i2s: add support apll clock

using apll_param to setup APLL

new apll calculation method, much faster

validate freq calculation

Ensure that the i2s frequency is greater than the hardware limit

Add description of how to calculate apll clock, support apll for other 16-bits audio, check rev0 chip

correct space
This commit is contained in:
Tuan PM 2017-08-16 16:31:11 +08:00
parent de750e9921
commit 9d39881981
4 changed files with 183 additions and 15 deletions

View File

@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <math.h>
#include <esp_types.h>
#include "freertos/FreeRTOS.h"
@ -22,6 +23,8 @@
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "soc/sens_reg.h"
#include "soc/rtc.h"
#include "soc/efuse_reg.h"
#include "rom/lldesc.h"
#include "driver/gpio.h"
@ -45,7 +48,9 @@ static const char* I2S_TAG = "I2S";
#define I2S_EXIT_CRITICAL() portEXIT_CRITICAL(&i2s_spinlock[i2s_num])
#define I2S_FULL_DUPLEX_SLAVE_MODE_MASK (I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_SLAVE)
#define I2S_FULL_DUPLEX_MASTER_MODE_MASK (I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_MASTER)
#define APLL_MIN_FREQ (350000000)
#define APLL_MAX_FREQ (500000000)
#define APLL_I2S_MIN_RATE (10675) //in Hz, I2S Clock rate limited by hardware
/**
* @brief DMA buffer object
*
@ -77,12 +82,28 @@ typedef struct {
int bytes_per_sample; /*!< Bytes per sample*/
int bits_per_sample; /*!< Bits per sample*/
i2s_mode_t mode; /*!< I2S Working mode*/
int use_apll; /*!< I2S use APLL clock */
} i2s_obj_t;
static i2s_obj_t *p_i2s_obj[I2S_NUM_MAX] = {0};
static i2s_dev_t* I2S[I2S_NUM_MAX] = {&I2S0, &I2S1};
static portMUX_TYPE i2s_spinlock[I2S_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
/**
* @brief Pre define APLL parameters, save compute time
* | bits_per_sample | rate | sdm0 | sdm1 | sdm2 | odir
*/
static const int apll_predefine[][6] = {
{16, 11025, 38, 80, 5, 31},
{16, 16000, 147, 107, 5, 21},
{16, 22050, 130, 152, 5, 15},
{16, 32000, 129, 212, 5, 10},
{16, 44100, 15, 8, 5, 6},
{16, 48000, 136, 212, 5, 6},
{16, 96000, 143, 212, 5, 2},
{0, 0, 0, 0, 0, 0}
};
static i2s_dma_t *i2s_create_dma_queue(i2s_port_t i2s_num, int dma_buf_count, int dma_buf_len);
static esp_err_t i2s_destroy_dma_queue(i2s_port_t i2s_num, i2s_dma_t *dma);
static esp_err_t i2s_reset_fifo(i2s_port_t i2s_num)
@ -166,6 +187,125 @@ static esp_err_t i2s_isr_register(i2s_port_t i2s_num, uint8_t intr_alloc_flags,
return esp_intr_alloc(ETS_I2S0_INTR_SOURCE + i2s_num, intr_alloc_flags, fn, arg, handle);
}
static float i2s_get_apll_real_rate(int bits_per_sample, int sdm0, int sdm1, int sdm2, int odir)
{
int f_xtal = (int)rtc_clk_xtal_freq_get() * 1000000;
uint32_t is_rev0 = (GET_PERI_REG_BITS2(EFUSE_BLK0_RDATA3_REG, 1, 15) == 0);
if (is_rev0) {
sdm0 = 0;
sdm1 = 0;
}
float fout = f_xtal * (sdm2 + sdm1 / 256.0f + sdm0 / 65536.0f + 4);
if (fout < APLL_MIN_FREQ || fout > APLL_MAX_FREQ) {
return 9999999;
}
float fpll = fout / (2 * (odir+2)); //== fi2s (N=1, b=0, a=1)
return fpll/(8*4*bits_per_sample); //fbck = fi2s/bck_div
}
/**
* @brief APLL calculate function, was described by following:
* APLL Output frequency is given by the formula:
*
* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2)
* apll_freq = fout / ((o_div + 2) * 2)
*
* The dividend in this expression should be in the range of 240 - 600 MHz.
* In rev. 0 of ESP32, sdm0 and sdm1 are unused and always set to 0.
* * sdm0 frequency adjustment parameter, 0..255
* * sdm1 frequency adjustment parameter, 0..255
* * sdm2 frequency adjustment parameter, 0..63
* * o_div frequency divider, 0..31
*
* The most accurate way to find the sdm0..2 and odir parameters is to loop through them all,
* then apply the above formula, finding the closest frequency to the desired one.
* But 256*256*64*32 = 134.217.728 loops are too slow with ESP32
* 1. We will choose the parameters with the highest level of change,
* With 350MHz<fout<500MHz, we limit the sdm2 from 4 to 9,
* Take average frequency close to the desired frequency, and select sdm2
* 2. Next, we look for sequences of less influential and more detailed parameters,
* also by taking the average of the largest and smallest frequencies closer to the desired frequency.
* 3. And finally, loop through all the most detailed of the parameters, finding the best desired frequency
*
* @param[in] rate The sample rate
* @param[in] bits_per_sample The bits per sample
* @param[out] sdm0 The sdm 0
* @param[out] sdm1 The sdm 1
* @param[out] sdm2 The sdm 2
* @param[out] odir The odir
*
* @return ESP_FAIL or ESP_OK
*/
static esp_err_t i2s_apll_calculate(int rate, int bits_per_sample, int *sdm0, int *sdm1, int *sdm2, int *odir)
{
int _odir, _sdm0, _sdm1, _sdm2, i;
float avg;
float min_rate, max_rate, min_diff;
if (rate < APLL_I2S_MIN_RATE) {
return ESP_FAIL;
}
//check pre-define apll parameters
i = 0;
while (apll_predefine[i][0]) {
