According to the standard assert(X) should be replaced by a void expression when
NDEBUG is set. IDF's behavior was to not trigger an assertion, but we would still
evaluate X, e.g. if X was a function it would be ran.
This MR adds a kconfig option CONFIG_COMPILER_ASSERT_NDEBUG_EVALUATE which allows us
revert the behavior to be inline with the standard.
With IDF v6.0 the plan is to make CONFIG_COMPILER_ASSERT_NDEBUG_EVALUATE=n the default
behavior.
Closes https://github.com/espressif/esp-idf/issues/10136
Closes https://github.com/espressif/esp-idf/issues/2758
* Added C++ sentinels if missed
* Used #pragma once, removed macro's with leading underscores
* Updated copyright checker to allow "BSD-2-Clause-FreeBSD AND
Apache-2.0" for newlib files
* Fixed minor compilation issues/implicit inclusions
Before newlib 3.3.0, <dirent.h> bundled in newlib did not include any
function declarations. Instead, the file included the platform-
specific <sys/dirent.h>. This inclusion was inside a C++ guard block.
ESP-IDF provided sys/dirent.h inside newlib component, and this file
contained all the necessary function and structure declarations.
Since da418955f5,
common function declarations have been added to <dirent.h> in newlib.
However, the inclusion of sys/dirent.h has been moved out of the C++
guard block. However we didn't notice this change and did not update
sys/dirent.h in ESP-IDF newlib component to and the now-required
C++ guards there.
This commit adds the missing C++ guards to the platform-specific
sys/dirent.h.
The declarations of common dirent.h functions are now present both in
<dirent.h> (provided by newlib) and in sys/dirent.h (provided by IDF).
We keep the declarations in sys/dirent.h for compatibility, since some
ESP-IDF files and applications may include <sys/dirent.h> directly,
rather than <dirent.h>.
Closes https://github.com/espressif/esp-idf/issues/7204
This adds support for the retargetable locking implementation in
newlib 3. This feature will be enabled in the future toolchain builds.
With the present version of the toolchain, this code doesn't get used.
When _RETARGETABLE_LOCKING gets enabled, newlib locking implementation
will be modified as follows:
- Legacy ESP-specific _lock_xxx functions are preserved. This is done
because ROM copies of newlib in ESP32 and ESP32-S2 rely on these
functions through the function pointer table. Also there is some
code in IDF which still uses these locking functions.
- New __retarget_lock_xxx functions are introduced. Newlib expects
these functions to be provided by the system. These functions work
pretty much the same way as the ESP-specific _lock_xxx functions,
except one major difference: _lock_acquire receives the lock pointer
by value, and as such doesn't support lazy initialization.
- Static locks used by newlib are now explicitly initialized at
startup. Since it is unlikely that these static locks are used at
the same time, all compatible locks are set to point to the same
mutex. This saves a bit of RAM. Note that there are still many locks
not initialized statically, in particular those inside FILE
structures.
* Target components pull in xtensa component directly
* Use CPU HAL where applicable
* Remove unnecessary xtensa headers
* Compilation changes necessary to support non-xtensa gcc types (ie int32_t/uint32_t is no
longer signed/unsigned int).
Changes come from internal branch commit a6723fc
BSDs and Unices defined some non standardised functions and symbols used
for endianness handling: converting from Little Endian to Big Endian,
converting from Host to a specific representation, converting from a
specific representation to Host.
With this commit, a modified version of those symbols provided by
FreeBSD is imported.
The license of the imported code is still 2-Clause BSD.
Signed-off-by: Francesco Giancane <francesco.giancane@accenture.com>
Closes https://github.com/espressif/esp-idf/pull/4784
Programs and libraries using compiler and system information about
endianness often include the system header `<endian.h>`.
In `xtensa-gcc` compiler with `newlib` distribution, that file is located in
`<machine/endian.h>`; this means that `#include <endian.h>` would fail
at compile time.
This commit fixes the issue by adding a compatibility `<endian.h>`
header which in turn just includes `<machine/endian.h>`.
Signed-off-by: Francesco Giancane <francesco.giancane@accenture.com>
Merges https://github.com/espressif/esp-idf/pull/4784
newlib/assert: replace unlikely with likely to keep original assertion
newlib/assert: fix assert macro that uses likely
freertos/port: add the missing sdkconfig.h back
newlib/assert: assert macro back to a single line
This uses a hack (temporarily defining __rtems__ from a wrapper header
file) to include timeradd, timersub, and similar macros, without
modifying newlib headers.
This introduces the following changes :
* Implmentation added for pthread attribute related functions :
* pthread_attr_init
* pthread_attr_destroy
* pthread_attr_setdetachstate
* pthread_attr_getdetachstate
* pthread_attr_getstacksize
* pthread_attr_setstacksize
* pthread_create now supports passing attributes/configs through pthread_attr_t structure
* pthread_mutex_timedlock added
* pthread_exit added
* memory for joinable thread is freed before returning from pthread_join