adc: unify adc_ll_num_t and adc_unit_t

This commit is contained in:
Armando 2022-03-08 19:26:04 +08:00
parent aab535fe4a
commit 386363cafd
39 changed files with 828 additions and 917 deletions

View File

@ -73,7 +73,7 @@ portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED;
---------------------------------------------------------------*/
typedef struct adc_digi_context_t {
uint8_t *rx_dma_buf; //dma buffer
adc_hal_context_t hal; //hal context
adc_hal_dma_ctx_t hal; //hal context
#if SOC_GDMA_SUPPORTED
gdma_channel_handle_t rx_dma_channel; //dma rx channel handle
#elif CONFIG_IDF_TARGET_ESP32S2
@ -102,7 +102,7 @@ extern esp_pm_lock_handle_t adc_digi_arbiter_lock;
#endif //CONFIG_PM_ENABLE
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten);
uint32_t adc_get_calibration_offset(adc_unit_t adc_n, adc_channel_t chan, adc_atten_t atten);
#endif
/*---------------------------------------------------------------
@ -117,9 +117,11 @@ static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan
static IRAM_ATTR void adc_dma_intr_handler(void *arg);
#endif
static int8_t adc_digi_get_io_num(uint8_t adc_unit, uint8_t adc_channel)
static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel)
{
return adc_channel_io_map[adc_unit][adc_channel];
assert(adc_unit <= SOC_ADC_PERIPH_NUM);
uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1;
return adc_channel_io_map[adc_n][adc_channel];
}
static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
@ -197,13 +199,13 @@ esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
//init gpio pins
if (init_config->adc1_chan_mask) {
ret = adc_digi_gpio_init(ADC_NUM_1, init_config->adc1_chan_mask);
ret = adc_digi_gpio_init(ADC_UNIT_1, init_config->adc1_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
}
if (init_config->adc2_chan_mask) {
ret = adc_digi_gpio_init(ADC_NUM_2, init_config->adc2_chan_mask);
ret = adc_digi_gpio_init(ADC_UNIT_2, init_config->adc2_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
@ -270,7 +272,7 @@ esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
}
#endif
adc_hal_config_t config = {
adc_hal_dma_config_t config = {
#if SOC_GDMA_SUPPORTED
.dev = (void *)GDMA_LL_GET_HW(0),
#elif CONFIG_IDF_TARGET_ESP32S2
@ -282,7 +284,7 @@ esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
.dma_chan = dma_chan,
.eof_num = init_config->conv_num_each_intr / ADC_HAL_DATA_LEN_PER_CONV
};
adc_hal_context_config(&s_adc_digi_ctx->hal, &config);
adc_hal_dma_ctx_config(&s_adc_digi_ctx->hal, &config);
//enable ADC digital part
periph_module_enable(PERIPH_SARADC_MODULE);
@ -290,8 +292,8 @@ esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
periph_module_reset(PERIPH_SARADC_MODULE);
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_NUM_1);
adc_hal_calibration_init(ADC_NUM_2);
adc_hal_calibration_init(ADC_UNIT_1);
adc_hal_calibration_init(ADC_UNIT_2);
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
return ret;
@ -383,23 +385,22 @@ esp_err_t adc_digi_start(void)
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
if (s_adc_digi_ctx->use_adc1) {
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
uint32_t cal_val = adc_get_calibration_offset(ADC_UNIT_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten);
adc_hal_set_calibration_param(ADC_UNIT_1, cal_val);
}
if (s_adc_digi_ctx->use_adc2) {
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
uint32_t cal_val = adc_get_calibration_offset(ADC_UNIT_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten);
adc_hal_set_calibration_param(ADC_UNIT_2, cal_val);
}
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_init();
#if SOC_ADC_ARBITER_SUPPORTED
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
#endif //#if SOC_ADC_ARBITER_SUPPORTED
adc_hal_set_controller(ADC_NUM_1, ADC_HAL_CONTINUOUS_READ_MODE);
adc_hal_set_controller(ADC_NUM_2, ADC_HAL_CONTINUOUS_READ_MODE);
adc_hal_set_controller(ADC_UNIT_1, ADC_HAL_CONTINUOUS_READ_MODE);
adc_hal_set_controller(ADC_UNIT_2, ADC_HAL_CONTINUOUS_READ_MODE);
adc_hal_digi_init(&s_adc_digi_ctx->hal);
adc_hal_digi_controller_config(&s_adc_digi_ctx->hal, &s_adc_digi_ctx->hal_digi_ctrlr_cfg);
@ -602,7 +603,7 @@ esp_err_t adc_digi_controller_configure(const adc_digi_configuration_t *config)
s_adc_digi_ctx->use_adc2 = 0;
for (int i = 0; i < config->pattern_num; i++) {
const adc_digi_pattern_config_t *pat = &config->adc_pattern[i];
if (pat->unit == ADC_NUM_1) {
if (pat->unit == ADC_UNIT_1) {
s_adc_digi_ctx->use_adc1 = 1;
if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
@ -610,7 +611,7 @@ esp_err_t adc_digi_controller_configure(const adc_digi_configuration_t *config)
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
} else if (pat->unit == ADC_NUM_2) {
} else if (pat->unit == ADC_UNIT_2) {
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
s_adc_digi_ctx->use_adc2 = 1;
@ -639,7 +640,7 @@ esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
uint32_t channel = ADC2_CHANNEL_MAX;
if (adc_unit == ADC_UNIT_2) {
for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
if (gpio == ADC_GET_IO_NUM(ADC_NUM_2, i)) {
if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) {
channel = i;
break;
}
@ -650,17 +651,17 @@ esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
}
adc_power_acquire();
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
ADC_ENTER_CRITICAL();
adc_hal_vref_output(ADC_NUM_1, channel, true);
adc_hal_vref_output(ADC_UNIT_1, channel, true);
ADC_EXIT_CRITICAL();
} else if (adc_unit & ADC_UNIT_2) {
} else { //ADC_UNIT_2
ADC_ENTER_CRITICAL();
adc_hal_vref_output(ADC_NUM_2, channel, true);
adc_hal_vref_output(ADC_UNIT_2, channel, true);
ADC_EXIT_CRITICAL();
}
ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));
ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel));
return ret;
}
@ -677,14 +678,14 @@ esp_err_t adc1_config_width(adc_bits_width_t width_bit)
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_NUM_1), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC1 channel error");
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC1 channel error");
ESP_RETURN_ON_FALSE((atten < ADC_ATTEN_MAX), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err");
esp_err_t ret = ESP_OK;
s_atten1_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_NUM_1, BIT(channel));
ret = adc_digi_gpio_init(ADC_UNIT_1, BIT(channel));
adc_hal_calibration_init(ADC_NUM_1);
adc_hal_calibration_init(ADC_UNIT_1);
return ret;
}
@ -699,12 +700,12 @@ int adc1_get_raw(adc1_channel_t channel)
SAR_ADC1_LOCK_ACQUIRE();
adc_atten_t atten = s_atten1_single[channel];
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
uint32_t cal_val = adc_get_calibration_offset(ADC_UNIT_1, channel, atten);
adc_hal_set_calibration_param(ADC_UNIT_1, cal_val);
ADC_REG_LOCK_ENTER();
adc_hal_set_atten(ADC_NUM_2, channel, atten);
adc_hal_convert(ADC_NUM_1, channel, &raw_out);
adc_hal_set_atten(ADC_UNIT_2, channel, atten);
adc_hal_convert(ADC_UNIT_1, channel, &raw_out);
ADC_REG_LOCK_EXIT();
SAR_ADC1_LOCK_RELEASE();
@ -717,14 +718,14 @@ int adc1_get_raw(adc1_channel_t channel)
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_NUM_2), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 channel error");
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 channel error");
ESP_RETURN_ON_FALSE((atten <= ADC_ATTEN_11db), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err");
esp_err_t ret = ESP_OK;
s_atten2_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));
ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel));
adc_hal_calibration_init(ADC_NUM_2);
adc_hal_calibration_init(ADC_UNIT_2);
return ret;
}
@ -747,12 +748,12 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
adc_hal_arbiter_config(&config);
adc_atten_t atten = s_atten2_single[channel];
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
uint32_t cal_val = adc_get_calibration_offset(ADC_UNIT_2, channel, atten);
adc_hal_set_calibration_param(ADC_UNIT_2, cal_val);
ADC_REG_LOCK_ENTER();
adc_hal_set_atten(ADC_NUM_2, channel, atten);
ret = adc_hal_convert(ADC_NUM_2, channel, raw_out);
adc_hal_set_atten(ADC_UNIT_2, channel, atten);
ret = adc_hal_convert(ADC_UNIT_2, channel, raw_out);
ADC_REG_LOCK_EXIT();
SAR_ADC2_LOCK_RELEASE();
@ -842,7 +843,7 @@ static uint16_t s_adc_cali_param[SOC_ADC_PERIPH_NUM][ADC_ATTEN_MAX] = {};
// 1. Semaphore when reading efuse
// 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future
//This function shoudn't be called inside critical section or ISR
uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
uint32_t adc_get_calibration_offset(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
if (s_adc_cali_param[adc_n][atten]) {
ESP_LOGV(ADC_TAG, "Use calibrated val ADC%d atten=%d: %04X", adc_n, atten, s_adc_cali_param[adc_n][atten]);
@ -874,7 +875,7 @@ uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, a
}
// Internal function to calibrate PWDET for WiFi
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
esp_err_t adc_cal_offset(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
adc_hal_calibration_init(adc_n);
uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten);
@ -918,7 +919,7 @@ esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
s_adc_digi_ctx->use_adc2 = 0;
for (int i = 0; i < config->adc_pattern_len; i++) {
const adc_digi_pattern_config_t *pat = &s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern[i];
if (pat->unit == ADC_NUM_1) {
if (pat->unit == ADC_UNIT_1) {
s_adc_digi_ctx->use_adc1 = 1;
if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
@ -926,7 +927,7 @@ esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
} else if (pat->unit == ADC_NUM_2) {
} else if (pat->unit == ADC_UNIT_2) {
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
s_adc_digi_ctx->use_adc2 = 1;

