1. provide options for bluetooth low power mode
2. provide two options for bluetooth low power clock: main XTAL and external 32kHz XTAL
3. provide function and callbacks to control bluetooth low power mode, including enable/disable sleep, software wakeup request, low power clock settings, check power state, etc
4. modify vhci API vhci_host_send_packet to use blocking mode
5. note that DFS and bluetooth modem sleep can not be used together currently.
1. Fix the duty fade check issue reported from https://github.com/espressif/esp-idf/issues/1914
2. Fix the duty overflow issue when duty_scale is set to 1.
3. Fix the duty fade error when a fade operation is under way. We must configure a new duty setting after the previous fade operation has finished due to hardware limit.
4. Add thread-safe version APIs to set duty and fade.
5. Correct the duty range in driver.
- Add SDIO support at protocol layer (probing, data transfer, interrupts)
- Add SDIO interrupts support in SDMMC host
- Add test (communicate with ESP32 in SDIO download mode)
On most microcontrollers I have worked with one can retrieve the
current state of output GPIO pins. On ESP32 this is not the case
if the pad is not explictly configured to route this information into
the port by configuring it as input or i/o.
Thus add a warning to the API documentation of gpio_get_level().
Merges https://github.com/espressif/esp-idf/pull/1740
The TRM describes IOMUX registers are IO_MUX_x_REG for x in GPIO0-39.
Until now ESP-IDF describes them as PERIPHS_IO_MUX_(pinname)_U
This commit adds additional IOMUX register names which match the ones used in the TRM.
requirement from github(https://github.com/espressif/esp-idf/issues/805): to provide the position in the buffer of the pattern detected.
requirement from AT application: in AT app, when no hardware flow control is enabled, in some situation the rx buffer might be full, and the terminator “+++” might be lost, we can use pattern detect interrupt to avoid missing the terminator. When pattern detect interrupt happens, it will not send a data event at the same time.
1. Add API to get position of detected pattern in rx buffer
2. Modify UART event example
3. Add comments for uart_flush, add alias API uart_flush_input to clear the rx buffer
4. Modify the way rx_buffered_len is calculated
1. move settings of WIFI_CLK_EN_REG for bluetooth into controller init/deinit APIs
2. modify the bit mask used in phy_rf init/deinit to use WIFI-BT shared bits
append adc support and api
- esp_err_t adc2_config_width(adc_bits_width_t width_bit);
- esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten);
- int adc2_get_voltage(adc2_channel_t channel);
Reported from:
https://github.com/espressif/esp-idf/issues/703https://github.com/espressif/esp-idf/issues/917
In uart driver we didn't change the default value of tx idle num, so there would be a delay after tx FIFO is empty.
1. Add API to set tx idle interval before next data transmission. (The UART hardware can add an interval after tx FIFO is empty).
2. Set default tx idle interval to zero.
3. Add hardware disable in uart driver delete function.
Reported from different sources from github or bbs:
https://github.com/espressif/esp-idf/issues/680https://github.com/espressif/esp-idf/issues/922
We tested reading several sensor or other I2C slave devices, if the power and SDA/SCL wires are in proper condition, everything works find with reading the slave.
If we remove the power supply for the slave during I2C is reading, or directly connect SDA or SCL to ground, this would cause the I2C FSM get stuck in wrong state, all we can do is the reset the I2C hardware in this case.
After this commit, no matter whether the power supply of I2C slave is removed or SDA / SCL are shorted to ground, the driver can recover from wrong state.
We are not sure whether this the save issue with the reported one yet, but to make the driver more robust.
Further information:
1. For I2C master mode, we have tested different situations, e.g., to short the SDA/SCL directly to GND/VCC, to short the SDA to SCL, to un-plug the slave device, to power off the slave device. Under all of those situations, this version of driver can recover and keep working.
2. Some slave device will die by accident and keep the SDA in low level, in this case, master should send several clock to make the slave release the bus.
3. Slave mode of ESP32 might also get in wrong state that held the SDA low, in this case, master device could send a stop signal to make esp32 slave release the bus.
Modifications:
1. Disable I2C_MASTER_TRAN_COMP interrupt to void extra interrupt.
2. Disable un-used timeout interrupt for slave.
3. Add bus reset if error detected for master mode.
4. Add bus clear if SDA level is low when error detected.
5. Modify the argument type of i2c_set_pin.
6. add API to set timeout value
7. add parameter check for timing APIs
Previously the timeout was set to the same value (1000ms) for all kinds
of commands. In some cases, such as with slow cards, write commands
failed to complete in time.
This change makes command timeouts configurable via sdmmc_host_t
structure, and also makes default timeouts different for ordinary
commands and write commands.
Closes https://github.com/espressif/esp-idf/issues/1093
Ref TW15774.
using apll_param to setup APLL
new apll calculation method, much faster
validate freq calculation
Ensure that the i2s frequency is greater than the hardware limit
Add description of how to calculate apll clock, support apll for other 16-bits audio, check rev0 chip
correct space