346 lines
14 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
2020-07-23 13:40:10 +08:00
#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/time.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_cpu.h"
2020-07-23 13:40:10 +08:00
#include "esp_clk_internal.h"
#include "esp_rom_uart.h"
#include "esp_rom_sys.h"
2020-07-23 13:40:10 +08:00
#include "soc/system_reg.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/i2s_reg.h"
#include "hal/wdt_hal.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"
2020-07-23 13:40:10 +08:00
#include "bootloader_clock.h"
#include "soc/syscon_reg.h"
static const char *TAG = "clk";
/* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
* Larger values increase startup delay. Smaller values may cause false positive
* detection (i.e. oscillator runs for a few cycles and then stops).
*/
#define SLOW_CLK_CAL_CYCLES CONFIG_RTC_CLK_CAL_CYCLES
2020-07-23 13:40:10 +08:00
#define RTC_XTAL_CAL_RETRY 1
/* Indicates that this 32k oscillator gets input from external oscillator, rather
* than a crystal.
*/
#define EXT_OSC_FLAG BIT(3)
/* This is almost the same as soc_rtc_slow_clk_src_t, except that we define
2020-07-23 13:40:10 +08:00
* an extra enum member for the external 32k oscillator.
* For convenience, lower 2 bits should correspond to soc_rtc_slow_clk_src_t values.
2020-07-23 13:40:10 +08:00
*/
typedef enum {
SLOW_CLK_RTC = SOC_RTC_SLOW_CLK_SRC_RC_SLOW, //!< Internal 150 kHz RC oscillator
SLOW_CLK_32K_XTAL = SOC_RTC_SLOW_CLK_SRC_XTAL32K, //!< External 32 kHz XTAL
SLOW_CLK_8MD256 = SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256, //!< Internal 8 MHz RC oscillator, divided by 256
SLOW_CLK_32K_EXT_OSC = SOC_RTC_SLOW_CLK_SRC_XTAL32K | EXT_OSC_FLAG //!< External 32k oscillator connected to 32K_XP pin
2020-07-23 13:40:10 +08:00
} slow_clk_sel_t;
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk);
static __attribute__((unused)) void recalib_bbpll(void);
2020-07-23 13:40:10 +08:00
void esp_rtc_init(void)
2020-07-23 13:40:10 +08:00
{
#if CONFIG_ESP_SYSTEM_BBPLL_RECALIB
// In earlier version of ESP-IDF, the PLL provided by bootloader is not stable enough.
// Do calibration again here so that we can use better clock for the timing tuning.
recalib_bbpll();
#endif
2020-07-23 13:40:10 +08:00
rtc_config_t cfg = RTC_CONFIG_DEFAULT();
soc_reset_reason_t rst_reas;
rst_reas = esp_rom_get_reset_reason(0);
//When power on, we need to set `cali_ocode` to 1, to do a OCode calibration, which will calibrate the rtc reference voltage to a tested value
if (rst_reas == RESET_REASON_CHIP_POWER_ON) {
cfg.cali_ocode = 1;
}
2020-07-23 13:40:10 +08:00
rtc_init(cfg);
}
2020-07-23 13:40:10 +08:00
__attribute__((weak)) void esp_clk_init(void)
{
2020-07-23 13:40:10 +08:00
assert(rtc_clk_xtal_freq_get() == RTC_XTAL_FREQ_40M);
bool rc_fast_d256_is_enabled = rtc_clk_8md256_enabled();
rtc_clk_8m_enable(true, rc_fast_d256_is_enabled);
rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_RC_FAST);
2020-07-23 13:40:10 +08:00
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed.
// If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times.
2020-07-23 13:40:10 +08:00
// Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec).
// This prevents excessive delay before resetting in case the supply voltage is drawdown.
// (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec).
