime_channel(ADC_NUM_2, channel);
adc_hal_set_onetime_atten(s_atten2_single[channel]);
adc_hal_adc2_onetime_sample_enable(true);
//Trigger single read.
adc_hal_adc2_onetime_sample_enable(true);
adc_hal_onetime_start(&dig_cfg);
while (!adc_hal_intr_get_raw(ADC_EVENT_ADC2_DONE));
adc_hal_intr_clear(ADC_EVENT_ADC2_DONE);
adc_hal_adc2_onetime_sample_enable(false);
*raw_out = adc_hal_adc2_read();
ret = adc_hal_single_read(ADC_NUM_2, raw_out);
if (ret != ESP_OK) {
return ret;
}
adc_hal_digi_deinit();
periph_module_disable(PERIPH_SARADC_MODULE);
ADC_DIGI_LOCK_RELEASE();
SAC_ADC2_LOCK_RELEASE();
@ -547,12 +555,12 @@ esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config)
* @note For ADC1, Controller access is mutually exclusive.
*
* @param adc_unit ADC unit.
* @param ctrl ADC controller, Refer to `adc_ll_controller_t`.
* @param ctrl ADC controller, Refer to `adc_controller_t`.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_ll_controller_t ctrl)
esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_controller_t ctrl)
{
adc_arbiter_t config = {0};
adc_arbiter_t cfg = ADC_ARBITER_CONFIG_DEFAULT();
@ -611,22 +619,54 @@ esp_err_t adc_digi_reset(void)
esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
{
abort(); // TODO ESP32-C3 IDF-2528
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_hal_digi_filter_reset(ADC_NUM_1);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_hal_digi_filter_reset(ADC_NUM_2);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
abort(); // TODO ESP32-C3 IDF-2528
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_hal_digi_filter_set_factor(ADC_NUM_1, config->mode);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_hal_digi_filter_set_factor(ADC_NUM_2, config->mode);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
abort(); // TODO ESP32-C3 IDF-2528
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
config->adc_unit = ADC_UNIT_1;
config->channel = ADC_CHANNEL_MAX;
adc_hal_digi_filter_get_factor(ADC_NUM_1, &config->mode);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
config->adc_unit = ADC_UNIT_2;
config->channel = ADC_CHANNEL_MAX;
adc_hal_digi_filter_get_factor(ADC_NUM_2, &config->mode);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
{
abort(); // TODO ESP32-C3 IDF-2528
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_hal_digi_filter_enable(ADC_NUM_1, enable);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_hal_digi_filter_enable(ADC_NUM_2, enable);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/**
@ -638,7 +678,13 @@ esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
*/
int adc_digi_filter_read_data(adc_digi_filter_idx_t idx)
{
abort(); // TODO ESP32-C3 IDF-2528
if (idx == ADC_DIGI_FILTER_IDX0) {
return adc_hal_digi_filter_read_data(ADC_NUM_1);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
return adc_hal_digi_filter_read_data(ADC_NUM_2);
} else {
return -1;
}
}
/**************************************/

View File

@ -186,6 +186,39 @@ esp_err_t adc_digi_isr_register(void (*fn)(void *), void *arg, int intr_alloc_fl
*/
esp_err_t adc_digi_isr_deregister(void);
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/*---------------------------------------------------------------
Deprecated API
---------------------------------------------------------------*/
/**
* @brief Set I2S data source
*
* @param src I2S DMA data source, I2S DMA can get data from digital signals or from ADC.
*
* @deprecated The ESP32C3 doesn't use I2S DMA. Call ``adc_digi_controller_config`` instead.
*
* @return
* - ESP_OK success
*/
esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src) __attribute__((deprecated));
/**
* @brief Initialize I2S ADC mode
*
* @param adc_unit ADC unit index
* @param channel ADC channel index
*
* @deprecated The ESP32C3 doesn't use I2S DMA. Call ``adc_digi_controller_config`` instead.
*
* @return
* - ESP_OK success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel) __attribute__((deprecated));
#ifdef __cplusplus
}
#endif