if (apll_predefine[i][0] == bits_per_sample && apll_predefine[i][0] == rate) {
*sdm0 = apll_predefine[i][1];
*sdm1 = apll_predefine[i][2];
*sdm2 = apll_predefine[i][3];
*odir = apll_predefine[i][4];
return ESP_OK;
}
i++;
}
*sdm0 = 0;
*sdm1 = 0;
*sdm2 = 0;
*odir = 0;
min_diff = 99999;
for (_sdm2 = 4; _sdm2 < 9; _sdm2 ++) {
max_rate = i2s_get_apll_real_rate(bits_per_sample, 255, 255, _sdm2, 0);
min_rate = i2s_get_apll_real_rate(bits_per_sample, 0, 0, _sdm2, 31);
avg = (max_rate + min_rate)/2;
if(abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm2 = _sdm2;
}
}
min_diff = 99999;
for (_odir = 0; _odir < 32; _odir ++) {
max_rate = i2s_get_apll_real_rate(bits_per_sample, 255, 255, *sdm2, _odir);
min_rate = i2s_get_apll_real_rate(bits_per_sample, 0, 0, *sdm2, _odir);
avg = (max_rate + min_rate)/2;
if(abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*odir = _odir;
}
}
min_diff = 99999;
for (_sdm1 = 0; _sdm1 < 256; _sdm1 ++) {
max_rate = i2s_get_apll_real_rate(bits_per_sample, 255, _sdm1, *sdm2, *odir);
min_rate = i2s_get_apll_real_rate(bits_per_sample, 0, _sdm1, *sdm2, *odir);
avg = (max_rate + min_rate)/2;
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm1 = _sdm1;
}
}
min_diff = 99999;
for (_sdm0 = 0; _sdm0 < 256; _sdm0 ++) {
avg = i2s_get_apll_real_rate(bits_per_sample, _sdm0, *sdm1, *sdm2, *odir);
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm0 = _sdm0;
}
}
return ESP_OK;
}
esp_err_t i2s_set_clk(i2s_port_t i2s_num, uint32_t rate, i2s_bits_per_sample_t bits, i2s_channel_t ch)
{
int factor = (256%bits)? 384 : 256; // According to hardware codec requirement(supported 256fs or 384fs)
@ -310,19 +450,33 @@ esp_err_t i2s_set_clk(i2s_port_t i2s_num, uint32_t rate, i2s_bits_per_sample_t b
mclk = clkmInteger + denom * clkmDecimals;
bck = factor/(bits * channel);
}
I2S[i2s_num]->clkm_conf.clka_en = 0;
I2S[i2s_num]->clkm_conf.clkm_div_a = 63;
I2S[i2s_num]->clkm_conf.clkm_div_b = clkmDecimals;
I2S[i2s_num]->clkm_conf.clkm_div_num = clkmInteger;
I2S[i2s_num]->sample_rate_conf.tx_bck_div_num = bck;
I2S[i2s_num]->sample_rate_conf.rx_bck_div_num = bck;
int sdm0, sdm1, sdm2, odir;
if(p_i2s_obj[i2s_num]->use_apll && i2s_apll_calculate(rate, bits, &sdm0, &sdm1, &sdm2, &odir) == ESP_OK) {
rtc_clk_apll_enable(1, sdm0, sdm1, sdm2, odir);
I2S[i2s_num]->clkm_conf.clkm_div_num = 1;
I2S[i2s_num]->clkm_conf.clkm_div_b = 0;
I2S[i2s_num]->clkm_conf.clkm_div_a = 1;
I2S[i2s_num]->sample_rate_conf.tx_bck_div_num = 8;
I2S[i2s_num]->sample_rate_conf.rx_bck_div_num = 8;
I2S[i2s_num]->clkm_conf.clka_en = 1;
double real_rate = i2s_get_apll_real_rate(bits, sdm0, sdm1, sdm2, odir);
ESP_LOGI(I2S_TAG, "APLL: Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, BCK: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d",
rate, real_rate, bits, 1, 8, (double)I2S_BASE_CLK / mclk, real_rate*bits*channel, 1, 0);
} else {
I2S[i2s_num]->clkm_conf.clka_en = 0;
I2S[i2s_num]->clkm_conf.clkm_div_a = 63;
I2S[i2s_num]->clkm_conf.clkm_div_b = clkmDecimals;
I2S[i2s_num]->clkm_conf.clkm_div_num = clkmInteger;
I2S[i2s_num]->sample_rate_conf.tx_bck_div_num = bck;
I2S[i2s_num]->sample_rate_conf.rx_bck_div_num = bck;
double real_rate = (double) (I2S_BASE_CLK / (bck * bits * clkmInteger) / 2);
ESP_LOGI(I2S_TAG, "PLL_D2: Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, BCK: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d",
rate, real_rate, bits, clkmInteger, bck, (double)I2S_BASE_CLK / mclk, real_rate*bits*channel, 64, clkmDecimals);
}
I2S[i2s_num]->sample_rate_conf.tx_bits_mod = bits;
I2S[i2s_num]->sample_rate_conf.rx_bits_mod = bits;
double real_rate = (double) (I2S_BASE_CLK / (bck * bits * clkmInteger) / 2);
ESP_LOGI(I2S_TAG, "Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, BCK: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d",
rate, real_rate, bits, clkmInteger, bck, (double)I2S_BASE_CLK / mclk, real_rate*bits*channel, 64, clkmDecimals);
// wait all writing on-going finish
if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) && p_i2s_obj[i2s_num]->tx) {
xSemaphoreGive(p_i2s_obj[i2s_num]->tx->mux);
@ -535,7 +689,7 @@ esp_err_t i2s_stop(i2s_port_t i2s_num)
esp_err_t i2s_set_dac_mode(i2s_dac_mode_t dac_mode)
{
I2S_CHECK((dac_mode < I2S_DAC_CHANNEL_MAX), "i2s dac mode error", ESP_ERR_INVALID_ARG);
if(dac_mode == I2S_DAC_CHANNEL_DISABLE) {
if (dac_mode == I2S_DAC_CHANNEL_DISABLE) {
dac_output_disable(DAC_CHANNEL_1);
dac_output_disable(DAC_CHANNEL_2);
dac_i2s_disable();
@ -813,6 +967,8 @@ static esp_err_t i2s_param_config(i2s_port_t i2s_num, const i2s_config_t *i2s_co
I2S[i2s_num]->conf.rx_slave_mod = 1; //RX Slave
}
}
p_i2s_obj[i2s_num]->use_apll = i2s_config->use_apll;
return ESP_OK;
}
@ -914,6 +1070,10 @@ esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num)
p_i2s_obj[i2s_num]->i2s_queue = NULL;
}
if(p_i2s_obj[i2s_num]->use_apll) {
rtc_clk_apll_enable(0, 0, 0, 0, 0);
}
free(p_i2s_obj[i2s_num]);
p_i2s_obj[i2s_num] = NULL;