2020-07-23 13:40:10 +08:00
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
uint32_t stage_timeout_ticks = (uint32_t)(1600ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
//Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
#if defined(CONFIG_RTC_CLK_SRC_EXT_CRYS)
2020-07-23 13:40:10 +08:00
select_rtc_slow_clk(SLOW_CLK_32K_XTAL);
#elif defined(CONFIG_RTC_CLK_SRC_EXT_OSC)
2020-07-23 13:40:10 +08:00
select_rtc_slow_clk(SLOW_CLK_32K_EXT_OSC);
#elif defined(CONFIG_RTC_CLK_SRC_INT_8MD256)
2020-07-23 13:40:10 +08:00
select_rtc_slow_clk(SLOW_CLK_8MD256);
#else
select_rtc_slow_clk(SLOW_CLK_RTC);
2020-07-23 13:40:10 +08:00
#endif
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// After changing a frequency WDT timeout needs to be set for new frequency.
stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
rtc_cpu_freq_config_t old_config, new_config;
rtc_clk_cpu_freq_get_config(&old_config);
const uint32_t old_freq_mhz = old_config.freq_mhz;
const uint32_t new_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ;
2020-07-23 13:40:10 +08:00
bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config);
assert(res);
// Wait for UART TX to finish, otherwise some UART output will be lost
// when switching APB frequency
if (CONFIG_ESP_CONSOLE_UART_NUM >= 0) {
esp_rom_uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM);
}
if (res) {
rtc_clk_cpu_freq_set_config(&new_config);
}
2020-07-23 13:40:10 +08:00
// Re calculate the ccount to make time calculation correct.
esp_cpu_set_cycle_count( (uint64_t)esp_cpu_get_cycle_count() * new_freq_mhz / old_freq_mhz );
2020-07-23 13:40:10 +08:00
}
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk)
{
soc_rtc_slow_clk_src_t rtc_slow_clk_src = slow_clk & RTC_CNTL_ANA_CLK_RTC_SEL_V;
2020-07-23 13:40:10 +08:00
uint32_t cal_val = 0;
/* number of times to repeat 32k XTAL calibration
* before giving up and switching to the internal RC
*/
int retry_32k_xtal = RTC_XTAL_CAL_RETRY;
do {
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
2020-07-23 13:40:10 +08:00
/* 32k XTAL oscillator needs to be enabled and running before it can
* be used. Hardware doesn't have a direct way of checking if the
* oscillator is running. Here we use rtc_clk_cal function to count
* the number of main XTAL cycles in the given number of 32k XTAL
* oscillator cycles. If the 32k XTAL has not started up, calibration
* will time out, returning 0.
*/
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
if (slow_clk == SLOW_CLK_32K_XTAL) {
rtc_clk_32k_enable(true);
} else if (slow_clk == SLOW_CLK_32K_EXT_OSC) {
rtc_clk_32k_enable_external();
}
// When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
if (SLOW_CLK_CAL_CYCLES > 0) {
cal_val = rtc_clk_cal(RTC_CAL_32K_XTAL, SLOW_CLK_CAL_CYCLES);
if (cal_val == 0) {
2020-07-23 13:40:10 +08:00
if (retry_32k_xtal-- > 0) {
continue;
}
ESP_EARLY_LOGW(TAG, "32 kHz XTAL not found, switching to internal 150 kHz oscillator");
rtc_slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
2020-07-23 13:40:10 +08:00
}
}
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256) {
2020-07-23 13:40:10 +08:00
rtc_clk_8m_enable(true, true);
}
rtc_clk_slow_src_set(rtc_slow_clk_src);
2020-07-23 13:40:10 +08:00
if (SLOW_CLK_CAL_CYCLES > 0) {
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
* Improve calibration routine to wait until the frequency is stable.
*/
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
} else {
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
cal_val = (uint32_t) (cal_dividend / rtc_clk_slow_freq_get_hz());
}
} while (cal_val == 0);
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val);
esp_clk_slowclk_cal_set(cal_val);
}
void rtc_clk_select_rtc_slow_clk(void)
{
select_rtc_slow_clk(SLOW_CLK_32K_XTAL);
2020-07-23 13:40:10 +08:00
}
/* This function is not exposed as an API at this point.