View File

@ -37,7 +37,8 @@ typedef enum {
ADC1_CHANNEL_7, /*!< ADC1 channel 7 is GPIO35 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 // TODO ESP32-S3 channels are wrong IDF-1776
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
//S3 is not sure. Need to be checked when bringing up S3
/**** `adc1_channel_t` will be deprecated functions, combine into `adc_channel_t` ********/
typedef enum {
ADC1_CHANNEL_0 = 0, /*!< ADC1 channel 0 is GPIO1 */
@ -62,9 +63,10 @@ typedef enum {
ADC1_CHANNEL_4, /*!< ADC1 channel 4 is GPIO34 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#endif // CONFIG_IDF_TARGET_*
#endif
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 // TODO ESP32-S3 channels are wrong IDF-1776
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
//S3 is not sure. Need to be checked when bringing up S3
/**** `adc2_channel_t` will be deprecated functions, combine into `adc_channel_t` ********/
typedef enum {
ADC2_CHANNEL_0 = 0, /*!< ADC2 channel 0 is GPIO4 (ESP32), GPIO11 (ESP32-S2) */
@ -141,32 +143,14 @@ typedef struct adc_digi_init_config_s {
/**
* @brief Enable ADC power
* @deprecated Use adc_power_acquire and adc_power_release instead.
*/
void adc_power_on(void) __attribute__((deprecated));
void adc_power_on(void);
/**
* @brief Power off SAR ADC
* @deprecated Use adc_power_acquire and adc_power_release instead.
* This function will force power down for ADC.
* This function is deprecated because forcing power ADC power off may
* disrupt operation of other components which may be using the ADC.
* This function will force power down for ADC
*/
void adc_power_off(void) __attribute__((deprecated));
/**
* @brief Increment the usage counter for ADC module.
* ADC will stay powered on while the counter is greater than 0.
* Call adc_power_release when done using the ADC.
*/
void adc_power_acquire(void);
/**
* @brief Decrement the usage counter for ADC module.
* ADC will stay powered on while the counter is greater than 0.
* Call this function when done using the ADC.
*/
void adc_power_release(void);
void adc_power_off(void);
/**
* @brief Initialize ADC pad
@ -258,8 +242,6 @@ esp_err_t adc1_config_width(adc_bits_width_t width_bit);
* the input of GPIO36 and GPIO39 will be pulled down for about 80ns.
* When enabling power for any of these peripherals, ignore input from GPIO36 and GPIO39.
* Please refer to section 3.11 of 'ECO_and_Workarounds_for_Bugs_in_ESP32' for the description of this issue.
* As a workaround, call adc_power_acquire() in the app. This will result in higher power consumption (by ~1mA),
* but will remove the glitches on GPIO36 and GPIO39.
*
* @note Call ``adc1_config_width()`` before the first time this
* function is called.
@ -385,9 +367,6 @@ esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten);
* the input of GPIO36 and GPIO39 will be pulled down for about 80ns.
* When enabling power for any of these peripherals, ignore input from GPIO36 and GPIO39.
* Please refer to section 3.11 of 'ECO_and_Workarounds_for_Bugs_in_ESP32' for the description of this issue.
* As a workaround, call adc_power_acquire() in the app. This will result in higher power consumption (by ~1mA),
* but will remove the glitches on GPIO36 and GPIO39.
*
*
* @note ESP32:
* For a given channel, ``adc2_config_channel_atten()``

View File

@ -30,11 +30,11 @@ if(NOT BOOTLOADER_BUILD)
"sha_hal.c"
"aes_hal.c"
"twai_hal.c"
"twai_hal_iram.c")
"twai_hal_iram.c"
"adc_hal.c")
if(${target} STREQUAL "esp32")
list(APPEND srcs
"adc_hal.c"
"dac_hal.c"
"mcpwm_hal.c"
"pcnt_hal.c"
@ -52,7 +52,6 @@ if(NOT BOOTLOADER_BUILD)
if(${target} STREQUAL "esp32s2")
list(APPEND srcs
"adc_hal.c"
"dac_hal.c"
"pcnt_hal.c"
"spi_flash_hal_gpspi.c"
@ -70,7 +69,6 @@ if(NOT BOOTLOADER_BUILD)
if(${target} STREQUAL "esp32s3")
list(APPEND srcs
"adc_hal.c"
"dac_hal.c"
"gdma_hal.c"
"pcnt_hal.c"