View File

@ -195,9 +195,9 @@ void adc_power_off(void)
esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
{
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
ADC_CHANNEL_CHECK(ADC_UNIT_1, channel);
int io = ADC_GET_IO_NUM(ADC_NUM_1, channel);
int io = ADC_GET_IO_NUM(ADC_UNIT_1, channel);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
} else {
@ -209,9 +209,9 @@ esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
{
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
ADC_CHANNEL_CHECK(ADC_UNIT_2, channel);
int io = ADC_GET_IO_NUM(ADC_NUM_2, channel);
int io = ADC_GET_IO_NUM(ADC_UNIT_2, channel);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
} else {
@ -225,10 +225,10 @@ esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
#if SOC_ADC_RTC_CTRL_SUPPORTED
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
static uint32_t get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan)
static uint32_t get_calibration_offset(adc_unit_t adc_n, adc_channel_t chan)
{
adc_atten_t atten = adc_ll_get_atten(adc_n, chan);
extern uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten);
extern uint32_t adc_get_calibration_offset(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten);
return adc_get_calibration_offset(adc_n, chan, atten);
}
@ -244,23 +244,23 @@ esp_err_t adc_set_clk_div(uint8_t clk_div)
static void adc_rtc_chan_init(adc_unit_t adc_unit)
{
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
/* Workaround: Disable the synchronization operation function of ADC1 and DAC.
If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. */
#if SOC_DAC_SUPPORTED
dac_hal_rtc_sync_by_adc(false);
#endif
adc_hal_rtc_output_invert(ADC_NUM_1, SOC_ADC1_DATA_INVERT_DEFAULT);
adc_ll_set_sar_clk_div(ADC_NUM_1, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_1));
adc_hal_rtc_output_invert(ADC_UNIT_1, ADC_HAL_DATA_INVERT_DEFAULT(ADC_UNIT_1));
adc_ll_set_sar_clk_div(ADC_UNIT_1, ADC_HAL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_1));
#ifdef CONFIG_IDF_TARGET_ESP32
adc_ll_hall_disable(); //Disable other peripherals.
adc_ll_amp_disable(); //Currently the LNA is not open, close it by default.
#endif
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
adc_hal_rtc_output_invert(ADC_NUM_2, SOC_ADC2_DATA_INVERT_DEFAULT);
adc_ll_set_sar_clk_div(ADC_NUM_2, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_2));
if (adc_unit == ADC_UNIT_2) {
adc_hal_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT);
adc_hal_rtc_output_invert(ADC_UNIT_2, ADC_HAL_DATA_INVERT_DEFAULT(ADC_UNIT_2));
adc_ll_set_sar_clk_div(ADC_UNIT_2, ADC_HAL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_2));
}
}
@ -273,17 +273,17 @@ esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
{
gpio_num_t gpio_num = 0;
//If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run
if (adc_unit & ADC_UNIT_1) {
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
gpio_num = ADC_GET_IO_NUM(ADC_NUM_1, channel);
if (adc_unit == ADC_UNIT_1) {
ADC_CHANNEL_CHECK(ADC_UNIT_1, channel);
gpio_num = ADC_GET_IO_NUM(ADC_UNIT_1, channel);
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
}
if (adc_unit & ADC_UNIT_2) {
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
gpio_num = ADC_GET_IO_NUM(ADC_NUM_2, channel);
if (adc_unit == ADC_UNIT_2) {
ADC_CHANNEL_CHECK(ADC_UNIT_2, channel);
gpio_num = ADC_GET_IO_NUM(ADC_UNIT_2, channel);
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
@ -295,14 +295,14 @@ esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
{
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
SARADC1_ENTER();
adc_hal_rtc_output_invert(ADC_NUM_1, inv_en);
adc_hal_rtc_output_invert(ADC_UNIT_1, inv_en);
SARADC1_EXIT();
}
if (adc_unit & ADC_UNIT_2) {
if (adc_unit == ADC_UNIT_2) {
SARADC2_ENTER();
adc_hal_rtc_output_invert(ADC_NUM_2, inv_en);
adc_hal_rtc_output_invert(ADC_UNIT_2, inv_en);
SARADC2_EXIT();
}
@ -317,14 +317,14 @@ esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t width_bit)
ADC_CHECK(width_bit == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
#endif
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
SARADC1_ENTER();
adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
adc_hal_rtc_set_output_format(ADC_UNIT_1, width_bit);
SARADC1_EXIT();
}
if (adc_unit & ADC_UNIT_2) {
if (adc_unit == ADC_UNIT_2) {
SARADC2_ENTER();
adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
adc_hal_rtc_set_output_format(ADC_UNIT_2, width_bit);
SARADC2_EXIT();
}
@ -352,17 +352,17 @@ esp_err_t adc_rtc_reset(void)
*------------------------------------------------------------------------------------*/
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
ADC_CHANNEL_CHECK(ADC_UNIT_1, channel);
ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
adc_common_gpio_init(ADC_UNIT_1, channel);
SARADC1_ENTER();
adc_rtc_chan_init(ADC_UNIT_1);
adc_hal_set_atten(ADC_NUM_1, channel, atten);
adc_hal_set_atten(ADC_UNIT_1, channel, atten);
SARADC1_EXIT();
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_NUM_1);
adc_hal_calibration_init(ADC_UNIT_1);
#endif
return ESP_OK;
@ -377,7 +377,7 @@ esp_err_t adc1_config_width(adc_bits_width_t width_bit)
#endif
SARADC1_ENTER();
adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
adc_hal_rtc_set_output_format(ADC_UNIT_1, width_bit);
SARADC1_EXIT();
return ESP_OK;
@ -394,7 +394,7 @@ esp_err_t adc1_dma_mode_acquire(void)
SARADC1_ENTER();
/* switch SARADC into DIG channel */
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_DIG);
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_DIG);
SARADC1_EXIT();
return ESP_OK;
@ -409,7 +409,7 @@ esp_err_t adc1_rtc_mode_acquire(void)
SARADC1_ENTER();
/* switch SARADC into RTC channel. */
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_RTC);
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC);
SARADC1_EXIT();
return ESP_OK;
@ -428,13 +428,13 @@ esp_err_t adc1_lock_release(void)
int adc1_get_raw(adc1_channel_t channel)
{
int adc_value;
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
ADC_CHANNEL_CHECK(ADC_UNIT_1, channel);
adc1_rtc_mode_acquire();
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
// Get calibration value before going into critical section
uint32_t cal_val = get_calibration_offset(ADC_NUM_1, channel);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
uint32_t cal_val = get_calibration_offset(ADC_UNIT_1, channel);
adc_hal_set_calibration_param(ADC_UNIT_1, cal_val);
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
SARADC1_ENTER();
@ -442,8 +442,8 @@ int adc1_get_raw(adc1_channel_t channel)
adc_ll_hall_disable(); //Disable other peripherals.
adc_ll_amp_disable(); //Currently the LNA is not open, close it by default.
#endif
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_RTC); //Set controller
adc_hal_convert(ADC_NUM_1, channel, &adc_value); //Start conversion, For ADC1, the data always valid.
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC); //Set controller
adc_hal_convert(ADC_UNIT_1, channel, &adc_value); //Start conversion, For ADC1, the data always valid.
#if !CONFIG_IDF_TARGET_ESP32
adc_ll_rtc_reset(); //Reset FSM of rtc controller
#endif
@ -464,7 +464,7 @@ void adc1_ulp_enable(void)
adc_power_acquire();
SARADC1_ENTER();
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_ULP);
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_ULP);
/* since most users do not need LNA and HALL with uLP, we disable them here
open them in the uLP if needed. */
#ifdef CONFIG_IDF_TARGET_ESP32
@ -499,7 +499,7 @@ esp_err_t adc2_wifi_release(void)
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
ADC_CHANNEL_CHECK(ADC_UNIT_2, channel);
ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
adc_common_gpio_init(ADC_UNIT_2, channel);
@ -512,13 +512,13 @@ esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
//avoid collision with other tasks
SARADC2_ENTER();
adc_rtc_chan_init(ADC_UNIT_2);
adc_hal_set_atten(ADC_NUM_2, channel, atten);
adc_hal_set_atten(ADC_UNIT_2, channel, atten);
SARADC2_EXIT();
SARADC2_RELEASE();
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_NUM_2);
adc_hal_calibration_init(ADC_UNIT_2);
#endif
return ESP_OK;
@ -576,8 +576,8 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
// Get calibration value before going into critical section
uint32_t cal_val = get_calibration_offset(ADC_NUM_2, channel);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
uint32_t cal_val = get_calibration_offset(ADC_UNIT_2, channel);
adc_hal_set_calibration_param(ADC_UNIT_2, cal_val);
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
if ( SARADC2_TRY_ACQUIRE() == -1 ) {
@ -598,12 +598,12 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
#ifdef CONFIG_ADC_DISABLE_DAC
adc2_dac_disable(channel); //disable other peripherals
#endif
adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
adc_hal_rtc_set_output_format(ADC_UNIT_2, width_bit);
#if CONFIG_IDF_TARGET_ESP32
adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_RTC);// set controller
adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_RTC);// set controller
#else
adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_ARB);// set controller
adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_ARB);// set controller
#endif
#if CONFIG_IDF_TARGET_ESP32S2
@ -614,7 +614,7 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
#endif //CONFIG_PM_ENABLE
#endif //CONFIG_IDF_TARGET_ESP32
ret = adc_hal_convert(ADC_NUM_2, channel, &adc_value);
ret = adc_hal_convert(ADC_UNIT_2, channel, &adc_value);
if (ret != ESP_OK) {
adc_value = -1;
}
@ -644,14 +644,14 @@ esp_err_t adc2_vref_to_gpio(gpio_num_t gpio)
esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
{
#ifdef CONFIG_IDF_TARGET_ESP32
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
return ESP_ERR_INVALID_ARG;
}
#endif
adc2_channel_t ch = ADC2_CHANNEL_MAX;
/* Check if the GPIO supported. */
for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
if (gpio == ADC_GET_IO_NUM(ADC_NUM_2, i)) {
if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) {
ch = i;
break;
}
@ -661,13 +661,13 @@ esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
}
adc_power_acquire();
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
VREF_ENTER(1);
adc_hal_vref_output(ADC_NUM_1, ch, true);
adc_hal_vref_output(ADC_UNIT_1, ch, true);
VREF_EXIT(1);
} else if (adc_unit & ADC_UNIT_2) {
} else if (adc_unit == ADC_UNIT_2) {
VREF_ENTER(2);
adc_hal_vref_output(ADC_NUM_2, ch, true);
adc_hal_vref_output(ADC_UNIT_2, ch, true);
VREF_EXIT(2);
}

View File

@ -15,6 +15,7 @@
#include "driver/rtc_io.h"
#include "hal/adc_ll.h"
#include "hal/adc_types.h"
#include "hal/adc_hal_conf.h"
#ifdef CONFIG_PM_ENABLE
#include "esp_pm.h"
#endif
@ -66,7 +67,13 @@ esp_pm_lock_handle_t adc_digi_arbiter_lock = NULL;
esp_err_t adc_digi_init(void)
{
ADC_ENTER_CRITICAL();
adc_hal_init();
adc_ll_digi_set_fsm_time(ADC_HAL_FSM_RSTB_WAIT_DEFAULT, ADC_HAL_FSM_START_WAIT_DEFAULT,
ADC_HAL_FSM_STANDBY_WAIT_DEFAULT);
adc_ll_set_sample_cycle(ADC_HAL_SAMPLE_CYCLE_DEFAULT);
adc_hal_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT);
adc_ll_digi_output_invert(ADC_UNIT_1, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_1));
adc_ll_digi_output_invert(ADC_UNIT_2, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_2));
adc_ll_digi_set_clk_div(ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
@ -92,17 +99,17 @@ static inline void adc_ll_digi_set_output_format(bool data_sel)
SYSCON.saradc_ctrl.data_sar_sel = data_sel;
}
static inline void adc_ll_digi_prepare_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t pattern)
static inline void adc_ll_digi_prepare_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t pattern)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 8;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
tab = SYSCON.saradc_sar1_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
SYSCON.saradc_sar1_patt_tab[index] = tab; // Write back
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
tab = SYSCON.saradc_sar2_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
@ -131,22 +138,22 @@ void adc_digi_controller_reg_set(const adc_digi_config_t *cfg)
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_DIG);
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_DIG);
if (cfg->adc1_pattern_len) {
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_set_pattern_table_len(ADC_NUM_1, cfg->adc1_pattern_len);
adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
adc_ll_digi_set_pattern_table_len(ADC_UNIT_1, cfg->adc1_pattern_len);
for (uint32_t i = 0; i < cfg->adc1_pattern_len; i++) {
adc_ll_digi_prepare_pattern_table(ADC_NUM_1, i, cfg->adc1_pattern[i]);
adc_ll_digi_prepare_pattern_table(ADC_UNIT_1, i, cfg->adc1_pattern[i]);
}
}
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_DIG);
adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_DIG);
if (cfg->adc2_pattern_len) {
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_set_pattern_table_len(ADC_NUM_2, cfg->adc2_pattern_len);
adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
adc_ll_digi_set_pattern_table_len(ADC_UNIT_2, cfg->adc2_pattern_len);
for (uint32_t i = 0; i < cfg->adc2_pattern_len; i++) {
adc_ll_digi_prepare_pattern_table(ADC_NUM_2, i, cfg->adc2_pattern[i]);
adc_ll_digi_prepare_pattern_table(ADC_UNIT_2, i, cfg->adc2_pattern[i]);
}
}
}
@ -181,13 +188,13 @@ esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src)
extern esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel);
esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)
{
if (adc_unit & ADC_UNIT_1) {
ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_NUM_1)), "ADC1 not support DMA for now.", ESP_ERR_INVALID_ARG);
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
}
if (adc_unit & ADC_UNIT_2) {
ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_NUM_2)), "ADC2 not support DMA for now.", ESP_ERR_INVALID_ARG);
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
if (adc_unit == ADC_UNIT_1) {
ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_UNIT_1)), "ADC1 not support DMA for now.", ESP_ERR_INVALID_ARG);
ADC_CHANNEL_CHECK(ADC_UNIT_1, channel);
} else if (adc_unit == ADC_UNIT_2) {
//ADC2 does not support DMA mode
ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_UNIT_2)), "ADC2 not support DMA for now.", ESP_ERR_INVALID_ARG);
ADC_CHANNEL_CHECK(ADC_UNIT_2, channel);
}
adc_digi_pattern_table_t adc1_pattern[1];
@ -196,17 +203,16 @@ esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)
.conv_limit_en = ADC_MEAS_NUM_LIM_DEFAULT,
.conv_limit_num = ADC_MAX_MEAS_NUM_DEFAULT,
.format = DIG_ADC_OUTPUT_FORMAT_DEFUALT,
.conv_mode = (adc_digi_convert_mode_t)adc_unit,
.conv_mode = ADC_CONV_SINGLE_UNIT_1,
};
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
adc1_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT;
adc1_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT;
adc1_pattern[0].channel = channel;
dig_cfg.adc1_pattern_len = 1;
dig_cfg.adc1_pattern = adc1_pattern;
}
if (adc_unit & ADC_UNIT_2) {
} else if (adc_unit == ADC_UNIT_2) {
adc2_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT;
adc2_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT;
adc2_pattern[0].channel = channel;
@ -215,7 +221,13 @@ esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)
}
adc_common_gpio_init(adc_unit, channel);
ADC_ENTER_CRITICAL();
adc_hal_init();
adc_ll_digi_set_fsm_time(ADC_HAL_FSM_RSTB_WAIT_DEFAULT, ADC_HAL_FSM_START_WAIT_DEFAULT,
ADC_HAL_FSM_STANDBY_WAIT_DEFAULT);
adc_ll_set_sample_cycle(ADC_HAL_SAMPLE_CYCLE_DEFAULT);
adc_hal_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT);
adc_ll_digi_output_invert(ADC_UNIT_1, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_1));
adc_ll_digi_output_invert(ADC_UNIT_2, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_2));
adc_ll_digi_set_clk_div(ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT);
adc_digi_controller_reg_set(&dig_cfg);
ADC_EXIT_CRITICAL();
@ -230,7 +242,7 @@ esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)
---------------------------------------------------------------*/
esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config)
{
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
return ESP_ERR_NOT_SUPPORTED;
}
ADC_ENTER_CRITICAL();
@ -245,16 +257,16 @@ esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config)
* @param adc_n ADC unit.
* @param intr Interrupt bitmask.
*/
static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
static inline void adc_ll_digi_intr_enable(adc_unit_t adc_n, adc_digi_intr_t intr)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
APB_SARADC.int_ena.adc1_thres = 1;
}
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
APB_SARADC.int_ena.adc1_done = 1;
}
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
APB_SARADC.int_ena.adc2_thres = 1;
}
@ -267,11 +279,10 @@ static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t i
esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_ll_digi_intr_enable(ADC_NUM_1, intr_mask);
}
if (adc_unit & ADC_UNIT_2) {
adc_ll_digi_intr_enable(ADC_NUM_2, intr_mask);
if (adc_unit == ADC_UNIT_1) {
adc_ll_digi_intr_enable(ADC_UNIT_1, intr_mask);
} else if (adc_unit == ADC_UNIT_2) {
adc_ll_digi_intr_enable(ADC_UNIT_2, intr_mask);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
@ -283,16 +294,16 @@ esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
* @param adc_n ADC unit.
* @param intr Interrupt bitmask.
*/
static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
static inline void adc_ll_digi_intr_disable(adc_unit_t adc_n, adc_digi_intr_t intr)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
APB_SARADC.int_ena.adc1_thres = 0;
}
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
APB_SARADC.int_ena.adc1_done = 0;
}
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
APB_SARADC.int_ena.adc2_thres = 0;
}
@ -305,11 +316,10 @@ static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t
esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_ll_digi_intr_disable(ADC_NUM_1, intr_mask);
}
if (adc_unit & ADC_UNIT_2) {
adc_ll_digi_intr_disable(ADC_NUM_2, intr_mask);
if (adc_unit == ADC_UNIT_1) {
adc_ll_digi_intr_disable(ADC_UNIT_1, intr_mask);
} else if (adc_unit == ADC_UNIT_2) {
adc_ll_digi_intr_disable(ADC_UNIT_2, intr_mask);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
@ -321,16 +331,16 @@ esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
* @param adc_n ADC unit.
* @param intr Interrupt bitmask.
*/
static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t intr)
static inline void adc_ll_digi_intr_clear(adc_unit_t adc_n, adc_digi_intr_t intr)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
APB_SARADC.int_clr.adc1_thres = 1;
}
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
APB_SARADC.int_clr.adc1_done = 1;
}
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
APB_SARADC.int_clr.adc2_thres = 1;
}
@ -343,11 +353,10 @@ static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t in
esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_ll_digi_intr_clear(ADC_NUM_1, intr_mask);
}
if (adc_unit & ADC_UNIT_2) {
adc_ll_digi_intr_clear(ADC_NUM_2, intr_mask);
if (adc_unit == ADC_UNIT_1) {
adc_ll_digi_intr_clear(ADC_UNIT_1, intr_mask);
} else if (adc_unit == ADC_UNIT_2) {
adc_ll_digi_intr_clear(ADC_UNIT_2, intr_mask);
}
ADC_EXIT_CRITICAL();
@ -361,19 +370,19 @@ esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
* @return
* - intr Interrupt bitmask.
*/
static inline uint32_t adc_ll_digi_get_intr_status(adc_ll_num_t adc_n)
static inline uint32_t adc_ll_digi_get_intr_status(adc_unit_t adc_n)
{
uint32_t int_st = APB_SARADC.int_st.val;
uint32_t ret_msk = 0;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
if (int_st & APB_SARADC_ADC1_DONE_INT_ST_M) {
ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
}
if (int_st & APB_SARADC_ADC1_THRES_INT_ST) {
ret_msk |= ADC_DIGI_INTR_MASK_MONITOR;
}
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
if (int_st & APB_SARADC_ADC2_DONE_INT_ST_M) {
ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
}
@ -389,11 +398,10 @@ uint32_t adc_digi_intr_get_status(adc_unit_t adc_unit)
{
uint32_t ret = 0;
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
ret = adc_ll_digi_get_intr_status(ADC_NUM_1);
}
if (adc_unit & ADC_UNIT_2) {
ret = adc_ll_digi_get_intr_status(ADC_NUM_2);
if (adc_unit == ADC_UNIT_1) {
ret = adc_ll_digi_get_intr_status(ADC_UNIT_1);
} else if (adc_unit == ADC_UNIT_2) {
ret = adc_ll_digi_get_intr_status(ADC_UNIT_2);
}
ADC_EXIT_CRITICAL();
return ret;
@ -430,12 +438,18 @@ esp_err_t adc_digi_init(void)
{
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
ADC_ENTER_CRITICAL();
adc_hal_init();
adc_ll_digi_set_fsm_time(ADC_HAL_FSM_RSTB_WAIT_DEFAULT, ADC_HAL_FSM_START_WAIT_DEFAULT,
ADC_HAL_FSM_STANDBY_WAIT_DEFAULT);
adc_ll_set_sample_cycle(ADC_HAL_SAMPLE_CYCLE_DEFAULT);
adc_hal_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT);
adc_ll_digi_output_invert(ADC_UNIT_1, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_1));
adc_ll_digi_output_invert(ADC_UNIT_2, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_2));
adc_ll_digi_set_clk_div(ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT);
adc_hal_arbiter_config(&config);
ADC_EXIT_CRITICAL();
adc_hal_calibration_init(ADC_NUM_1);
adc_hal_calibration_init(ADC_NUM_2);
adc_hal_calibration_init(ADC_UNIT_1);
adc_hal_calibration_init(ADC_UNIT_2);
return ESP_OK;
}
@ -465,8 +479,8 @@ esp_err_t adc_digi_reset(void)
{
ADC_ENTER_CRITICAL();
adc_ll_digi_reset();
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
@ -481,17 +495,17 @@ static inline void adc_ll_digi_set_output_format(adc_digi_output_format_t format
APB_SARADC.ctrl.data_sar_sel = format;
}
static inline void adc_ll_digi_prepare_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t pattern)
static inline void adc_ll_digi_prepare_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t pattern)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 8;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
tab = APB_SARADC.sar1_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
APB_SARADC.sar1_patt_tab[index] = tab; // Write back
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
tab = APB_SARADC.sar2_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
@ -521,27 +535,27 @@ static void adc_digi_controller_reg_set(const adc_digi_config_t *cfg)
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
if (cfg->adc1_pattern_len) {
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_set_pattern_table_len(ADC_NUM_1, cfg->adc1_pattern_len);
adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
adc_ll_digi_set_pattern_table_len(ADC_UNIT_1, cfg->adc1_pattern_len);
for (uint32_t i = 0; i < cfg->adc1_pattern_len; i++) {
adc_ll_digi_prepare_pattern_table(ADC_NUM_1, i, cfg->adc1_pattern[i]);
adc_ll_digi_prepare_pattern_table(ADC_UNIT_1, i, cfg->adc1_pattern[i]);
}
}
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
if (cfg->adc2_pattern_len) {
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_set_pattern_table_len(ADC_NUM_2, cfg->adc2_pattern_len);
adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
adc_ll_digi_set_pattern_table_len(ADC_UNIT_2, cfg->adc2_pattern_len);
for (uint32_t i = 0; i < cfg->adc2_pattern_len; i++) {
adc_ll_digi_prepare_pattern_table(ADC_NUM_2, i, cfg->adc2_pattern[i]);
adc_ll_digi_prepare_pattern_table(ADC_UNIT_2, i, cfg->adc2_pattern[i]);
}
}
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_DIG);
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_DIG);
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_ARB);
adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_ARB);
}
adc_ll_digi_set_output_format(cfg->format);
if (cfg->conv_limit_en) {
@ -577,12 +591,12 @@ esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
if (config->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
for (int i = 0; i < config->adc1_pattern_len; i++) {
adc_cal_offset(ADC_NUM_1, config->adc1_pattern[i].channel, config->adc1_pattern[i].atten);
adc_cal_offset(ADC_UNIT_1, config->adc1_pattern[i].channel, config->adc1_pattern[i].atten);
}
}
if (config->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
for (int i = 0; i < config->adc2_pattern_len; i++) {
adc_cal_offset(ADC_NUM_2, config->adc2_pattern[i].channel, config->adc2_pattern[i].atten);
adc_cal_offset(ADC_UNIT_2, config->adc2_pattern[i].channel, config->adc2_pattern[i].atten);
}
}
@ -604,17 +618,17 @@ esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
{
gpio_num_t gpio_num = 0;
//If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run
if (adc_unit & ADC_UNIT_1) {
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
gpio_num = ADC_GET_IO_NUM(ADC_NUM_1, channel);
if (adc_unit == ADC_UNIT_1) {
ADC_CHANNEL_CHECK(ADC_UNIT_1, channel);
gpio_num = ADC_GET_IO_NUM(ADC_UNIT_1, channel);
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
}
if (adc_unit & ADC_UNIT_2) {
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
gpio_num = ADC_GET_IO_NUM(ADC_NUM_2, channel);
if (adc_unit == ADC_UNIT_2) {
ADC_CHANNEL_CHECK(ADC_UNIT_2, channel);
gpio_num = ADC_GET_IO_NUM(ADC_UNIT_2, channel);
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));