View File

@ -122,6 +122,8 @@ typedef enum {
I2S_MODE_PDM = 64,
} i2s_mode_t;
/**
* @brief I2S configuration parameters for i2s_param_config function
*
@ -135,6 +137,7 @@ typedef struct {
int intr_alloc_flags; /*!< Flags used to allocate the interrupt. One or multiple (ORred) ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info */
int dma_buf_count; /*!< I2S DMA Buffer Count */
int dma_buf_len; /*!< I2S DMA Buffer Length */
int use_apll; /*!< I2S using APLL as main I2S clock, enable it to get accurate clock */
} i2s_config_t;
/**

View File

@ -10,6 +10,8 @@ The I2S peripheral supports DMA meaning it can stream sample data without requir
I2S output can also be routed directly to the Digital/Analog Converter output channels (GPIO 25 & GPIO 26) to produce analog output directly, rather than via an external I2S codec.
.. note:: For high accuracy clock applications, APLL clock source can be used with `.use_apll = 1` and ESP32 will automatic caculate APLL parameter.
Application Example
-------------------
@ -34,7 +36,9 @@ Short example of I2S configuration:
.communication_format = I2S_COMM_FORMAT_I2S | I2S_COMM_FORMAT_I2S_MSB,
.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, // high interrupt priority
.dma_buf_count = 8,
.dma_buf_len = 64
.dma_buf_len = 64,
.use_apll = 0,
.apll_param = I2S_APLL_NONE
};
static const i2s_pin_config_t pin_config = {

View File

@ -86,7 +86,8 @@ void app_main()
.channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, //2-channels
.communication_format = I2S_COMM_FORMAT_I2S | I2S_COMM_FORMAT_I2S_MSB,
.dma_buf_count = 6,
.dma_buf_len = 60, //
.dma_buf_len = 60,
.use_apll = 0,
.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1 //Interrupt level 1
};
i2s_pin_config_t pin_config = {