View File

@ -15,6 +15,7 @@
#include "hal/adc_hal.h"
#include "hal/adc_hal_conf.h"
#if CONFIG_IDF_TARGET_ESP32C3
#include "soc/soc.h"
#include "esp_rom_sys.h"
@ -123,7 +124,7 @@ void adc_hal_digi_init(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t
adc_dma_ctx->dev = &GDMA;
gdma_ll_enable_clock(adc_dma_ctx->dev, true);
gdma_ll_clear_interrupt_status(adc_dma_ctx->dev, dma_config->dma_chan, UINT32_MAX);
gdma_ll_rx_connect_to_periph(adc_dma_ctx->dev, dma_config->dma_chan, SOC_GDMA_TRIG_PERIPH_ADC0);
gdma_ll_rx_connect_to_periph(adc_dma_ctx->dev, dma_config->dma_chan, GDMA_LL_TRIG_SRC_ADC_DAC);
}
/*---------------------------------------------------------------
@ -183,14 +184,17 @@ void adc_hal_set_onetime_atten(adc_atten_t atten)
adc_ll_onetime_set_atten(atten);
}
uint32_t adc_hal_adc1_read(void)
esp_err_t adc_hal_single_read(adc_ll_num_t unit, int *out_raw)
{
return adc_ll_adc1_read();
}
uint32_t adc_hal_adc2_read(void)
{
return adc_ll_adc2_read();
if (unit == ADC_NUM_1) {
*out_raw = adc_ll_adc1_read();
} else if (unit == ADC_NUM_2) {
*out_raw = adc_ll_adc2_read();
if (adc_ll_rtc_analysis_raw_data(unit, *out_raw)) {
return ESP_ERR_INVALID_STATE;
}
}
return ESP_OK;
}
//--------------------INTR-------------------------------