View File

@ -54,7 +54,7 @@ static int hall_sensor_get_value(void) //hall sensor without LNA
adc_ll_amp_disable();
adc_ll_hall_enable();
// set controller
adc_ll_set_controller( ADC_NUM_1, ADC_LL_CTRL_RTC );
adc_ll_set_controller( ADC_UNIT_1, ADC_LL_CTRL_RTC );
hall_value = adc_hal_hall_convert();
adc_ll_hall_disable();
ADC_EXIT_CRITICAL();

View File

@ -18,7 +18,7 @@ Don't put any other code into this file. */
*/
static __attribute__((constructor)) void adc2_init_code_calibration(void)
{
const adc_ll_num_t adc_n = ADC_NUM_2;
const adc_unit_t adc_n = ADC_UNIT_2;
const adc_atten_t atten = ADC_ATTEN_DB_11;
const adc_channel_t channel = 0;
adc_cal_offset(adc_n, channel, atten);

View File

@ -25,7 +25,7 @@ extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate posi
* @param adc_n ADC unit.
* @param config Refer to ``adc_digi_monitor_t``.
*/
static void adc_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
static void adc_digi_monitor_config(adc_unit_t adc_n, adc_digi_monitor_t *config)
{
adc_ll_digi_monitor_set_mode(adc_n, config->mode);
adc_ll_digi_monitor_set_thres(adc_n, config->threshold);
@ -39,9 +39,9 @@ esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_ll_digi_filter_reset(ADC_NUM_1);
adc_ll_digi_filter_reset(ADC_UNIT_1);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_ll_digi_filter_reset(ADC_NUM_2);
adc_ll_digi_filter_reset(ADC_UNIT_2);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
@ -51,9 +51,9 @@ esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_ll_digi_filter_set_factor(ADC_NUM_1, config->mode);
adc_ll_digi_filter_set_factor(ADC_UNIT_1, config->mode);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_ll_digi_filter_set_factor(ADC_NUM_2, config->mode);
adc_ll_digi_filter_set_factor(ADC_UNIT_2, config->mode);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
@ -65,11 +65,11 @@ esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_
if (idx == ADC_DIGI_FILTER_IDX0) {
config->adc_unit = ADC_UNIT_1;
config->channel = ADC_CHANNEL_MAX;
adc_ll_digi_filter_get_factor(ADC_NUM_1, &config->mode);
adc_ll_digi_filter_get_factor(ADC_UNIT_1, &config->mode);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
config->adc_unit = ADC_UNIT_2;
config->channel = ADC_CHANNEL_MAX;
adc_ll_digi_filter_get_factor(ADC_NUM_2, &config->mode);
adc_ll_digi_filter_get_factor(ADC_UNIT_2, &config->mode);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
@ -79,9 +79,9 @@ esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_ll_digi_filter_enable(ADC_NUM_1, enable);
adc_ll_digi_filter_enable(ADC_UNIT_1, enable);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_ll_digi_filter_enable(ADC_NUM_2, enable);
adc_ll_digi_filter_enable(ADC_UNIT_2, enable);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
@ -98,9 +98,9 @@ esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
int adc_digi_filter_read_data(adc_digi_filter_idx_t idx)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
return adc_ll_digi_filter_read_data(ADC_NUM_1);
return adc_ll_digi_filter_read_data(ADC_UNIT_1);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
return adc_ll_digi_filter_read_data(ADC_NUM_2);
return adc_ll_digi_filter_read_data(ADC_UNIT_2);
} else {
return -1;
}
@ -114,9 +114,9 @@ esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monit
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_MONITOR_IDX0) {
adc_digi_monitor_config(ADC_NUM_1, config);
adc_digi_monitor_config(ADC_UNIT_1, config);
} else if (idx == ADC_DIGI_MONITOR_IDX1) {
adc_digi_monitor_config(ADC_NUM_2, config);
adc_digi_monitor_config(ADC_UNIT_2, config);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
@ -126,9 +126,9 @@ esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_MONITOR_IDX0) {
adc_ll_digi_monitor_enable(ADC_NUM_1, enable);
adc_ll_digi_monitor_enable(ADC_UNIT_1, enable);
} else if (idx == ADC_DIGI_MONITOR_IDX1) {
adc_ll_digi_monitor_enable(ADC_NUM_2, enable);
adc_ll_digi_monitor_enable(ADC_UNIT_2, enable);
}
ADC_EXIT_CRITICAL();
return ESP_OK;

View File

@ -18,7 +18,7 @@ Don't put any other code into this file. */
*/
static __attribute__((constructor)) void adc2_init_code_calibration(void)
{
const adc_ll_num_t adc_n = ADC_NUM_2;
const adc_unit_t adc_n = ADC_UNIT_2;
const adc_atten_t atten = ADC_ATTEN_DB_11;
const adc_channel_t channel = 0;
adc_cal_offset(adc_n, channel, atten);

View File

@ -24,7 +24,7 @@ extern "C" {
* @param atten Attenuation to use
* @return Always ESP_OK
*/
extern esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten);
extern esp_err_t adc_cal_offset(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten);
#endif

View File

@ -71,7 +71,7 @@ static const int adc2_ch[ADC2_TEST_CHANNEL_NUM] = {
void adc_fake_tie_middle(adc_unit_t adc_unit, adc_channel_t channel)
{
gpio_num_t gpio_num = 0;
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
gpio_num = ADC_GET_IO_NUM(0, channel);
TEST_ESP_OK(rtc_gpio_init(gpio_num));
TEST_ESP_OK(rtc_gpio_pullup_en(gpio_num));
@ -79,7 +79,7 @@ void adc_fake_tie_middle(adc_unit_t adc_unit, adc_channel_t channel)
TEST_ESP_OK(gpio_set_pull_mode(gpio_num, GPIO_PULLUP_PULLDOWN));
TEST_ESP_OK(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
}
if (adc_unit & ADC_UNIT_2) {
if (adc_unit == ADC_UNIT_2) {
gpio_num = ADC_GET_IO_NUM(1, channel);
TEST_ESP_OK(rtc_gpio_init(gpio_num));
TEST_ESP_OK(rtc_gpio_pullup_en(gpio_num));
@ -93,7 +93,7 @@ void adc_fake_tie_middle(adc_unit_t adc_unit, adc_channel_t channel)
void adc_fake_tie_high(adc_unit_t adc_unit, adc_channel_t channel)
{
gpio_num_t gpio_num = 0;
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
gpio_num = ADC_GET_IO_NUM(0, channel);
TEST_ESP_OK(rtc_gpio_init(gpio_num));
TEST_ESP_OK(rtc_gpio_pullup_en(gpio_num));
@ -102,7 +102,7 @@ void adc_fake_tie_high(adc_unit_t adc_unit, adc_channel_t channel)
TEST_ESP_OK(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_OUTPUT_ONLY));
TEST_ESP_OK(rtc_gpio_set_level(gpio_num, 1));
}
if (adc_unit & ADC_UNIT_2) {
if (adc_unit == ADC_UNIT_2) {
gpio_num = ADC_GET_IO_NUM(1, channel);
TEST_ESP_OK(rtc_gpio_init(gpio_num));
TEST_ESP_OK(rtc_gpio_pullup_en(gpio_num));
@ -117,7 +117,7 @@ void adc_fake_tie_high(adc_unit_t adc_unit, adc_channel_t channel)
void adc_fake_tie_low(adc_unit_t adc_unit, adc_channel_t channel)
{
gpio_num_t gpio_num = 0;
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
gpio_num = ADC_GET_IO_NUM(0, channel);
TEST_ESP_OK(rtc_gpio_init(gpio_num));
TEST_ESP_OK(rtc_gpio_pullup_dis(gpio_num));
@ -126,7 +126,7 @@ void adc_fake_tie_low(adc_unit_t adc_unit, adc_channel_t channel)
TEST_ESP_OK(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_OUTPUT_ONLY));
TEST_ESP_OK(rtc_gpio_set_level(gpio_num, 0));
}
if (adc_unit & ADC_UNIT_2) {
if (adc_unit == ADC_UNIT_2) {
gpio_num = ADC_GET_IO_NUM(1, channel);
TEST_ESP_OK(rtc_gpio_init(gpio_num));
TEST_ESP_OK(rtc_gpio_pullup_dis(gpio_num));
@ -141,7 +141,7 @@ void adc_fake_tie_low(adc_unit_t adc_unit, adc_channel_t channel)
void adc_io_normal(adc_unit_t adc_unit, adc_channel_t channel)
{
gpio_num_t gpio_num = 0;
if (adc_unit & ADC_UNIT_1) {
if (adc_unit == ADC_UNIT_1) {
gpio_num = ADC_GET_IO_NUM(0, channel);
TEST_ESP_OK(rtc_gpio_init(gpio_num));
TEST_ESP_OK(rtc_gpio_pullup_dis(gpio_num));
@ -149,7 +149,7 @@ void adc_io_normal(adc_unit_t adc_unit, adc_channel_t channel)
TEST_ESP_OK(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
TEST_ESP_OK(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
}
if (adc_unit & ADC_UNIT_2) {
if (adc_unit == ADC_UNIT_2) {
gpio_num = ADC_GET_IO_NUM(1, channel);
TEST_ESP_OK(rtc_gpio_init(gpio_num));
TEST_ESP_OK(rtc_gpio_pullup_dis(gpio_num));