* All peripheral clocks are default enabled after chip is powered on.
* This function disables some peripheral clocks when cpu starts.
* These peripheral clocks are enabled when the peripherals are initialized
* and disabled when they are de-initialized.
*/
__attribute__((weak)) void esp_perip_clk_init(void)
2020-07-23 13:40:10 +08:00
{
uint32_t common_perip_clk, hwcrypto_perip_clk, wifi_bt_sdio_clk = 0;
uint32_t common_perip_clk1 = 0;
#if CONFIG_FREERTOS_UNICORE
soc_reset_reason_t rst_reas[1];
2020-07-23 13:40:10 +08:00
#else
soc_reset_reason_t rst_reas[2];
2020-07-23 13:40:10 +08:00
#endif
rst_reas[0] = esp_rom_get_reset_reason(0);
2020-07-23 13:40:10 +08:00
#if !CONFIG_FREERTOS_UNICORE
rst_reas[1] = esp_rom_get_reset_reason(1);
2020-07-23 13:40:10 +08:00
#endif
/* For reason that only reset CPU, do not disable the clocks
* that have been enabled before reset.
*/
if ((rst_reas[0] == RESET_REASON_CPU0_MWDT0 || rst_reas[0] == RESET_REASON_CPU0_SW ||
rst_reas[0] == RESET_REASON_CPU0_RTC_WDT || rst_reas[0] == RESET_REASON_CPU0_MWDT1)
2020-07-23 13:40:10 +08:00
#if !CONFIG_FREERTOS_UNICORE
|| (rst_reas[1] == RESET_REASON_CPU1_MWDT0 || rst_reas[1] == RESET_REASON_CPU1_SW ||
rst_reas[1] == RESET_REASON_CPU1_RTC_WDT || rst_reas[1] == RESET_REASON_CPU1_MWDT1)
2020-07-23 13:40:10 +08:00
#endif
) {
common_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN0_REG);
hwcrypto_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN1_REG);
wifi_bt_sdio_clk = ~READ_PERI_REG(SYSTEM_WIFI_CLK_EN_REG);
} else {
common_perip_clk = SYSTEM_WDG_CLK_EN |
SYSTEM_I2S0_CLK_EN |
#if CONFIG_ESP_CONSOLE_UART_NUM != 0
2020-07-23 13:40:10 +08:00
SYSTEM_UART_CLK_EN |
#endif
#if CONFIG_ESP_CONSOLE_UART_NUM != 1
2020-07-23 13:40:10 +08:00
SYSTEM_UART1_CLK_EN |
#endif
#if CONFIG_ESP_CONSOLE_UART_NUM != 2
2020-07-23 13:40:10 +08:00
SYSTEM_UART2_CLK_EN |
#endif
SYSTEM_USB_CLK_EN |
SYSTEM_SPI2_CLK_EN |
SYSTEM_I2C_EXT0_CLK_EN |
SYSTEM_UHCI0_CLK_EN |
SYSTEM_RMT_CLK_EN |
SYSTEM_PCNT_CLK_EN |
SYSTEM_LEDC_CLK_EN |
SYSTEM_TIMERGROUP1_CLK_EN |
SYSTEM_SPI3_CLK_EN |
SYSTEM_SPI4_CLK_EN |
SYSTEM_PWM0_CLK_EN |
SYSTEM_TWAI_CLK_EN |
2020-07-23 13:40:10 +08:00
SYSTEM_PWM1_CLK_EN |
SYSTEM_I2S1_CLK_EN |
SYSTEM_SPI2_DMA_CLK_EN |
SYSTEM_SPI3_DMA_CLK_EN |
SYSTEM_PWM2_CLK_EN |
SYSTEM_PWM3_CLK_EN;
common_perip_clk1 = 0;
hwcrypto_perip_clk = SYSTEM_CRYPTO_AES_CLK_EN |
SYSTEM_CRYPTO_SHA_CLK_EN |
SYSTEM_CRYPTO_RSA_CLK_EN;
wifi_bt_sdio_clk = SYSTEM_WIFI_CLK_WIFI_EN |
SYSTEM_WIFI_CLK_BT_EN_M |
SYSTEM_WIFI_CLK_I2C_CLK_EN |
2020-07-23 13:40:10 +08:00
SYSTEM_WIFI_CLK_UNUSED_BIT12 |
SYSTEM_WIFI_CLK_SDIO_HOST_EN;
}
//Reset the communication peripherals like I2C, SPI, UART, I2S and bring them to known state.