View File

@ -20,8 +20,6 @@
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "regi2c_ctrl.h"
#include "esp_attr.h"
@ -29,6 +27,8 @@
extern "C" {
#endif
#define ADC_LL_ADC2_CHANNEL_MAX 1
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
@ -75,7 +75,7 @@ typedef struct {
};
uint16_t val;
};
} adc_ll_rtc_output_data_t;
} adc_rtc_output_data_t;
#ifdef _MSC_VER
#pragma pack(pop)
@ -95,7 +95,7 @@ typedef enum {
ADC2_CTRL_FORCE_PWDET = 3, /*!<For ADC2. Arbiter in shield mode. Force select Wi-Fi controller work. */
ADC2_CTRL_FORCE_RTC = 4, /*!<For ADC2. Arbiter in shield mode. Force select RTC controller work. */
ADC2_CTRL_FORCE_DIG = 6, /*!<For ADC2. Arbiter in shield mode. Force select digital controller work. */
} adc_ll_controller_t;
} adc_controller_t;
/*---------------------------------------------------------------
Digital controller setting
@ -127,7 +127,7 @@ static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wa
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
abort(); // TODO ESP32-C3 IDF-2094
// APB_SARADC.fsm.sample_cycle = sample_cycle;
}
/**
@ -149,7 +149,7 @@ static inline void adc_ll_digi_set_clk_div(uint32_t div)
*/
static inline void adc_ll_digi_set_output_format(adc_digi_output_format_t format)
{
abort(); // TODO ESP32-C3 IDF-2094
/*take off*/
}
/**
@ -184,17 +184,20 @@ static inline void adc_ll_digi_convert_limit_disable(void)
/**
* Set adc conversion mode for digital controller.
*
* @note ADC digital controller on C3 only has one pattern table list, and do conversions one by one
* @note ESP32 only support ADC1 single mode.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_digi_convert_mode_t mode)
{
abort(); // TODO ESP32-C3 IDF-2528
/*take off*/
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
@ -209,6 +212,9 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 15.
@ -372,7 +378,7 @@ static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_fi
*/
static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t *factor)
{
abort(); // TODO ESP32-C3 IDF-2528
}
/**
@ -384,7 +390,11 @@ static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_fi
*/
static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.filter_ctrl.adc1_filter_en = enable;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.filter_ctrl.adc2_filter_en = enable;
// }
}
/**
@ -397,7 +407,12 @@ static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
*/
static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
abort(); // FIXME
// if (adc_n == ADC_NUM_1) {
// return APB_SARADC.filter_status.adc1_filter_data;
// } else { // adc_n == ADC_NUM_2
// return APB_SARADC.filter_status.adc2_filter_data;
// }
}
/**
@ -410,7 +425,11 @@ static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
*/
static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larger)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.thres_ctrl.adc1_thres_mode = is_larger;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.thres_ctrl.adc2_thres_mode = is_larger;
// }
}
/**
@ -422,7 +441,11 @@ static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larg
*/
static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t threshold)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.thres_ctrl.adc1_thres = threshold;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.thres_ctrl.adc2_thres = threshold;
// }
}
/**
@ -433,7 +456,11 @@ static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t th
*/
static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.thres_ctrl.adc1_thres_en = enable;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.thres_ctrl.adc2_thres_en = enable;
// }
}
/**
@ -444,7 +471,21 @@ static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
*/
static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc1_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc1_done = 1;
// }
// } else { // adc_n == ADC_NUM_2
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc2_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc2_done = 1;
// }
// }
}
/**
@ -455,7 +496,21 @@ static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t i
*/
static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc1_thres = 0;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc1_done = 0;
// }
// } else { // adc_n == ADC_NUM_2
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc2_thres = 0;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc2_done = 0;
// }
// }
}
/**
@ -466,7 +521,21 @@ static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t
*/
static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t intr)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_clr.adc1_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_clr.adc1_done = 1;
// }
// } else { // adc_n == ADC_NUM_2
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_clr.adc2_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_clr.adc2_done = 1;
// }
// }
}
/**
@ -478,7 +547,28 @@ static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t in
*/
static inline uint32_t adc_ll_digi_get_intr_status(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
abort(); // FIXME
// uint32_t int_st = APB_SARADC.int_st.val;
// uint32_t ret_msk = 0;
// if (adc_n == ADC_NUM_1) {
// if (int_st & APB_SARADC_ADC1_DONE_INT_ST_M) {
// ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
// }
// // if (int_st & APB_SARADC_ADC1_THRES_INT_ST) {
// // ret_msk |= ADC_DIGI_INTR_MASK_MONITOR;
// // }
// } else { // adc_n == ADC_NUM_2
// if (int_st & APB_SARADC_ADC2_DONE_INT_ST_M) {
// ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
// }
// // if (int_st & APB_SARADC_ADC2_THRES_INT_ST_M) {
// // ret_msk |= ADC_DIGI_INTR_MASK_MONITOR;
// // }
// }
// return ret_msk;
}
/**
@ -528,7 +618,8 @@ static inline void adc_ll_digi_reset(void)