View File

@ -9,6 +9,7 @@
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#include "esp_log.h"
#include "hal/adc_types.h"
#include "soc/soc_caps.h"
#define RTC_TBL_LOG_TAG "efuse_rtc_table"
@ -96,6 +97,7 @@ int esp_efuse_rtc_table_read_calib_version(void)
int esp_efuse_rtc_table_get_tag(int version, int adc_num, int atten, int extra_params)
{
int index = (adc_num == ADC_UNIT_1) ? 0 : 1;
int param_offset; // used to index which (adc_num, atten) array to use.
if (version == 1 && extra_params == RTCCALIB_V1_PARAM_VLOW) { // Volage LOW, Version 1
param_offset = RTCCALIB_V1_ADCREADINGLOW_OFFSET;
@ -109,8 +111,8 @@ int esp_efuse_rtc_table_get_tag(int version, int adc_num, int atten, int extra_p
return -1;
}
int result = param_offset + (adc_num - 1) * RTCCALIB_ESP32S2_ATTENCOUNT + atten;
ESP_EARLY_LOGV(RTC_TBL_LOG_TAG, "V%d ADC%d ATTEN%d PARAM%d -> %d", version, adc_num, atten, extra_params, result);
int result = param_offset + index * RTCCALIB_ESP32S2_ATTENCOUNT + atten;
ESP_EARLY_LOGV(RTC_TBL_LOG_TAG, "V%d ADC%d ATTEN%d PARAM%d -> %d", version, adc_num + 1, atten, extra_params, result);
return result;
}

View File

@ -9,13 +9,7 @@
#include "esp_log.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
//Don't introduce new dependency of ADC, keep these macro same as ADC related definations
#define ADC_ATTEN_MAX 4
#define ADC_NUM_MAX 2
#define ADC_NUM_1 0
#define ADC_NUM_2 1
#include "hal/adc_types.h"
int esp_efuse_rtc_calib_get_ver(void)
{
@ -34,14 +28,14 @@ uint32_t esp_efuse_rtc_calib_get_init_code(int version, uint32_t adc_unit, int a
{
assert(version == 1);
assert(atten < 4);
assert(adc_unit < ADC_NUM_MAX);
assert(adc_unit <= ADC_UNIT_2);
const esp_efuse_desc_t **desc[8] = {ESP_EFUSE_ADC1_INIT_CODE_ATTEN0, ESP_EFUSE_ADC1_INIT_CODE_ATTEN1, ESP_EFUSE_ADC1_INIT_CODE_ATTEN2, ESP_EFUSE_ADC1_INIT_CODE_ATTEN3,
ESP_EFUSE_ADC2_INIT_CODE_ATTEN0, ESP_EFUSE_ADC2_INIT_CODE_ATTEN1, ESP_EFUSE_ADC2_INIT_CODE_ATTEN2, ESP_EFUSE_ADC2_INIT_CODE_ATTEN3};
int efuse_icode_bits = 0;
uint32_t adc_icode[4] = {};
uint32_t adc_icode_diff[4] = {};
uint8_t desc_index = (adc_unit == ADC_NUM_1) ? 0 : 4;
uint8_t desc_index = (adc_unit == ADC_UNIT_1) ? 0 : 4;
for (int diff_index = 0; diff_index < 4; diff_index++) {
efuse_icode_bits = esp_efuse_get_field_size(desc[desc_index]);
@ -50,7 +44,7 @@ uint32_t esp_efuse_rtc_calib_get_init_code(int version, uint32_t adc_unit, int a
}
//Version 1 logic for calculating ADC ICode based on EFUSE burnt value
if (adc_unit == ADC_NUM_1) {
if (adc_unit == ADC_UNIT_1) {
adc_icode[0] = adc_icode_diff[0] + 1850;
adc_icode[1] = adc_icode_diff[1] + adc_icode[0] + 90;
adc_icode[2] = adc_icode_diff[2] + adc_icode[1];
@ -69,7 +63,7 @@ esp_err_t esp_efuse_rtc_calib_get_cal_voltage(int version, uint32_t adc_unit, in
{
assert(version == 1);
assert(atten < 4);
assert(adc_unit < ADC_NUM_MAX);
assert(adc_unit <= ADC_UNIT_2);
int efuse_vol_bits = 0;
uint32_t adc_vol_diff[8] = {};
@ -91,7 +85,7 @@ esp_err_t esp_efuse_rtc_calib_get_cal_voltage(int version, uint32_t adc_unit, in
adc2_vol[1] = adc1_vol[1] - adc_vol_diff[5] + 10;
adc2_vol[0] = adc1_vol[0] - adc_vol_diff[4] + 40;
*out_digi = (adc_unit == ADC_NUM_1) ? adc1_vol[atten] : adc2_vol[atten];
*out_digi = (adc_unit == ADC_UNIT_1) ? adc1_vol[atten] : adc2_vol[atten];
*out_vol_mv = 850;
return ESP_OK;

View File

@ -93,7 +93,7 @@ static esp_err_t get_reference_point(int version_num, adc_unit_t adc_num, adc_at
uint32_t voltage = 0;
uint32_t digi = 0;
ret = esp_efuse_rtc_calib_get_cal_voltage(version_num, ((adc_num == ADC_UNIT_1) ? 0 : 1), atten, &digi, &voltage);
ret = esp_efuse_rtc_calib_get_cal_voltage(version_num, adc_num, atten, &digi, &voltage);
assert(ret == ESP_OK);
calib_info->ref_data.ver1.voltage = voltage;
calib_info->ref_data.ver1.digi = digi;

View File

@ -33,7 +33,7 @@ typedef enum {
* @note Call esp_adc_cal_characterize() to initialize the structure
*/
typedef struct {
adc_unit_t adc_num; /**< ADC number*/
adc_unit_t adc_num; /**< ADC unit*/
adc_atten_t atten; /**< ADC attenuation*/
adc_bits_width_t bit_width; /**< ADC bit width */
uint32_t coeff_a; /**< Gradient of ADC-Voltage curve*/

View File

@ -107,18 +107,6 @@ typedef enum {
#endif
void adc_hal_init(void)
{
// Set internal FSM wait time, fixed value.
adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
}
#if SOC_ADC_ARBITER_SUPPORTED
void adc_hal_arbiter_config(adc_arbiter_t *config)
{
@ -127,12 +115,47 @@ void adc_hal_arbiter_config(adc_arbiter_t *config)
}
#endif // #if SOC_ADC_ARBITER_SUPPORTED
void adc_hal_digi_deinit(adc_hal_context_t *hal)
void adc_hal_dma_ctx_config(adc_hal_dma_ctx_t *hal, const adc_hal_dma_config_t *config)
{
hal->desc_dummy_head.next = hal->rx_desc;
hal->dev = config->dev;
hal->desc_max_num = config->desc_max_num;
hal->dma_chan = config->dma_chan;
hal->eof_num = config->eof_num;
}
void adc_hal_digi_init(adc_hal_dma_ctx_t *hal)
{
// Set internal FSM wait time, fixed value.
adc_ll_digi_set_fsm_time(ADC_HAL_FSM_RSTB_WAIT_DEFAULT, ADC_HAL_FSM_START_WAIT_DEFAULT,
ADC_HAL_FSM_STANDBY_WAIT_DEFAULT);
adc_ll_set_sample_cycle(ADC_HAL_SAMPLE_CYCLE_DEFAULT);
adc_hal_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT);
adc_ll_digi_output_invert(ADC_UNIT_1, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_1));
adc_ll_digi_output_invert(ADC_UNIT_2, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_2));
adc_ll_digi_set_clk_div(ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT);
adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
adc_dma_ll_rx_enable_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
adc_ll_digi_dma_set_eof_num(hal->dev, hal->eof_num);
#if CONFIG_IDF_TARGET_ESP32
i2s_ll_rx_set_sample_bit(hal->dev, SAMPLE_BITS, SAMPLE_BITS);
i2s_ll_rx_enable_mono_mode(hal->dev, 1);
i2s_ll_rx_force_enable_fifo_mod(hal->dev, 1);
i2s_ll_enable_builtin_adc(hal->dev, 1);
#endif
#if CONFIG_IDF_TARGET_ESP32C3
adc_ll_onetime_sample_enable(ADC_UNIT_1, false);
adc_ll_onetime_sample_enable(ADC_UNIT_2, false);
#endif
}
void adc_hal_digi_deinit(adc_hal_dma_ctx_t *hal)
{
adc_ll_digi_trigger_disable(hal->dev);
adc_ll_digi_dma_disable();
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
adc_ll_digi_reset(hal->dev);
adc_ll_digi_controller_clk_disable();
}
@ -140,9 +163,9 @@ void adc_hal_digi_deinit(adc_hal_context_t *hal)
/*---------------------------------------------------------------
Controller Setting
---------------------------------------------------------------*/
static adc_ll_controller_t get_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode)
static adc_ll_controller_t get_controller(adc_unit_t unit, adc_hal_work_mode_t work_mode)
{
if (unit == ADC_NUM_1) {
if (unit == ADC_UNIT_1) {
switch (work_mode) {
#if SOC_ULP_SUPPORTED
case ADC_HAL_ULP_MODE:
@ -182,7 +205,7 @@ static adc_ll_controller_t get_controller(adc_ll_num_t unit, adc_hal_work_mode_t
}
}
void adc_hal_set_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode)
void adc_hal_set_controller(adc_unit_t unit, adc_hal_work_mode_t work_mode)
{
adc_ll_controller_t ctrlr = get_controller(unit, work_mode);
adc_ll_set_controller(unit, ctrlr);
@ -221,7 +244,7 @@ static adc_ll_digi_convert_mode_t get_convert_mode(adc_digi_convert_mode_t conve
* - Enable clock and select clock source for ADC digital controller.
* For esp32, use I2S clock
*/
static void adc_hal_digi_sample_freq_config(adc_hal_context_t *hal, uint32_t freq)
static void adc_hal_digi_sample_freq_config(adc_hal_dma_ctx_t *hal, uint32_t freq)
{
#if !CONFIG_IDF_TARGET_ESP32
uint32_t interval = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1) / 2 / freq;
@ -243,7 +266,7 @@ static void adc_hal_digi_sample_freq_config(adc_hal_context_t *hal, uint32_t fre
#endif
}
void adc_hal_digi_controller_config(adc_hal_context_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg)
void adc_hal_digi_controller_config(adc_hal_dma_ctx_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg)
{
#if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
//Only one pattern table, this variable is for readability
@ -259,22 +282,22 @@ void adc_hal_digi_controller_config(adc_hal_context_t *hal, const adc_hal_digi_c
uint32_t adc1_pattern_idx = 0;
uint32_t adc2_pattern_idx = 0;
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
for (int i = 0; i < cfg->adc_pattern_len; i++) {
if (cfg->adc_pattern[i].unit == ADC_NUM_1) {
adc_ll_digi_set_pattern_table(ADC_NUM_1, adc1_pattern_idx, cfg->adc_pattern[i]);
if (cfg->adc_pattern[i].unit == ADC_UNIT_1) {
adc_ll_digi_set_pattern_table(ADC_UNIT_1, adc1_pattern_idx, cfg->adc_pattern[i]);
adc1_pattern_idx++;
} else if (cfg->adc_pattern[i].unit == ADC_NUM_2) {
adc_ll_digi_set_pattern_table(ADC_NUM_2, adc2_pattern_idx, cfg->adc_pattern[i]);
} else if (cfg->adc_pattern[i].unit == ADC_UNIT_2) {
adc_ll_digi_set_pattern_table(ADC_UNIT_2, adc2_pattern_idx, cfg->adc_pattern[i]);
adc2_pattern_idx++;
} else {
abort();
}
}
adc_ll_digi_set_pattern_table_len(ADC_NUM_1, adc1_pattern_idx);
adc_ll_digi_set_pattern_table_len(ADC_NUM_2, adc2_pattern_idx);
adc_ll_digi_set_pattern_table_len(ADC_UNIT_1, adc1_pattern_idx);
adc_ll_digi_set_pattern_table_len(ADC_UNIT_2, adc2_pattern_idx);
#endif
@ -291,32 +314,6 @@ void adc_hal_digi_controller_config(adc_hal_context_t *hal, const adc_hal_digi_c
adc_hal_digi_sample_freq_config(hal, cfg->sample_freq_hz);
}
void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
{
hal->desc_dummy_head.next = hal->rx_desc;
hal->dev = config->dev;
hal->desc_max_num = config->desc_max_num;
hal->dma_chan = config->dma_chan;
hal->eof_num = config->eof_num;
}
void adc_hal_digi_init(adc_hal_context_t *hal)
{
adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
adc_dma_ll_rx_enable_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
adc_ll_digi_dma_set_eof_num(hal->dev, hal->eof_num);
#if CONFIG_IDF_TARGET_ESP32
i2s_ll_rx_set_sample_bit(hal->dev, SAMPLE_BITS, SAMPLE_BITS);
i2s_ll_rx_enable_mono_mode(hal->dev, 1);
i2s_ll_rx_force_enable_fifo_mod(hal->dev, 1);
i2s_ll_enable_builtin_adc(hal->dev, 1);
#endif
#if CONFIG_IDF_TARGET_ESP32C3
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
#endif
}
static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
{
HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
@ -338,7 +335,7 @@ static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *d
desc[n-1].next = NULL;
}
void adc_hal_digi_start(adc_hal_context_t *hal, uint8_t *data_buf)
void adc_hal_digi_start(adc_hal_dma_ctx_t *hal, uint8_t *data_buf)
{
//stop peripheral and DMA
adc_hal_digi_stop(hal);
@ -361,18 +358,18 @@ void adc_hal_digi_start(adc_hal_context_t *hal, uint8_t *data_buf)
}
#if !SOC_GDMA_SUPPORTED
intptr_t adc_hal_get_desc_addr(adc_hal_context_t *hal)
intptr_t adc_hal_get_desc_addr(adc_hal_dma_ctx_t *hal)
{
return adc_dma_ll_get_in_suc_eof_desc_addr(hal->dev, hal->dma_chan);
}
bool adc_hal_check_event(adc_hal_context_t *hal, uint32_t mask)
bool adc_hal_check_event(adc_hal_dma_ctx_t *hal, uint32_t mask)
{
return adc_dma_ll_rx_get_intr(hal->dev, mask);
}
#endif //#if !SOC_GDMA_SUPPORTED
adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_dma_ctx_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
{
HAL_ASSERT(hal->cur_desc_ptr);
if (!hal->cur_desc_ptr->next) {
@ -388,17 +385,17 @@ adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, con
return ADC_HAL_DMA_DESC_VALID;
}
void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
void adc_hal_digi_clr_intr(adc_hal_dma_ctx_t *hal, uint32_t mask)
{
adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, mask);
}
void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
void adc_hal_digi_dis_intr(adc_hal_dma_ctx_t *hal, uint32_t mask)
{
adc_dma_ll_rx_disable_intr(hal->dev, hal->dma_chan, mask);
}
void adc_hal_digi_stop(adc_hal_context_t *hal)
void adc_hal_digi_stop(adc_hal_dma_ctx_t *hal)
{
//stop ADC
adc_ll_digi_trigger_disable(hal->dev);
@ -468,11 +465,11 @@ static void adc_hal_onetime_start(void)
//No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
}
static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
static esp_err_t adc_hal_single_read(adc_unit_t adc_n, int *out_raw)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
*out_raw = adc_ll_adc1_read();
} else if (adc_n == ADC_NUM_2) {
} else if (adc_n == ADC_UNIT_2) {
*out_raw = adc_ll_adc2_read();
if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
return ESP_ERR_INVALID_STATE;
@ -481,20 +478,20 @@ static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
return ESP_OK;
}
esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, int *out_raw)
{
esp_err_t ret;
adc_hal_event_t event;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
event = ADC_EVENT_ADC1_DONE;
} else {
event = ADC_EVENT_ADC2_DONE;
}
adc_hal_intr_clear(event);
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
adc_ll_onetime_sample_enable(ADC_UNIT_1, false);
adc_ll_onetime_sample_enable(ADC_UNIT_2, false);
adc_ll_onetime_sample_enable(adc_n, true);
adc_ll_onetime_set_channel(adc_n, channel);
@ -509,7 +506,7 @@ esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
}
#else // #if SOC_ADC_RTC_CTRL_SUPPORTED
esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, int *out_raw)
{
adc_ll_rtc_enable_channel(adc_n, channel);
adc_ll_rtc_start_convert(adc_n, channel);
@ -529,14 +526,14 @@ esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
ADC calibration setting
---------------------------------------------------------------*/
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
void adc_hal_calibration_init(adc_ll_num_t adc_n)
void adc_hal_calibration_init(adc_unit_t adc_n)
{
adc_ll_calibration_init(adc_n);
}
static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
void adc_hal_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
if (param != s_previous_init_code[adc_n]) {
adc_ll_set_calibration_param(adc_n, param);
@ -545,7 +542,7 @@ void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
}
#if SOC_ADC_RTC_CTRL_SUPPORTED
static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
static void cal_setup(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
{
adc_hal_set_controller(adc_n, ADC_HAL_SINGLE_READ_MODE); //Set controller
@ -559,7 +556,7 @@ static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t att
}
}
static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
static uint32_t read_cal_channel(adc_unit_t adc_n, int channel)
{
adc_ll_rtc_start_convert(adc_n, channel);
while (adc_ll_rtc_convert_is_done(adc_n) != true);
@ -568,13 +565,13 @@ static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
//For those RTC controller not supported chips, they use digital controller to do the single read. e.g.: esp32c3
#elif SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
static void cal_setup(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
{
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
adc_ll_onetime_sample_enable(ADC_UNIT_1, false);
adc_ll_onetime_sample_enable(ADC_UNIT_2, false);
/* Enable/disable internal connect GND (for calibration). */
if (internal_gnd) {
const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1;
const int esp32c3_invalid_chan = (adc_n == ADC_UNIT_1)? 0xF: 0x1;
adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
} else {
adc_ll_onetime_set_channel(adc_n, channel);
@ -583,7 +580,7 @@ static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t att
adc_ll_onetime_sample_enable(adc_n, true);
}
static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
static uint32_t read_cal_channel(adc_unit_t adc_n, int channel)
{
adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
adc_ll_onetime_start(false);
@ -593,9 +590,9 @@ static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
uint32_t read_val = -1;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
read_val = adc_ll_adc1_read();
} else if (adc_n == ADC_NUM_2) {
} else if (adc_n == ADC_UNIT_2) {
read_val = adc_ll_adc2_read();
if (adc_ll_analysis_raw_data(adc_n, read_val)) {
return -1;
@ -608,9 +605,9 @@ static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
#define ADC_HAL_CAL_TIMES (10)
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
uint32_t adc_hal_self_calibration(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
{
if (adc_n == ADC_NUM_2) {
if (adc_n == ADC_UNIT_2) {
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
}