common_perip_clk |= SYSTEM_I2S0_CLK_EN |
#if CONFIG_ESP_CONSOLE_UART_NUM != 0
2020-07-23 13:40:10 +08:00
SYSTEM_UART_CLK_EN |
#endif
#if CONFIG_ESP_CONSOLE_UART_NUM != 1
2020-07-23 13:40:10 +08:00
SYSTEM_UART1_CLK_EN |
#endif
#if CONFIG_ESP_CONSOLE_UART_NUM != 2
2020-07-23 13:40:10 +08:00
SYSTEM_UART2_CLK_EN |
#endif
SYSTEM_USB_CLK_EN |
SYSTEM_SPI2_CLK_EN |
SYSTEM_I2C_EXT0_CLK_EN |
SYSTEM_UHCI0_CLK_EN |
SYSTEM_RMT_CLK_EN |
SYSTEM_UHCI1_CLK_EN |
SYSTEM_SPI3_CLK_EN |
SYSTEM_SPI4_CLK_EN |
SYSTEM_I2C_EXT1_CLK_EN |
SYSTEM_I2S1_CLK_EN |
SYSTEM_SPI2_DMA_CLK_EN |
SYSTEM_SPI3_DMA_CLK_EN;
common_perip_clk1 = 0;
/* Disable some peripheral clocks. */
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN0_REG, common_perip_clk);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN0_REG, common_perip_clk);
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, common_perip_clk1);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, common_perip_clk1);
/* Disable hardware crypto clocks. */
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, hwcrypto_perip_clk);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, hwcrypto_perip_clk);
/* Force clear backup dma reset signal. This is a fix to the backup dma
* implementation in the ROM, the reset signal was not cleared when the
* backup dma was started, which caused the backup dma operation to fail. */
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_PERI_BACKUP_RST);
2020-07-23 13:40:10 +08:00
/* Disable WiFi/BT/SDIO clocks. */
CLEAR_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, wifi_bt_sdio_clk);
2021-01-25 00:18:42 +08:00
SET_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_EN);
2020-07-23 13:40:10 +08:00
/* Set WiFi light sleep clock source to RTC slow clock */
REG_SET_FIELD(SYSTEM_BT_LPCK_DIV_INT_REG, SYSTEM_BT_LPCK_DIV_NUM, 0);
CLEAR_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_XTAL32K | SYSTEM_LPCLK_SEL_XTAL | SYSTEM_LPCLK_SEL_8M | SYSTEM_LPCLK_SEL_RTC_SLOW);
SET_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_RTC_SLOW);
2020-07-23 13:40:10 +08:00
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
}
// Workaround for bootloader not calibrated well issue.
// Placed in IRAM because disabling BBPLL may influence the cache
static void IRAM_ATTR NOINLINE_ATTR recalib_bbpll(void)
{
rtc_cpu_freq_config_t old_config;
rtc_clk_cpu_freq_get_config(&old_config);
// There are two paths we arrive here: 1. CPU reset. 2. Other reset reasons.
// - For other reasons, the bootloader will set CPU source to BBPLL and enable it. But there are calibration issues.
// Turn off the BBPLL and do calibration again to fix the issue.
// - For CPU reset, the CPU source will be set to XTAL, while the BBPLL is kept to meet USB Serial JTAG's
// requirements. In this case, we don't touch BBPLL to avoid USJ disconnection.
if (old_config.source == SOC_CPU_CLK_SRC_PLL) {
rtc_clk_cpu_freq_set_xtal();
rtc_clk_cpu_freq_set_config(&old_config);
}
}