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
abort(); // TODO ESP32-C3 IDF-2094
// /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
// SENS.sar_meas2_mux.sar2_pwdet_cct = cct;
}
/**
@ -539,7 +630,9 @@ static inline void adc_ll_pwdet_set_cct(uint32_t cct)
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
abort(); // TODO ESP32-C3 IDF-2094
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
// return SENS.sar_meas2_mux.sar2_pwdet_cct;
return 0;
}
/*---------------------------------------------------------------
@ -567,7 +660,11 @@ static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_wid
*/
static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
// } else { // adc_n == ADC_NUM_2
// SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected.
// }
}
/**
@ -580,7 +677,11 @@ static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
*/
static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n, int channel)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
// } else { // adc_n == ADC_NUM_2
// SENS.sar_meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
// }
}
/**
@ -593,7 +694,14 @@ static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n, int channel)
*/
static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// while (SENS.sar_slave_addr1.meas_status != 0);
// SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
// SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0
// SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1
// }
}
/**
@ -606,7 +714,13 @@ static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
*/
static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
bool ret = true;
// if (adc_n == ADC_NUM_1) {
// ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar;
// } else { // adc_n == ADC_NUM_2
// ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar;
// }
return ret;
}
/**
@ -618,7 +732,13 @@ static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
*/
static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
int ret_val = 0;
// if (adc_n == ADC_NUM_1) {
// ret_val = SENS.sar_meas1_ctrl2.meas1_data_sar;
// } else { // adc_n == ADC_NUM_2
// ret_val = SENS.sar_meas2_ctrl2.meas2_data_sar;
// }
return ret_val;
}
/**
@ -629,7 +749,11 @@ static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
// }
}
/**
@ -639,7 +763,13 @@ static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
*/
static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_int_en = 1;
// RTCCNTL.int_ena.rtc_saradc1 = 1;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_int_en = 1;
// RTCCNTL.int_ena.rtc_saradc2 = 1;
// }
}
/**
@ -649,7 +779,13 @@ static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_int_en = 0;
// RTCCNTL.int_ena.rtc_saradc1 = 0;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_int_en = 0;
// RTCCNTL.int_ena.rtc_saradc2 = 0;
// }
}
/**
@ -657,7 +793,8 @@ static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_reset(void)
{
abort(); // TODO ESP32-C3 IDF-2094
// SENS.sar_meas1_ctrl1.rtc_saradc_reset = 1;
// SENS.sar_meas1_ctrl1.rtc_saradc_reset = 0;
}
/**
@ -668,24 +805,30 @@ static inline void adc_ll_rtc_reset(void)
*/
static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
{
abort(); // TODO ESP32-C3 IDF-2094
// SENS.sar_reader2_ctrl.sar2_wait_arb_cycle = cycle;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result can be judged by the flag bit in the original data.
* ADC2 can use arbiter.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
* @return
* - 0: The data is correct to use.
* - 1: The data is invalid. The current controller is not enabled by the arbiter.
* - 2: The data is invalid. The current controller process was interrupted by a higher priority controller.
* - -1: The data is error.
* - 0: The data is correct to use.
* - -1: The data is invalid.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, uint16_t raw_data)
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
{
abort(); // TODO ESP32-C3 IDF-2094
if (adc_n == ADC_NUM_1) {
return ADC_RTC_DATA_OK;
}
if (((APB_SARADC.apb_saradc2_data_status.adc2_data & 0xffff) >> 13) >= ADC_LL_ADC2_CHANNEL_MAX) {
return ADC_RTC_DATA_FAIL;
}
return ADC_RTC_DATA_OK;
}
/*---------------------------------------------------------------
@ -720,7 +863,18 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
*/
static inline adc_ll_power_t adc_ll_get_power_manage(void)
{
abort(); // TODO ESP32-C3 IDF-2094
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
// adc_ll_power_t manage;
// if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PU) {
// manage = ADC_POWER_SW_ON;
// } else if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PD) {
// manage = ADC_POWER_SW_OFF;
// } else {
// manage = ADC_POWER_BY_FSM;
// }
// return manage;
return 0;
}
/**
@ -730,7 +884,11 @@ static inline adc_ll_power_t adc_ll_get_power_manage(void)
*/
static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_clk_div = div;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_clk_div = div;
// }
}
/**
@ -768,7 +926,11 @@ static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
*/
static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
// } else { // adc_n == ADC_NUM_2
// SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
// }
}
/**
@ -780,7 +942,12 @@ static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, a
*/
static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t channel)
{
abort(); // TODO ESP32-C3 IDF-2094
abort(); // FIXME
// if (adc_n == ADC_NUM_1) {
// return (adc_atten_t)((SENS.sar_atten1 >> (channel * 2)) & 0x3);
// } else {
// return (adc_atten_t)((SENS.sar_atten2 >> (channel * 2)) & 0x3);
// }
}
/**
@ -793,9 +960,43 @@ static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t cha
* @param adc_n ADC unit.
* @param ctrl ADC controller.
*/