View File

@ -20,11 +20,11 @@ int adc_hal_hall_convert(void)
int hall_value;
// convert for 4 times with different phase and outputs
adc_ll_hall_phase_disable(); // hall phase
adc_hal_convert( ADC_NUM_1, ADC_CHANNEL_0, &Sens_Vp0 );
adc_hal_convert( ADC_NUM_1, ADC_CHANNEL_3, &Sens_Vn0 );
adc_hal_convert( ADC_UNIT_1, ADC_CHANNEL_0, &Sens_Vp0 );
adc_hal_convert( ADC_UNIT_1, ADC_CHANNEL_3, &Sens_Vn0 );
adc_ll_hall_phase_enable();
adc_hal_convert( ADC_NUM_1, ADC_CHANNEL_0, &Sens_Vp1 );
adc_hal_convert( ADC_NUM_1, ADC_CHANNEL_3, &Sens_Vn1 );
adc_hal_convert( ADC_UNIT_1, ADC_CHANNEL_0, &Sens_Vp1 );
adc_hal_convert( ADC_UNIT_1, ADC_CHANNEL_3, &Sens_Vn1 );
hall_value = (Sens_Vp1 - Sens_Vp0) - (Sens_Vn1 - Sens_Vn0);
return hall_value;
}

View File

@ -1,31 +1,28 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#define SOC_ADC1_DATA_INVERT_DEFAULT (1)
#define SOC_ADC2_DATA_INVERT_DEFAULT (1)
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
#define ADC_HAL_DATA_INVERT_DEFAULT(PERIPH_NUM) (1)
#define ADC_HAL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (2)
#define SOC_ADC_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (1)
/*---------------------------------------------------------------
DMA Read
---------------------------------------------------------------*/
#define ADC_HAL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (1)
#define ADC_HAL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_HAL_FSM_START_WAIT_DEFAULT (ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT)
#define ADC_HAL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_HAL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT (16)
#define SOC_ADC_FSM_RSTB_WAIT_DEFAULT (8)
#define SOC_ADC_FSM_START_WAIT_DEFAULT (SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT)
#define SOC_ADC_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_FSM_SAMPLE_CYCLE_DEFAULT (2)
#define SOC_ADC_PWDET_CCT_DEFAULT (4)
#define SOC_ADC_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (2)
#define SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT (16)
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_HAL_PWDET_CCT_DEFAULT (4)

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -19,11 +19,6 @@
extern "C" {
#endif
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
ADC_NUM_MAX,
} adc_ll_num_t;
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
@ -182,11 +177,11 @@ static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
*
* @prarm adc_n ADC unit.
*/
static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SYSCON.saradc_ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SYSCON.saradc_ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
@ -210,11 +205,11 @@ static inline void adc_ll_digi_set_data_source(bool src)
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 16.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SYSCON.saradc_ctrl.sar1_patt_len = patt_len - 1;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SYSCON.saradc_ctrl.sar2_patt_len = patt_len - 1;
}
}
@ -229,7 +224,7 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_
* @param pattern_index Items index. Range: 0 ~ 15.
* @param pattern Stored conversion rules, see ``adc_digi_pattern_table_t``.
*/
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
@ -255,12 +250,12 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
}
pattern.val = (table.atten & 0x3) | ((bit_width) << 2) | ((table.channel & 0xF) << 4);
if (table.unit == ADC_NUM_1) {
if (table.unit == ADC_UNIT_1) {
tab = SYSCON.saradc_sar1_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
SYSCON.saradc_sar1_patt_tab[index] = tab; // Write back
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
tab = SYSCON.saradc_sar2_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
@ -273,12 +268,12 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n)
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SYSCON.saradc_ctrl.sar1_patt_p_clear = 1;
SYSCON.saradc_ctrl.sar1_patt_p_clear = 0;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SYSCON.saradc_ctrl.sar2_patt_p_clear = 1;
SYSCON.saradc_ctrl.sar2_patt_p_clear = 0;
}
@ -328,11 +323,11 @@ static inline uint32_t adc_ll_pwdet_get_cct(void)
*
* @param div Division factor.
*/
static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
static inline void adc_ll_set_sar_clk_div(adc_unit_t adc_n, uint32_t div)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_read_ctrl, sar1_clk_div, div);
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_read_ctrl2, sar2_clk_div, div);
}
}
@ -343,12 +338,12 @@ static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
* @param adc_n ADC unit.
* @param bits Output data bits width option, see ``adc_bits_width_t``.
*/
static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_width_t bits)
static inline void adc_ll_rtc_set_output_format(adc_unit_t adc_n, adc_bits_width_t bits)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_start_force.sar1_bit_width = bits;
SENS.sar_read_ctrl.sar1_sample_bit = bits;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_start_force.sar2_bit_width = bits;
SENS.sar_read_ctrl2.sar2_sample_bit = bits;
}
@ -362,11 +357,11 @@ static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_wid
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
static inline void adc_ll_rtc_enable_channel(adc_unit_t adc_n, int channel)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_meas_start1.sar1_en_pad = (1 << channel); //only one channel is selected.
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas_start2.sar2_en_pad = (1 << channel); //only one channel is selected.
}
}
@ -378,11 +373,11 @@ static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n)
static inline void adc_ll_rtc_disable_channel(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_meas_start1.sar1_en_pad = 0; //only one channel is selected.
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas_start2.sar2_en_pad = 0; //only one channel is selected.
}
}
@ -395,13 +390,13 @@ static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n)
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
static inline void adc_ll_rtc_start_convert(adc_unit_t adc_n, int channel)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
while (HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_slave_addr1, meas_status) != 0) {}
SENS.sar_meas_start1.meas1_start_sar = 0;
SENS.sar_meas_start1.meas1_start_sar = 1;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas_start2.meas2_start_sar = 0; //start force 0
SENS.sar_meas_start2.meas2_start_sar = 1; //start force 1
}
@ -415,12 +410,12 @@ static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
static inline bool adc_ll_rtc_convert_is_done(adc_unit_t adc_n)
{
bool ret = true;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
ret = (bool)SENS.sar_meas_start1.meas1_done_sar;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
ret = (bool)SENS.sar_meas_start2.meas2_done_sar;
}
return ret;
@ -433,12 +428,12 @@ static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
* @return
* - Converted value.
*/
static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
static inline int adc_ll_rtc_get_convert_value(adc_unit_t adc_n)
{
int ret_val = 0;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas_start1, meas1_data_sar);
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas_start2, meas2_data_sar);
}
return ret_val;
@ -449,11 +444,11 @@ static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
static inline void adc_ll_rtc_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_read_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_read_ctrl2.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
}
}
@ -466,7 +461,7 @@ static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
* @return
* - 0: The data is correct to use.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, uint16_t raw_data)
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_unit_t adc_n, uint16_t raw_data)
{
/* ADC1 don't need check data */
return ADC_RTC_DATA_OK;
@ -475,11 +470,11 @@ static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t ad
/**
* Set the attenuation of a particular channel on ADCn.
*/
static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
static inline void adc_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
}
}
@ -491,9 +486,9 @@ static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, a
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t channel)
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
return (adc_atten_t)((SENS.sar_atten1 >> (channel * 2)) & 0x3);
} else {
return (adc_atten_t)((SENS.sar_atten2 >> (channel * 2)) & 0x3);
@ -531,9 +526,9 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
* @param adc_n ADC unit.
* @param ctrl ADC controller.
*/
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
switch ( ctrl ) {
case ADC_LL_CTRL_RTC:
SENS.sar_read_ctrl.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
@ -559,7 +554,7 @@ static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t
default:
break;
}
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
switch ( ctrl ) {
case ADC_LL_CTRL_RTC:
SENS.sar_meas_start2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
@ -669,9 +664,11 @@ static inline void adc_ll_set_hall_controller(adc_ll_hall_controller_t hall_ctrl
* @param[in] channel ADC2 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en)
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
if (adc != ADC_NUM_2) return;
if (adc != ADC_UNIT_2) {
return;
}
if (en) {
RTCCNTL.bias_conf.dbg_atten = 0; //Check DBG effect outside sleep mode

View File

@ -6,18 +6,23 @@
#pragma once
#define SOC_ADC1_DATA_INVERT_DEFAULT (0)
#define SOC_ADC2_DATA_INVERT_DEFAULT (0)
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
#define ADC_HAL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
/*---------------------------------------------------------------
DMA Read
---------------------------------------------------------------*/
#define ADC_HAL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_HAL_FSM_START_WAIT_DEFAULT (5)
#define ADC_HAL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_HAL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT (1)
#define SOC_ADC_FSM_RSTB_WAIT_DEFAULT (8)
#define SOC_ADC_FSM_START_WAIT_DEFAULT (5)
#define SOC_ADC_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_FSM_SAMPLE_CYCLE_DEFAULT (2)
#define SOC_ADC_PWDET_CCT_DEFAULT (4)
#define SOC_ADC_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT (1)
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_HAL_PWDET_CCT_DEFAULT (4)

View File

@ -28,11 +28,6 @@ extern "C" {
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
ADC_NUM_MAX,
} adc_ll_num_t;
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
@ -190,7 +185,7 @@ static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl.sar_patt_len = patt_len - 1;
@ -206,7 +201,7 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_
* @param pattern_index Items index. Range: 0 ~ 7.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
abort(); //TODO IDF-3908
// uint32_t tab;
@ -226,7 +221,7 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n)
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl.sar_patt_p_clear = 1;
@ -251,12 +246,12 @@ static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// if (adc_n == ADC_UNIT_1) {
// APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
// } else { // adc_n == ADC_NUM_2
// } else { // adc_n == ADC_UNIT_2
// APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
// }
}
@ -338,7 +333,7 @@ static inline void adc_ll_digi_controller_clk_disable(void)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
static inline void adc_ll_digi_filter_reset(adc_unit_t adc_n)
{
abort(); //TODO IDF-3908
// APB_SARADC.filter_ctrl0.filter_reset = 1;
@ -519,10 +514,10 @@ static inline uint32_t adc_ll_pwdet_get_cct(void)
* - 0: The data is correct to use.
* - -1: The data is invalid.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_unit_t adc_n, int raw_data)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// if (adc_n == ADC_UNIT_1) {
// return ADC_RTC_DATA_OK;
// }
@ -559,7 +554,7 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
// }
}
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
//Not used on ESP32-C2
}
@ -637,10 +632,10 @@ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig,
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// if (adc_n == ADC_UNIT_1) {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1);
// } else {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 1);
@ -657,11 +652,11 @@ static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, adc_channel_t channel, bool internal_gnd)
{
abort(); //TODO IDF-3908
// /* Enable/disable internal connect GND (for calibration). */
// if (adc_n == ADC_NUM_1) {
// if (adc_n == ADC_UNIT_1) {
// if (internal_gnd) {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
// } else {
@ -681,10 +676,10 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// if (adc_n == ADC_UNIT_1) {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
// } else {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
@ -698,12 +693,12 @@ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
abort(); //TODO IDF-3908
// uint8_t msb = param >> 8;
// uint8_t lsb = param & 0xFF;
// if (adc_n == ADC_NUM_1) {
// if (adc_n == ADC_UNIT_1) {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
// } else {
@ -724,7 +719,7 @@ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t par
* @param[in] channel ADC1 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en)
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
abort(); //TODO IDF-3908
// if (en) {
@ -740,7 +735,7 @@ static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, b
// APB_SARADC.onetime_sample.adc1_onetime_sample = 1;
// APB_SARADC.onetime_sample.onetime_channel = channel;
// SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
// if (adc == ADC_NUM_1) {
// if (adc == ADC_UNIT_1) {
// /* Config test mux to route v_ref to ADC1 Channels */
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1);
@ -784,7 +779,7 @@ static inline void adc_ll_onetime_start(bool val)
// APB_SARADC.onetime_sample.onetime_start = val;
}
static inline void adc_ll_onetime_set_channel(adc_ll_num_t unit, adc_channel_t channel)
static inline void adc_ll_onetime_set_channel(adc_unit_t unit, adc_channel_t channel)
{
abort(); //TODO IDF-3908
// APB_SARADC.onetime_sample.onetime_channel = ((unit << 3) | channel);
@ -826,10 +821,10 @@ static inline bool adc_ll_intr_get_status(adc_ll_intr_t mask)
// return (APB_SARADC.int_st.val & mask);
}
static inline void adc_ll_onetime_sample_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_onetime_sample_enable(adc_unit_t adc_n, bool enable)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// if (adc_n == ADC_UNIT_1) {
// APB_SARADC.onetime_sample.adc1_onetime_sample = enable;
// } else {
// APB_SARADC.onetime_sample.adc2_onetime_sample = enable;

View File

@ -1,31 +1,28 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#define SOC_ADC1_DATA_INVERT_DEFAULT (0)
#define SOC_ADC2_DATA_INVERT_DEFAULT (0)
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
#define ADC_HAL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
/*---------------------------------------------------------------
DMA Read
---------------------------------------------------------------*/
#define ADC_HAL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_HAL_FSM_START_WAIT_DEFAULT (5)
#define ADC_HAL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_HAL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT (1)
#define SOC_ADC_FSM_RSTB_WAIT_DEFAULT (8)
#define SOC_ADC_FSM_START_WAIT_DEFAULT (5)
#define SOC_ADC_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_FSM_SAMPLE_CYCLE_DEFAULT (2)
#define SOC_ADC_PWDET_CCT_DEFAULT (4)
#define SOC_ADC_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT (1)
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_HAL_PWDET_CCT_DEFAULT (4)

View File

@ -28,12 +28,6 @@ extern "C" {
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
ADC_NUM_MAX,
} adc_ll_num_t;
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
@ -184,7 +178,7 @@ static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
APB_SARADC.ctrl.sar_patt_len = patt_len - 1;
}
@ -199,7 +193,7 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_
* @param pattern_index Items index. Range: 0 ~ 7.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
@ -218,7 +212,7 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n)
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
APB_SARADC.ctrl.sar_patt_p_clear = 1;
APB_SARADC.ctrl.sar_patt_p_clear = 0;
@ -241,11 +235,11 @@ static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
@ -321,7 +315,7 @@ static inline void adc_ll_digi_controller_clk_disable(void)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
static inline void adc_ll_digi_filter_reset(adc_unit_t adc_n)
{
APB_SARADC.filter_ctrl0.filter_reset = 1;
}
@ -490,9 +484,9 @@ static inline uint32_t adc_ll_pwdet_get_cct(void)
* - 0: The data is correct to use.
* - -1: The data is invalid.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_unit_t adc_n, int raw_data)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
return ADC_RTC_DATA_OK;
}
@ -528,7 +522,7 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
}
}
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
//Not used on ESP32C3
}
@ -604,9 +598,9 @@ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig,
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 1);
@ -623,10 +617,10 @@ static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, adc_channel_t channel, bool internal_gnd)
{
/* Enable/disable internal connect GND (for calibration). */
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
} else {
@ -646,9 +640,9 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
@ -662,11 +656,11 @@ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
} else {
@ -687,7 +681,7 @@ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t par
* @param[in] channel ADC1 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en)
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
if (en) {
REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 3);
@ -702,7 +696,7 @@ static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, b
APB_SARADC.onetime_sample.adc1_onetime_sample = 1;
APB_SARADC.onetime_sample.onetime_channel = channel;
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
if (adc == ADC_NUM_1) {
if (adc == ADC_UNIT_1) {
/* Config test mux to route v_ref to ADC1 Channels */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1);
@ -745,7 +739,7 @@ static inline void adc_ll_onetime_start(bool val)
APB_SARADC.onetime_sample.onetime_start = val;
}
static inline void adc_ll_onetime_set_channel(adc_ll_num_t unit, adc_channel_t channel)
static inline void adc_ll_onetime_set_channel(adc_unit_t unit, adc_channel_t channel)
{
APB_SARADC.onetime_sample.onetime_channel = ((unit << 3) | channel);
}
@ -780,9 +774,9 @@ static inline bool adc_ll_intr_get_status(adc_ll_intr_t mask)
return (APB_SARADC.int_st.val & mask);
}
static inline void adc_ll_onetime_sample_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_onetime_sample_enable(adc_unit_t adc_n, bool enable)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.onetime_sample.adc1_onetime_sample = enable;
} else {
APB_SARADC.onetime_sample.adc2_onetime_sample = enable;

View File

@ -1,31 +1,28 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#define SOC_ADC1_DATA_INVERT_DEFAULT (0)
#define SOC_ADC2_DATA_INVERT_DEFAULT (0)
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
#define ADC_HAL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
/*---------------------------------------------------------------
DMA Read
---------------------------------------------------------------*/
#define ADC_HAL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_HAL_FSM_START_WAIT_DEFAULT (5)
#define ADC_HAL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_HAL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT (1)
#define SOC_ADC_FSM_RSTB_WAIT_DEFAULT (8)
#define SOC_ADC_FSM_START_WAIT_DEFAULT (5)
#define SOC_ADC_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_FSM_SAMPLE_CYCLE_DEFAULT (2)
#define SOC_ADC_PWDET_CCT_DEFAULT (4)
#define SOC_ADC_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT (1)
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_HAL_PWDET_CCT_DEFAULT (4)

View File

@ -28,12 +28,6 @@ extern "C" {
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
ADC_NUM_MAX,
} adc_ll_num_t;
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
@ -184,7 +178,7 @@ static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
APB_SARADC.ctrl.sar_patt_len = patt_len - 1;
}
@ -199,7 +193,7 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_
* @param pattern_index Items index. Range: 0 ~ 7.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
@ -218,7 +212,7 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n)
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
APB_SARADC.ctrl.sar_patt_p_clear = 1;
APB_SARADC.ctrl.sar_patt_p_clear = 0;
@ -241,11 +235,11 @@ static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
@ -321,7 +315,7 @@ static inline void adc_ll_digi_controller_clk_disable(void)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
static inline void adc_ll_digi_filter_reset(adc_unit_t adc_n)
{
APB_SARADC.filter_ctrl0.filter_reset = 1;
}
@ -490,9 +484,9 @@ static inline uint32_t adc_ll_pwdet_get_cct(void)
* - 0: The data is correct to use.
* - -1: The data is invalid.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_unit_t adc_n, int raw_data)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
return ADC_RTC_DATA_OK;
}
@ -528,7 +522,7 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
}
}
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
//Not used on ESP32H2
}
@ -604,9 +598,9 @@ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig,
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 1);
@ -623,10 +617,10 @@ static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, adc_channel_t channel, bool internal_gnd)
{
/* Enable/disable internal connect GND (for calibration). */
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
} else {
@ -646,9 +640,9 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
@ -662,11 +656,11 @@ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
} else {
@ -687,7 +681,7 @@ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t par
* @param[in] channel ADC1 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en)
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
abort();
}
@ -707,7 +701,7 @@ static inline void adc_ll_onetime_start(bool val)
APB_SARADC.onetime_sample.onetime_start = val;
}
static inline void adc_ll_onetime_set_channel(adc_ll_num_t unit, adc_channel_t channel)
static inline void adc_ll_onetime_set_channel(adc_unit_t unit, adc_channel_t channel)
{
APB_SARADC.onetime_sample.onetime_channel = ((unit << 3) | channel);
}
@ -742,9 +736,9 @@ static inline bool adc_ll_intr_get_status(adc_ll_intr_t mask)
return (APB_SARADC.int_st.val & mask);
}
static inline void adc_ll_onetime_sample_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_onetime_sample_enable(adc_unit_t adc_n, bool enable)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.onetime_sample.adc1_onetime_sample = enable;
} else {
APB_SARADC.onetime_sample.adc2_onetime_sample = enable;

View File

@ -1,31 +1,28 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#define SOC_ADC1_DATA_INVERT_DEFAULT (0)
#define SOC_ADC2_DATA_INVERT_DEFAULT (0)
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
#define ADC_HAL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
/*---------------------------------------------------------------
DMA Read
---------------------------------------------------------------*/
#define ADC_HAL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_HAL_FSM_START_WAIT_DEFAULT (5)
#define ADC_HAL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_HAL_SAMPLE_CYCLE_DEFAULT (3)
#define ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT (2)
#define SOC_ADC_FSM_RSTB_WAIT_DEFAULT (8)
#define SOC_ADC_FSM_START_WAIT_DEFAULT (5)
#define SOC_ADC_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_FSM_SAMPLE_CYCLE_DEFAULT (3)
#define SOC_ADC_PWDET_CCT_DEFAULT (4)
#define SOC_ADC_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT (2)
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_HAL_PWDET_CCT_DEFAULT (4)

View File

@ -27,12 +27,6 @@ extern "C" {
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
ADC_NUM_MAX,
} adc_ll_num_t;
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
@ -211,11 +205,11 @@ static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 16.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl.sar1_patt_len = patt_len - 1;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl.sar2_patt_len = patt_len - 1;
}
}
@ -230,7 +224,7 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_
* @param pattern_index Items index. Range: 0 ~ 15.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
@ -238,12 +232,12 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
adc_ll_digi_pattern_table_t pattern = {0};
pattern.val = (table.atten & 0x3) | ((table.channel & 0xF) << 4);
if (table.unit == ADC_NUM_1) {
if (table.unit == ADC_UNIT_1) {
tab = APB_SARADC.sar1_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
APB_SARADC.sar1_patt_tab[index] = tab; // Write back
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
tab = APB_SARADC.sar2_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
@ -256,12 +250,12 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n)
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl.sar1_patt_p_clear = 1;
APB_SARADC.ctrl.sar1_patt_p_clear = 0;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl.sar2_patt_p_clear = 1;
APB_SARADC.ctrl.sar2_patt_p_clear = 0;
}
@ -284,11 +278,11 @@ static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
@ -367,12 +361,12 @@ static inline void adc_ll_digi_controller_clk_disable(void)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
static inline void adc_ll_digi_filter_reset(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.filter_ctrl.adc1_filter_reset = 1;
APB_SARADC.filter_ctrl.adc1_filter_reset = 0;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.filter_ctrl.adc2_filter_reset = 1;
APB_SARADC.filter_ctrl.adc2_filter_reset = 0;
}
@ -384,7 +378,7 @@ static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t factor)
static inline void adc_ll_digi_filter_set_factor(adc_unit_t adc_n, adc_digi_filter_mode_t factor)
{
int mode = 0;
switch (factor) {
@ -395,9 +389,9 @@ static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_fi
case ADC_DIGI_FILTER_IIR_64: mode = 64; break;
default: mode = 8; break;
}
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.filter_ctrl.adc1_filter_factor = mode;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.filter_ctrl.adc2_filter_factor = mode;
}
}
@ -408,12 +402,12 @@ static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_fi
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t *factor)
static inline void adc_ll_digi_filter_get_factor(adc_unit_t adc_n, adc_digi_filter_mode_t *factor)
{
int mode = 0;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
mode = APB_SARADC.filter_ctrl.adc1_filter_factor;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
mode = APB_SARADC.filter_ctrl.adc2_filter_factor;
}
switch (mode) {
@ -433,11 +427,11 @@ static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_fi
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_digi_filter_enable(adc_unit_t adc_n, bool enable)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.filter_ctrl.adc1_filter_en = enable;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.filter_ctrl.adc2_filter_en = enable;
}
}
@ -450,11 +444,11 @@ static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
* @param adc_n ADC unit.
* @return Filtered data.
*/
static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
static inline uint32_t adc_ll_digi_filter_read_data(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
return HAL_FORCE_READ_U32_REG_FIELD(APB_SARADC.filter_status, adc1_filter_data);
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
return HAL_FORCE_READ_U32_REG_FIELD(APB_SARADC.filter_status, adc2_filter_data);
}
}
@ -467,11 +461,11 @@ static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
* false: If ADC_OUT < threshold, Generates monitor interrupt.
*/
static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larger)
static inline void adc_ll_digi_monitor_set_mode(adc_unit_t adc_n, bool is_larger)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.thres_ctrl.adc1_thres_mode = is_larger;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.thres_ctrl.adc2_thres_mode = is_larger;
}
}
@ -483,11 +477,11 @@ static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larg
* @param adc_n ADC unit.
* @param threshold Monitor threshold.
*/
static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t threshold)
static inline void adc_ll_digi_monitor_set_thres(adc_unit_t adc_n, uint32_t threshold)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.thres_ctrl.adc1_thres = threshold;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.thres_ctrl.adc2_thres = threshold;
}
}
@ -498,11 +492,11 @@ static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t th
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_digi_monitor_enable(adc_unit_t adc_n, bool enable)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.thres_ctrl.adc1_thres_en = enable;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.thres_ctrl.adc2_thres_en = enable;
}
}
@ -578,11 +572,11 @@ static inline uint32_t adc_ll_pwdet_get_cct(void)
*
* @param div Division factor.
*/
static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
static inline void adc_ll_set_sar_clk_div(adc_unit_t adc_n, uint32_t div)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_reader1_ctrl, sar1_clk_div, div);
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_reader2_ctrl, sar2_clk_div, div);
}
}
@ -594,7 +588,7 @@ static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
* @prarm adc_n ADC unit.
* @prarm bits Output data bits width option.
*/
static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_width_t bits)
static inline void adc_ll_rtc_set_output_format(adc_unit_t adc_n, adc_bits_width_t bits)
{
return;
}
@ -607,11 +601,11 @@ static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_wid
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
static inline void adc_ll_rtc_enable_channel(adc_unit_t adc_n, int channel)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected.
}
}
@ -624,11 +618,11 @@ static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n)
static inline void adc_ll_rtc_disable_channel(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
}
}
@ -641,13 +635,13 @@ static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n)
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
static inline void adc_ll_rtc_start_convert(adc_unit_t adc_n, int channel)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
while (HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_slave_addr1, meas_status) != 0) {}
SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0
SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1
}
@ -661,12 +655,12 @@ static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
static inline bool adc_ll_rtc_convert_is_done(adc_unit_t adc_n)
{
bool ret = true;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar;
}
return ret;
@ -679,12 +673,12 @@ static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
* @return
* - Converted value.
*/
static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
static inline int adc_ll_rtc_get_convert_value(adc_unit_t adc_n)
{
int ret_val = 0;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas1_ctrl2, meas1_data_sar);
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas2_ctrl2, meas2_data_sar);
}
return ret_val;
@ -696,11 +690,11 @@ static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
static inline void adc_ll_rtc_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
}
}
@ -710,12 +704,12 @@ static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
static inline void adc_ll_rtc_intr_enable(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_reader1_ctrl.sar1_int_en = 1;
RTCCNTL.int_ena.rtc_saradc1 = 1;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_reader2_ctrl.sar2_int_en = 1;
RTCCNTL.int_ena.rtc_saradc2 = 1;
}
@ -726,12 +720,12 @@ static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
static inline void adc_ll_rtc_intr_disable(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_reader1_ctrl.sar1_int_en = 0;
RTCCNTL.int_ena.rtc_saradc1 = 0;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_reader2_ctrl.sar2_int_en = 0;
RTCCNTL.int_ena.rtc_saradc2 = 0;
}
@ -769,10 +763,10 @@ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
* - 2: The data is invalid. The current controller process was interrupted by a higher priority controller.
* - -1: The data is error.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, uint16_t raw_data)
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_unit_t adc_n, uint16_t raw_data)
{
/* ADC1 don't need check data */
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
return ADC_RTC_DATA_OK;
}
adc_ll_rtc_output_data_t *temp = (adc_ll_rtc_output_data_t *)&raw_data;
@ -820,11 +814,11 @@ static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t ad
* @param channel ADCn channel number.
* @param atten The attenuation option.
*/
static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
static inline void adc_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
}
}
@ -836,9 +830,9 @@ static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, a
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t channel)
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
return (adc_atten_t)((SENS.sar_atten1 >> (channel * 2)) & 0x3);
} else {
return (adc_atten_t)((SENS.sar_atten2 >> (channel * 2)) & 0x3);
@ -879,9 +873,9 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
* @param adc_n ADC unit.
* @param ctrl ADC controller.
*/
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
switch (ctrl) {
case ADC_LL_CTRL_RTC:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
@ -901,7 +895,7 @@ static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t
default:
break;
}
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
switch (ctrl) {
//If ADC2 is not controlled by ULP, the arbiter will decide which controller to use ADC2.
case ADC_LL_CTRL_ARB:
@ -1018,9 +1012,9 @@ static inline void adc_ll_disable_sleep_controller(void)
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 4);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 4);
@ -1037,7 +1031,7 @@ static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, adc_channel_t channel, bool internal_gnd)
{
/* Should be called before writing I2C registers. */
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PD_M);
@ -1046,7 +1040,7 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
/* Enable/disable internal connect GND (for calibration). */
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
} else {
@ -1066,9 +1060,9 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
@ -1082,7 +1076,7 @@ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
@ -1091,7 +1085,7 @@ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t par
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_SAR_M);
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
} else {
@ -1112,7 +1106,7 @@ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t par
* @param[in] channel ADC2 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en)
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
/* Should be called before writing I2C registers. */
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
@ -1120,7 +1114,7 @@ static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, b
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
if (en) {
if (adc == ADC_NUM_1) {
if (adc == ADC_UNIT_1) {
/* Config test mux to route v_ref to ADC1 Channels */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);