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_controller_t ctrl)
{
abort(); // TODO ESP32-C3 IDF-2094
//NOTE: ULP is removed on C3, please remove ULP related (if there still are any) code and this comment
// if (adc_n == ADC_NUM_1) {
// switch ( ctrl ) {
// case ADC_CTRL_RTC:
// SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
// SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// case ADC_CTRL_DIG:
// SENS.sar_meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
// SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// default:
// break;
// }
// } else { // adc_n == ADC_NUM_2
// switch ( ctrl ) {
// case ADC_CTRL_RTC:
// SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// case ADC_CTRL_DIG:
// SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// case ADC2_CTRL_PWDET: // currently only used by Wi-Fi
// SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// default:
// break;
// }
// }
}
/**
@ -877,7 +1078,7 @@ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig,
*/
static inline void adc_ll_enable_sleep_controller(void)
{
abort(); // TODO ESP32-C3 IDF-2094
// SENS.sar_meas2_mux.sar2_rtc_force = 1;
}
/**
@ -891,10 +1092,51 @@ static inline void adc_ll_enable_sleep_controller(void)
*/
static inline void adc_ll_disable_sleep_controller(void)
{
abort(); // TODO ESP32-C3 IDF-2094
// SENS.sar_meas2_mux.sar2_rtc_force = 0;
}
/* ADC calibration code. */
#include "soc/rtc_cntl_reg.h"
#include "regi2c_ctrl.h"
#define I2C_ADC 0X69
#define I2C_ADC_HOSTID 0
#define ANA_CONFIG2_REG 0x6000E048
#define ANA_CONFIG2_M (BIT(18))
#define SAR1_ENCAL_GND_ADDR 0x7
#define SAR1_ENCAL_GND_ADDR_MSB 5
#define SAR1_ENCAL_GND_ADDR_LSB 5
#define SAR2_ENCAL_GND_ADDR 0x7
#define SAR2_ENCAL_GND_ADDR_MSB 7
#define SAR2_ENCAL_GND_ADDR_LSB 7
#define SAR1_INITIAL_CODE_HIGH_ADDR 0x1
#define SAR1_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define SAR1_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define SAR1_INITIAL_CODE_LOW_ADDR 0x0
#define SAR1_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define SAR1_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define SAR2_INITIAL_CODE_HIGH_ADDR 0x4
#define SAR2_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define SAR2_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define SAR2_INITIAL_CODE_LOW_ADDR 0x3
#define SAR2_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define SAR2_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define SAR1_DREF_ADDR 0x2
#define SAR1_DREF_ADDR_MSB 0x6
#define SAR1_DREF_ADDR_LSB 0x4
#define SAR2_DREF_ADDR 0x5
#define SAR2_DREF_ADDR_MSB 0x6
#define SAR2_DREF_ADDR_LSB 0x4
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
#define ADC_HAL_CAL_TIMES (10)
@ -910,7 +1152,30 @@ static inline void adc_ll_disable_sleep_controller(void)
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
{
abort(); // TODO ESP32-C3 IDF-2526
// /* Enable i2s_write_reg function. */
// void phy_get_romfunc_addr(void);
// phy_get_romfunc_addr();
// //CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PD_M);
// //SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
// CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, BIT(18));
// SET_PERI_REG_MASK(ANA_CONFIG2_REG, BIT(16));
// /* Enable/disable internal connect GND (for calibration). */
// if (adc_n == ADC_NUM_1) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_DREF_ADDR, 4);
// if (internal_gnd) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_ENCAL_GND_ADDR, 1);
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_ENCAL_GND_ADDR, 0);
// }
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_DREF_ADDR, 4);
// if (internal_gnd) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_ENCAL_GND_ADDR, 1);
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_ENCAL_GND_ADDR, 0);
// }
// }
}
/**
@ -920,7 +1185,11 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
*/
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2526
// if (adc_n == ADC_NUM_1) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_ENCAL_GND_ADDR, 0);
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_ENCAL_GND_ADDR, 0);
// }
}
/**
@ -932,8 +1201,24 @@ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
*/
static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
{
abort(); // TODO ESP32-C3 IDF-2526
// uint8_t msb = param >> 8;
// uint8_t lsb = param & 0xFF;
// /* Enable i2s_write_reg function. */
// void phy_get_romfunc_addr(void);
// phy_get_romfunc_addr();
// //SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
// CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, BIT(18));
// SET_PERI_REG_MASK(ANA_CONFIG2_REG, BIT(16));
// if (adc_n == ADC_NUM_1) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_INITIAL_CODE_HIGH_ADDR, msb);
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_INITIAL_CODE_LOW_ADDR, lsb);
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_INITIAL_CODE_HIGH_ADDR, msb);
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_INITIAL_CODE_LOW_ADDR, lsb);
// }
}
/* Temp code end. */
/*---------------------------------------------------------------
Single Read
@ -998,7 +1283,8 @@ static inline void adc_ll_adc1_onetime_sample_dis(void)
static inline uint32_t adc_ll_adc1_read(void)
{
return APB_SARADC.apb_saradc1_data_status.adc1_data;
//On ESP32C3, valid data width is 12-bit
return (APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff);
}
//--------------------------------adc2------------------------------//
@ -1014,8 +1300,10 @@ static inline void adc_ll_adc2_onetime_sample_dis(void)
static inline uint32_t adc_ll_adc2_read(void)
{
return APB_SARADC.apb_saradc2_data_status.adc2_data;
//On ESP32C3, valid data width is 12-bit
return (APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff);
}
#ifdef __cplusplus
}
#endif

View File

@ -172,6 +172,7 @@ static uint32_t periph_ll_get_clk_en_reg(periph_module_t periph)
case PERIPH_SHA_MODULE:
case PERIPH_GDMA_MODULE:
return SYSTEM_PERIP_CLK_EN1_REG;
case PERIPH_SARADC_MODULE:
default:
return SYSTEM_PERIP_CLK_EN0_REG;
}
@ -195,6 +196,7 @@ static uint32_t periph_ll_get_rst_en_reg(periph_module_t periph)
case PERIPH_SHA_MODULE:
case PERIPH_GDMA_MODULE:
return SYSTEM_PERIP_RST_EN1_REG;
case PERIPH_SARADC_MODULE:
default:
return SYSTEM_PERIP_RST_EN0_REG;
}

View File

@ -213,6 +213,7 @@ void adc_hal_digi_controller_config(const adc_digi_config_t *cfg);
#include "hal/dma_types.h"
#include "hal/adc_ll.h"
#include "hal/dma_types.h"
#include "esp_err.h"
typedef struct adc_dma_hal_context_t {
gdma_dev_t *dev; //address of the general DMA
@ -259,9 +260,7 @@ void adc_hal_onetime_channel(adc_ll_num_t unit, adc_channel_t channel);
void adc_hal_set_onetime_atten(adc_atten_t atten);
uint32_t adc_hal_adc1_read(void);
uint32_t adc_hal_adc2_read(void);
esp_err_t adc_hal_single_read(adc_ll_num_t unit, int *out_raw);
void adc_hal_intr_enable(adc_event_t event);

View File

@ -88,8 +88,10 @@ typedef enum {
ADC_WIDTH_BIT_10 = 1, /*!< ADC capture width is 10Bit. */
ADC_WIDTH_BIT_11 = 2, /*!< ADC capture width is 11Bit. */
ADC_WIDTH_BIT_12 = 3, /*!< ADC capture width is 12Bit. */
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
ADC_WIDTH_BIT_13 = 4, /*!< ADC capture width is 13Bit. */
#elif CONFIG_IDF_TARGET_ESP32C3
ADC_WIDTH_BIT_12 = 3, /*!< ADC capture width is 12Bit. */
#endif
ADC_WIDTH_MAX,
} adc_bits_width_t;
@ -139,7 +141,7 @@ typedef struct {
uint8_t reserved: 2; /*!< reserved0 */
#endif
};
uint8_t val; /*!<Raw data value */
uint8_t val;
};
} adc_digi_pattern_table_t;
@ -189,12 +191,13 @@ typedef struct {
typedef struct {
union {
struct {
uint32_t data: 13; /*!<ADC real output data info. Resolution: 13 bit. */
uint32_t channel: 3; /*!<ADC channel index info.
If (channel < ADC_CHANNEL_MAX), The data is valid.
If (channel > ADC_CHANNEL_MAX), The data is invalid. */
uint32_t unit: 1; /*!<ADC unit index info. 0: ADC1; 1: ADC2. */
uint32_t reserved: 15;
uint32_t data: 12; /*!<ADC real output data info. Resolution: 12 bit. */
uint32_t reserved12: 1;
uint32_t channel: 3; /*!<ADC channel index info.
If (channel < ADC_CHANNEL_MAX), The data is valid.
If (channel > ADC_CHANNEL_MAX), The data is invalid. */
uint32_t unit: 1; /*!<ADC unit index info. 0: ADC1; 1: ADC2. */
uint32_t reserved17_31: 15;
} type2;
uint32_t val;
};

View File

@ -0,0 +1,6 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(adc)

View File

@ -0,0 +1,55 @@
| Supported Targets | ESP32-C3 |
| ----------------- | -------- |
# ADC DMA Example
(See the README.md file in the upper level 'examples' directory for more information about examples.)
This example shows how to use DMA to read voltage from a GPIO pin via ADC controller.
## How to use example
### Hardware Required
* A development board with ESP32C3 SoC
* A USB cable for power supply and programming
In this example, we use `ADC_UNIT_1` by default, we need to connect a voltage source (0 ~ 3.3v) to GPIO1. If another ADC unit is selected in your application, you need to change the GPIO pin (please refer to the `ESP32C3 Technical Reference Manual`).
### Configure the project
```
idf.py menuconfig
```
### Build and Flash
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
Running this example, you will see the following log output on the serial monitor:
[unit_channel_data](<all the data you read from the ADC>)
```
[0_1_54e](4e 25 00 00)
[0_1_548](48 25 00 00)
[0_1_556](56 25 00 00)
```
## Troubleshooting
* program upload failure
* Hardware connection is not correct: run `idf.py -p PORT monitor`, and reboot your board to see if there are any output logs.
* The baud rate for downloading is too high: lower your baud rate in the `menuconfig` menu, and try again.
For any technical queries, please open an [issue](https://github.com/espressif/esp-idf/issues) on GitHub. We will get back to you soon.

View File

@ -0,0 +1,2 @@
idf_component_register(SRCS "adc_dma_example_main.c"
INCLUDE_DIRS ".")