View File

@ -1,31 +1,28 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#define SOC_ADC1_DATA_INVERT_DEFAULT (0)
#define SOC_ADC2_DATA_INVERT_DEFAULT (0)
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
#define ADC_HAL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
/*---------------------------------------------------------------
DMA Read
---------------------------------------------------------------*/
#define ADC_HAL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_HAL_FSM_START_WAIT_DEFAULT (5)
#define ADC_HAL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_HAL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT (1)
#define SOC_ADC_FSM_RSTB_WAIT_DEFAULT (8)
#define SOC_ADC_FSM_START_WAIT_DEFAULT (5)
#define SOC_ADC_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_FSM_SAMPLE_CYCLE_DEFAULT (2)
#define SOC_ADC_PWDET_CCT_DEFAULT (4)
#define SOC_ADC_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT (1)
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_HAL_PWDET_CCT_DEFAULT (4)

View File

@ -28,12 +28,6 @@ extern "C" {
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
ADC_NUM_MAX,
} adc_ll_num_t;
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
@ -218,11 +212,11 @@ static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 16.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl.sar1_patt_len = patt_len - 1;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl.sar2_patt_len = patt_len - 1;
}
}
@ -237,7 +231,7 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_
* @param pattern_index Items index. Range: 0 ~ 11.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
@ -245,7 +239,7 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
adc_ll_digi_pattern_table_t pattern = {0};
pattern.val = (table.atten & 0x3) | ((table.channel & 0xF) << 2);
if (table.unit == ADC_NUM_1){
if (table.unit == ADC_UNIT_1){
tab = APB_SARADC.sar1_patt_tab[index].sar1_patt_tab; //Read old register value
tab &= (~(0xFC0000 >> offset)); //Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; //Fill in the new data
@ -263,12 +257,12 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n)
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl.sar1_patt_p_clear = 1;
APB_SARADC.ctrl.sar1_patt_p_clear = 0;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl.sar2_patt_p_clear = 1;
APB_SARADC.ctrl.sar2_patt_p_clear = 0;
}
@ -291,11 +285,11 @@ static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
@ -373,7 +367,7 @@ static inline void adc_ll_digi_controller_clk_disable(void)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
static inline void adc_ll_digi_filter_reset(adc_unit_t adc_n)
{
abort();
}
@ -384,7 +378,7 @@ static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t factor)
static inline void adc_ll_digi_filter_set_factor(adc_unit_t adc_n, adc_digi_filter_mode_t factor)
{
abort();
}
@ -395,7 +389,7 @@ static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_fi
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t *factor)
static inline void adc_ll_digi_filter_get_factor(adc_unit_t adc_n, adc_digi_filter_mode_t *factor)
{
abort();
}
@ -407,7 +401,7 @@ static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_fi
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_digi_filter_enable(adc_unit_t adc_n, bool enable)
{
abort();
}
@ -420,7 +414,7 @@ static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
* @param adc_n ADC unit.
* @return Filtered data.
*/
static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
static inline uint32_t adc_ll_digi_filter_read_data(adc_unit_t adc_n)
{
abort();
}
@ -433,7 +427,7 @@ static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
* false: If ADC_OUT < threshold, Generates monitor interrupt.
*/
static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larger)
static inline void adc_ll_digi_monitor_set_mode(adc_unit_t adc_n, bool is_larger)
{
abort();
}
@ -445,7 +439,7 @@ static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larg
* @param adc_n ADC unit.
* @param threshold Monitor threshold.
*/
static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t threshold)
static inline void adc_ll_digi_monitor_set_thres(adc_unit_t adc_n, uint32_t threshold)
{
abort();
}
@ -456,7 +450,7 @@ static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t th
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_digi_monitor_enable(adc_unit_t adc_n, bool enable)
{
abort();
}
@ -558,9 +552,9 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
* @param adc_n ADC unit.
* @param ctrl ADC controller.
*/
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
switch (ctrl) {
case ADC_LL_CTRL_RTC:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
@ -580,7 +574,7 @@ static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t
default:
break;
}
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
//If ADC2 is not controlled by ULP, the arbiter will decide which controller to use ADC2.
switch (ctrl) {
case ADC_LL_CTRL_ARB:
@ -695,9 +689,9 @@ static inline void adc_ll_disable_sleep_controller(void)
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 4);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 4);
@ -712,7 +706,7 @@ static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, adc_channel_t channel, bool internal_gnd)
{
/* Should be called before writing I2C registers. */
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU_M);
@ -720,13 +714,13 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
/* Enable/disable internal connect GND (for calibration). */
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
}
} else { //adc_n == ADC_NUM_2
} else { //adc_n == ADC_UNIT_2
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1);
} else {
@ -740,11 +734,11 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
} else { //adc_n == ADC_NUM_2
} else { //adc_n == ADC_UNIT_2
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
}
}
@ -756,11 +750,11 @@ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
} else {
@ -780,7 +774,7 @@ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t par
* @param[in] channel ADC2 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en)
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
abort();
}
@ -793,11 +787,11 @@ static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, b
*
* @param div Division factor.
*/
static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
static inline void adc_ll_set_sar_clk_div(adc_unit_t adc_n, uint32_t div)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_reader1_ctrl, sar1_clk_div, div);
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_reader2_ctrl, sar2_clk_div, div);
}
}
@ -805,13 +799,13 @@ static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
/**
* Set adc output data format for RTC controller.
*
* @note ESP32S3 RTC controller only support 13bit.
* @note ESP32S3 RTC controller only support 12bit.
* @prarm adc_n ADC unit.
* @prarm bits Output data bits width option.
*/
static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_width_t bits)
static inline void adc_ll_rtc_set_output_format(adc_unit_t adc_n, adc_bits_width_t bits)
{
//ESP32S3 only supports 12bit, leave here for compatibility
}
/**
@ -822,11 +816,11 @@ static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_wid
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
static inline void adc_ll_rtc_enable_channel(adc_unit_t adc_n, int channel)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected.
}
}
@ -839,11 +833,11 @@ static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n)
static inline void adc_ll_rtc_disable_channel(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
}
}
@ -856,13 +850,13 @@ static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n)
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
static inline void adc_ll_rtc_start_convert(adc_unit_t adc_n, int channel)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
while (HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_slave_addr1, meas_status) != 0) {}
SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0
SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1
}
@ -876,12 +870,12 @@ static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
static inline bool adc_ll_rtc_convert_is_done(adc_unit_t adc_n)
{
bool ret = true;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar;
}
return ret;
@ -894,12 +888,12 @@ static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
* @return
* - Converted value.
*/
static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
static inline int adc_ll_rtc_get_convert_value(adc_unit_t adc_n)
{
int ret_val = 0;
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas1_ctrl2, meas1_data_sar);
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas2_ctrl2, meas2_data_sar);
}
return ret_val;
@ -911,11 +905,11 @@ static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
static inline void adc_ll_rtc_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
}
}
@ -925,12 +919,12 @@ static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
static inline void adc_ll_rtc_intr_enable(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_reader1_ctrl.sar1_int_en = 1;
RTCCNTL.int_ena.rtc_saradc1 = 1;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_reader2_ctrl.sar2_int_en = 1;
RTCCNTL.int_ena.rtc_saradc2 = 1;
}
@ -941,12 +935,12 @@ static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
static inline void adc_ll_rtc_intr_disable(adc_unit_t adc_n)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_reader1_ctrl.sar1_int_en = 0;
RTCCNTL.int_ena.rtc_saradc1 = 0;
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_reader2_ctrl.sar2_int_en = 0;
RTCCNTL.int_ena.rtc_saradc2 = 0;
}
@ -984,10 +978,10 @@ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
* - 2: The data is invalid. The current controller process was interrupted by a higher priority controller.
* - -1: The data is error.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, uint16_t raw_data)
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_unit_t adc_n, uint16_t raw_data)
{
/* ADC1 don't need check data */
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
return ADC_RTC_DATA_OK;
}
adc_ll_rtc_output_data_t *temp = (adc_ll_rtc_output_data_t *)&raw_data;
@ -1035,11 +1029,11 @@ static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t ad
* @param channel ADCn channel number.
* @param atten The attenuation option.
*/
static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
static inline void adc_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
} else { // adc_n == ADC_NUM_2
} else { // adc_n == ADC_UNIT_2
SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
}
}
@ -1051,9 +1045,9 @@ static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, a
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t channel)
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
if (adc_n == ADC_NUM_1) {
if (adc_n == ADC_UNIT_1) {
return (adc_atten_t)((SENS.sar_atten1 >> (channel * 2)) & 0x3);
} else {
return (adc_atten_t)((SENS.sar_atten2 >> (channel * 2)) & 0x3);

View File

@ -11,6 +11,7 @@
#include "hal/dma_types.h"
#include "hal/adc_types.h"
#include "hal/adc_ll.h"
#include "hal/adc_hal_common.h"
#include "esp_err.h"
#if SOC_GDMA_SUPPORTED
@ -43,13 +44,6 @@ extern "C" {
//For ADC module, each conversion contains 4 bytes
#define ADC_HAL_DATA_LEN_PER_CONV 4
typedef enum adc_hal_work_mode_t {
ADC_HAL_ULP_MODE,
ADC_HAL_SINGLE_READ_MODE,
ADC_HAL_CONTINUOUS_READ_MODE,
ADC_HAL_PWDET_MODE
} adc_hal_work_mode_t;
/**
* @brief Enum for DMA descriptor status
*/
@ -62,17 +56,17 @@ typedef enum adc_hal_dma_desc_status_t {
/**
* @brief Configuration of the HAL
*/
typedef struct adc_hal_config_t {
typedef struct adc_hal_dma_config_t {
void *dev; ///< DMA peripheral address
uint32_t desc_max_num; ///< Number of the descriptors linked once
uint32_t dma_chan; ///< DMA channel to be used
uint32_t eof_num; ///< Bytes between 2 in_suc_eof interrupts
} adc_hal_config_t;
} adc_hal_dma_config_t;
/**
* @brief Context of the HAL
*/
typedef struct adc_hal_context_t {
typedef struct adc_hal_dma_ctx_t {
/**< this needs to be malloced by the driver layer first */
dma_descriptor_t *rx_desc; ///< DMA descriptors
@ -80,12 +74,12 @@ typedef struct adc_hal_context_t {
dma_descriptor_t desc_dummy_head; ///< Dummy DMA descriptor for ``cur_desc_ptr`` to start
dma_descriptor_t *cur_desc_ptr; ///< Pointer to the current descriptor
/**< these need to be configured by `adc_hal_config_t` via driver layer*/
/**< these need to be configured by `adc_hal_dma_config_t` via driver layer*/
void *dev; ///< DMA address
uint32_t desc_max_num; ///< Number of the descriptors linked once
uint32_t dma_chan; ///< DMA channel to be used
uint32_t eof_num; ///< Words between 2 in_suc_eof interrupts
} adc_hal_context_t;
} adc_hal_dma_ctx_t;
typedef struct adc_hal_digi_ctrlr_cfg_t {
bool conv_limit_en; //1: adc conversion will stop when `conv_limit_num` reaches. 0: won't stop. NOTE: esp32 should always be set to 1.
@ -108,8 +102,6 @@ typedef struct adc_hal_digi_ctrlr_cfg_t {
*/
#define adc_hal_set_power_manage(manage) adc_ll_set_power_manage(manage)
void adc_hal_set_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode);
#if SOC_ADC_ARBITER_SUPPORTED
//No ADC2 controller arbiter on ESP32
/**
@ -163,16 +155,18 @@ void adc_hal_arbiter_config(adc_arbiter_t *config);
Digital controller setting
---------------------------------------------------------------*/
/**
* ADC module initialization.
* @brief Initialize the HW
*
* @param hal Context of the HAL
*/
void adc_hal_init(void);
void adc_hal_digi_init(adc_hal_dma_ctx_t *hal);
/**
* Digital controller deinitialization.
*
* @param hal Context of the HAL
*/
void adc_hal_digi_deinit(adc_hal_context_t *hal);
void adc_hal_digi_deinit(adc_hal_dma_ctx_t *hal);
/**
* @brief Initialize the hal context
@ -180,14 +174,7 @@ void adc_hal_digi_deinit(adc_hal_context_t *hal);
* @param hal Context of the HAL
* @param config Configuration of the HAL
*/
void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config);
/**
* @brief Initialize the HW
*
* @param hal Context of the HAL
*/
void adc_hal_digi_init(adc_hal_context_t *hal);
void adc_hal_dma_ctx_config(adc_hal_dma_ctx_t *hal, const adc_hal_dma_config_t *config);
/**
* Setting the digital controller.
@ -195,15 +182,15 @@ void adc_hal_digi_init(adc_hal_context_t *hal);
* @param hal Context of the HAL
* @param cfg Pointer to digital controller paramter.
*/
void adc_hal_digi_controller_config(adc_hal_context_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg);
void adc_hal_digi_controller_config(adc_hal_dma_ctx_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg);
/**
* @brief Start Conversion
*
* @param hal Context of the HAL
* @param data_buf Pointer to the data buffer, the length should be multiple of ``desc_max_num`` and ``eof_num`` in ``adc_hal_context_t``
* @param data_buf Pointer to the data buffer, the length should be multiple of ``desc_max_num`` and ``eof_num`` in ``adc_hal_dma_ctx_t``
*/
void adc_hal_digi_start(adc_hal_context_t *hal, uint8_t *data_buf);
void adc_hal_digi_start(adc_hal_dma_ctx_t *hal, uint8_t *data_buf);
#if !SOC_GDMA_SUPPORTED
/**
@ -213,7 +200,7 @@ void adc_hal_digi_start(adc_hal_context_t *hal, uint8_t *data_buf);
*
* @return DMA descriptor address
*/
intptr_t adc_hal_get_desc_addr(adc_hal_context_t *hal);
intptr_t adc_hal_get_desc_addr(adc_hal_dma_ctx_t *hal);
/**
* @brief Check the hardware interrupt event
@ -223,7 +210,7 @@ intptr_t adc_hal_get_desc_addr(adc_hal_context_t *hal);
*
* @return True: the event is triggered. False: the event is not triggered yet.
*/
bool adc_hal_check_event(adc_hal_context_t *hal, uint32_t mask);
bool adc_hal_check_event(adc_hal_dma_ctx_t *hal, uint32_t mask);
#endif
/**
@ -235,7 +222,7 @@ bool adc_hal_check_event(adc_hal_context_t *hal, uint32_t mask);
*
* @return See ``adc_hal_dma_desc_status_t``
*/
adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc);
adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_dma_ctx_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc);
/**
* @brief Clear interrupt
@ -243,7 +230,7 @@ adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, con
* @param hal Context of the HAL
* @param mask mask of the interrupt
*/
void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask);
void adc_hal_digi_clr_intr(adc_hal_dma_ctx_t *hal, uint32_t mask);
/**
* @brief Enable interrupt
@ -251,14 +238,14 @@ void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask);
* @param hal Context of the HAL
* @param mask mask of the interrupt
*/
void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask);
void adc_hal_digi_dis_intr(adc_hal_dma_ctx_t *hal, uint32_t mask);
/**
* @brief Stop conversion
*
* @param hal Context of the HAL
*/
void adc_hal_digi_stop(adc_hal_context_t *hal);
void adc_hal_digi_stop(adc_hal_dma_ctx_t *hal);
/*---------------------------------------------------------------
@ -326,7 +313,7 @@ void adc_hal_digi_stop(adc_hal_context_t *hal);
* - ESP_OK: The value is valid.
* - ESP_ERR_INVALID_STATE: The value is invalid.
*/
esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw);
esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, int *out_raw);
/*---------------------------------------------------------------
ADC calibration setting
@ -338,7 +325,7 @@ esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw);
*
* @param adc_n ADC index numer
*/
void adc_hal_calibration_init(adc_ll_num_t adc_n);
void adc_hal_calibration_init(adc_unit_t adc_n);
/**
* Set the calibration result (initial data) to ADC.
@ -348,7 +335,7 @@ void adc_hal_calibration_init(adc_ll_num_t adc_n);
* @param adc_n ADC index number.
* @param param the calibration parameter to configure
*/
void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param);
void adc_hal_set_calibration_param(adc_unit_t adc_n, uint32_t param);
/**
* Calibrate the ADC using internal connections.
@ -364,7 +351,7 @@ void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param);
* @return
* - The calibration result (initial data) to ADC, use `adc_hal_set_calibration_param` to set.
*/
uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd);
uint32_t adc_hal_self_calibration(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd);
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED

View File

@ -0,0 +1,38 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
/**
* This header file is only for hardware abstract concepts and APIs
* used by both ADC RTC controller and Digital controller
*/
/**
* ADC work mode
*/
typedef enum adc_hal_work_mode_t {
ADC_HAL_ULP_MODE,
ADC_HAL_SINGLE_READ_MODE,
ADC_HAL_CONTINUOUS_READ_MODE,
ADC_HAL_PWDET_MODE
} adc_hal_work_mode_t;
/**
* Set ADC work mode
*
* @param unit ADC unit
* @param work_mode see `adc_hal_work_mode_t`
*/
void adc_hal_set_controller(adc_unit_t unit, adc_hal_work_mode_t work_mode);
#ifdef __cplusplus
}
#endif

View File

@ -17,11 +17,8 @@
* @note For ADC digital controller (DMA mode), ESP32 doesn't support `ADC_UNIT_2`, `ADC_UNIT_BOTH`, `ADC_UNIT_ALTER`.
*/
typedef enum {
ADC_UNIT_1 = 1, /*!< SAR ADC 1. */
ADC_UNIT_2 = 2, /*!< SAR ADC 2. */
ADC_UNIT_BOTH = 3, /*!< SAR ADC 1 and 2. */
ADC_UNIT_ALTER = 7, /*!< SAR ADC 1 and 2 alternative mode. */
ADC_UNIT_MAX,
ADC_UNIT_1, /*!< SAR ADC 1. */
ADC_UNIT_2, /*!< SAR ADC 2. */
} adc_unit_t;
/**

View File

@ -1,19 +1,10 @@
// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
/*
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_ADC_CHANNEL_H
#define _SOC_ADC_CHANNEL_H
#pragma once
#define ADC1_GPIO36_CHANNEL ADC1_CHANNEL_0
#define ADC1_CHANNEL_0_GPIO_NUM 36
@ -68,5 +59,3 @@
#define ADC2_GPIO26_CHANNEL ADC2_CHANNEL_9
#define ADC2_CHANNEL_9_GPIO_NUM 26
#endif /* _SOC_ADC_CHANNEL_H_ */

View File

@ -14,6 +14,6 @@ const int adc_channel_io_map[SOC_ADC_PERIPH_NUM][SOC_ADC_MAX_CHANNEL_NUM] = {
},
/* ADC2 */
{
ADC2_CHANNEL_0_GPIO_NUM, -1, -1, -1, -1
-1, -1, -1, -1, -1
}
};

View File

@ -4,8 +4,7 @@
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef _SOC_ADC_CHANNEL_H
#define _SOC_ADC_CHANNEL_H
#pragma once
#define ADC1_GPIO1_CHANNEL ADC1_CHANNEL_0
#define ADC1_CHANNEL_0_GPIO_NUM 0
@ -24,5 +23,3 @@
#define ADC2_GPIO5_CHANNEL ADC2_CHANNEL_0
#define ADC2_CHANNEL_0_GPIO_NUM 5
#endif

View File

@ -1,36 +1,25 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifndef _SOC_ADC_CHANNEL_H
#define _SOC_ADC_CHANNEL_H
#define ADC1_GPIO1_CHANNEL ADC1_CHANNEL_0
#define ADC1_GPIO0_CHANNEL ADC1_CHANNEL_0
#define ADC1_CHANNEL_0_GPIO_NUM 0
#define ADC1_GPIO2_CHANNEL ADC1_CHANNEL_1
#define ADC1_GPIO1_CHANNEL ADC1_CHANNEL_1
#define ADC1_CHANNEL_1_GPIO_NUM 1
#define ADC1_GPIO3_CHANNEL ADC1_CHANNEL_2
#define ADC1_GPIO2_CHANNEL ADC1_CHANNEL_2
#define ADC1_CHANNEL_2_GPIO_NUM 2
#define ADC1_GPIO4_CHANNEL ADC1_CHANNEL_3
#define ADC1_GPIO3_CHANNEL ADC1_CHANNEL_3
#define ADC1_CHANNEL_3_GPIO_NUM 3
#define ADC1_GPIO5_CHANNEL ADC1_CHANNEL_4
#define ADC1_GPIO4_CHANNEL ADC1_CHANNEL_4
#define ADC1_CHANNEL_4_GPIO_NUM 4
#define ADC2_GPIO5_CHANNEL ADC2_CHANNEL_0
#define ADC2_CHANNEL_0_GPIO_NUM 5
#endif

View File

@ -1,16 +1,8 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "soc/adc_periph.h"
@ -22,6 +14,6 @@ const int adc_channel_io_map[SOC_ADC_PERIPH_NUM][SOC_ADC_MAX_CHANNEL_NUM] = {
},
/* ADC2 */
{
ADC2_CHANNEL_0_GPIO_NUM, -1, -1, -1, -1
-1, -1, -1, -1, -1
}
};

View File

@ -1,19 +1,10 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_ADC_CHANNEL_H
#define _SOC_ADC_CHANNEL_H
#pragma once
#define ADC1_GPIO1_CHANNEL ADC1_CHANNEL_0
#define ADC1_CHANNEL_0_GPIO_NUM 0
@ -32,5 +23,3 @@
#define ADC2_GPIO5_CHANNEL ADC2_CHANNEL_0
#define ADC2_CHANNEL_0_GPIO_NUM 5
#endif

View File

@ -1,19 +1,10 @@
// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
/*
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_ADC_CHANNEL_H
#define _SOC_ADC_CHANNEL_H
#pragma once
#define ADC1_GPIO1_CHANNEL ADC1_CHANNEL_0
#define ADC1_CHANNEL_0_GPIO_NUM 1
@ -74,5 +65,3 @@
#define ADC2_GPIO20_CHANNEL ADC2_CHANNEL_9
#define ADC2_CHANNEL_9_GPIO_NUM 20
#endif

View File

@ -1,19 +1,10 @@
// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef _SOC_ADC_CHANNEL_H
#define _SOC_ADC_CHANNEL_H
#pragma once
#define ADC1_GPIO1_CHANNEL ADC1_CHANNEL_0
#define ADC1_CHANNEL_0_GPIO_NUM 1
@ -74,5 +65,3 @@
#define ADC2_GPIO20_CHANNEL ADC2_CHANNEL_9
#define ADC2_CHANNEL_9_GPIO_NUM 20
#endif

View File

@ -819,7 +819,6 @@ components/hal/dac_hal.c
components/hal/ds_hal.c
components/hal/esp32/brownout_hal.c
components/hal/esp32/gpio_hal_workaround.c
components/hal/esp32/include/hal/adc_hal_conf.h
components/hal/esp32/include/hal/aes_ll.h
components/hal/esp32/include/hal/can_hal.h
components/hal/esp32/include/hal/can_ll.h
@ -846,7 +845,6 @@ components/hal/esp32/include/hal/uart_ll.h
components/hal/esp32/interrupt_descriptor_table.c
components/hal/esp32/touch_sensor_hal.c
components/hal/esp32c3/hmac_hal.c
components/hal/esp32c3/include/hal/adc_hal_conf.h
components/hal/esp32c3/include/hal/aes_ll.h
components/hal/esp32c3/include/hal/ds_ll.h
components/hal/esp32c3/include/hal/gpspi_flash_ll.h
@ -868,7 +866,6 @@ components/hal/esp32c3/include/hal/uhci_ll.h
components/hal/esp32c3/include/hal/usb_serial_jtag_ll.h
components/hal/esp32c3/rtc_cntl_hal.c
components/hal/esp32h2/hmac_hal.c
components/hal/esp32h2/include/hal/adc_hal_conf.h
components/hal/esp32h2/include/hal/aes_ll.h
components/hal/esp32h2/include/hal/ds_ll.h
components/hal/esp32h2/include/hal/gpspi_flash_ll.h
@ -889,7 +886,6 @@ components/hal/esp32h2/include/hal/uhci_ll.h
components/hal/esp32h2/include/hal/uhci_types.h
components/hal/esp32h2/include/hal/usb_serial_jtag_ll.h
components/hal/esp32s2/cp_dma_hal.c
components/hal/esp32s2/include/hal/adc_hal_conf.h
components/hal/esp32s2/include/hal/aes_ll.h
components/hal/esp32s2/include/hal/cp_dma_hal.h
components/hal/esp32s2/include/hal/cp_dma_ll.h
@ -919,7 +915,6 @@ components/hal/esp32s2/include/hal/twai_ll.h
components/hal/esp32s2/include/hal/usb_ll.h
components/hal/esp32s2/interrupt_descriptor_table.c
components/hal/esp32s2/touch_sensor_hal.c
components/hal/esp32s3/include/hal/adc_hal_conf.h
components/hal/esp32s3/include/hal/aes_ll.h
components/hal/esp32s3/include/hal/gpspi_flash_ll.h
components/hal/esp32s3/include/hal/i2c_ll.h
@ -1272,7 +1267,6 @@ components/soc/esp32/adc_periph.c
components/soc/esp32/dac_periph.c
components/soc/esp32/gpio_periph.c
components/soc/esp32/i2c_periph.c
components/soc/esp32/include/soc/adc_channel.h
components/soc/esp32/include/soc/apb_ctrl_reg.h
components/soc/esp32/include/soc/apb_ctrl_struct.h
components/soc/esp32/include/soc/bb_reg.h
@ -1350,7 +1344,6 @@ components/soc/esp32c3/adc_periph.c
components/soc/esp32c3/gpio_periph.c
components/soc/esp32c3/i2c_bbpll.h
components/soc/esp32c3/i2c_periph.c
components/soc/esp32c3/include/soc/adc_channel.h
components/soc/esp32c3/include/soc/apb_ctrl_reg.h
components/soc/esp32c3/include/soc/apb_ctrl_struct.h
components/soc/esp32c3/include/soc/apb_saradc_reg.h
@ -1408,10 +1401,8 @@ components/soc/esp32c3/ledc_periph.c
components/soc/esp32c3/sigmadelta_periph.c
components/soc/esp32c3/spi_periph.c
components/soc/esp32c3/uart_periph.c
components/soc/esp32h2/adc_periph.c
components/soc/esp32h2/gdma_periph.c
components/soc/esp32h2/i2c_periph.c
components/soc/esp32h2/include/soc/adc_channel.h
components/soc/esp32h2/include/soc/apb_ctrl_reg.h
components/soc/esp32h2/include/soc/apb_ctrl_struct.h
components/soc/esp32h2/include/soc/apb_saradc_reg.h
@ -1458,7 +1449,6 @@ components/soc/esp32s2/adc_periph.c
components/soc/esp32s2/dac_periph.c
components/soc/esp32s2/dedic_gpio_periph.c
components/soc/esp32s2/i2c_periph.c
components/soc/esp32s2/include/soc/adc_channel.h
components/soc/esp32s2/include/soc/apb_ctrl_reg.h
components/soc/esp32s2/include/soc/apb_ctrl_struct.h
components/soc/esp32s2/include/soc/apb_saradc_reg.h
@ -1541,7 +1531,6 @@ components/soc/esp32s2/usb_periph.c
components/soc/esp32s3/dedic_gpio_periph.c
components/soc/esp32s3/gpio_periph.c
components/soc/esp32s3/i2c_periph.c
components/soc/esp32s3/include/soc/adc_channel.h
components/soc/esp32s3/include/soc/apb_ctrl_reg.h
components/soc/esp32s3/include/soc/apb_ctrl_struct.h
components/soc/esp32s3/include/soc/apb_saradc_reg.h