View File

@ -0,0 +1,117 @@
#include <string.h>
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "driver/adc.h"
#define TIMES 256
#define DMA_CHANNEL 0
static void continuous_adc_init(uint16_t adc1_chan_mask, uint16_t adc2_chan_mask, adc_channel_t *channel, uint8_t channel_num)
{
esp_err_t ret = ESP_OK;
assert(ret == ESP_OK);
adc_digi_init_config_t adc_dma_config = {
.max_store_buf_size = 1024,
.conv_num_each_intr = 256,
.dma_chan = SOC_GDMA_ADC_DMA_CHANNEL,
.adc1_chan_mask = adc1_chan_mask,
.adc2_chan_mask = adc2_chan_mask,
};
ret = adc_digi_initialize(&adc_dma_config);
assert(ret == ESP_OK);
adc_digi_pattern_table_t adc_pattern[10];
adc_digi_config_t dig_cfg = {
.conv_limit_en = 0,
.conv_limit_num = 250,
.interval = 40,
.dig_clk.use_apll = 0,
.dig_clk.div_num = 15,
.dig_clk.div_a = 0,
.dig_clk.div_b = 1,
};
dig_cfg.adc_pattern_len = channel_num;
for (int i = 0; i < channel_num; i++) {
uint8_t unit = ((channel[i] >> 3) & 0x1);
uint8_t ch = channel[i] & 0x7;
adc_pattern[i].atten = ADC_ATTEN_DB_0;
adc_pattern[i].channel = ch;
adc_pattern[i].unit = unit;
}
dig_cfg.adc_pattern = adc_pattern;
ret = adc_digi_controller_config(&dig_cfg);
assert(ret == ESP_OK);
}
static void continuous_read_demo(void *arg)
{
esp_err_t ret;
uint32_t ret_num = 0;
uint8_t result[TIMES] = {0};
memset(result, 0xcc, TIMES);
uint16_t adc1_chan_mask = BIT(ADC1_CHANNEL_0) | BIT(ADC1_CHANNEL_1);
uint16_t adc2_chan_mask = BIT(ADC2_CHANNEL_0);
adc_channel_t channel[3] = {ADC1_CHANNEL_0, ADC1_CHANNEL_1, (ADC2_CHANNEL_0 | 1 << 3)};
continuous_adc_init(adc1_chan_mask, adc2_chan_mask, channel, sizeof(channel) / sizeof(adc_channel_t));
adc_digi_start();
int n = 20;
while(n--) {
ret = adc_digi_read_bytes(result, TIMES, &ret_num, ADC_MAX_DELAY);
for (int i = 0; i < ret_num; i+=4) {
uint32_t temp = (result[i+3] << 24) | (result[i+2] << 16) | (result[i+1] << 8) | (result[i+0]);
adc_digi_output_data_t *p = (void*)&temp;
printf("[%d_%d_%x](%02x %02x %02x %02x) \n", p->type2.unit, p->type2.channel, p->type2.data,
result[i],
result[i + 1],
result[i + 2],
result[i + 3]);
}
// If you see task WDT in this task, it means the conversion is too fast for the task to handle
}
adc_digi_stop();
ret = adc_digi_deinitialize();
assert(ret == ESP_OK);
}
static void single_read_demo(void *arg)
{
esp_err_t ret;
int adc1_reading[3] = {0xcc};
int adc2_reading[1] = {0xcc};
adc1_config_width(ADC_WIDTH_BIT_12);
adc1_config_channel_atten(ADC1_CHANNEL_2, ADC_ATTEN_DB_0);
adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_6);
adc1_config_channel_atten(ADC1_CHANNEL_4, ADC_ATTEN_DB_0);
adc2_config_channel_atten(ADC2_CHANNEL_0, ADC_ATTEN_DB_0);
int n = 20;
while (n--) {
adc1_reading[0] = adc1_get_raw(ADC1_CHANNEL_2);
adc1_reading[1] = adc1_get_raw(ADC1_CHANNEL_3);
adc1_reading[2] = adc1_get_raw(ADC1_CHANNEL_4);
for (int i = 0; i < 3; i++) {
printf("[%x]\n", adc1_reading[i]);
}
ret = adc2_get_raw(ADC2_CHANNEL_0, ADC_WIDTH_BIT_12, &adc2_reading[0]);
assert(ret == ESP_OK);
printf("[%x]\n", adc2_reading[0]);
}
}
void app_main()
{
single_read_demo(NULL);
continuous_read_demo(NULL);
}