esp-idf/components/soc/esp32c2/include/soc/soc.h

237 lines
11 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#ifndef __ASSEMBLER__
#include <stdint.h>
#include "esp_assert.h"
#endif
#include "esp_bit_defs.h"
#include "reg_base.h"
#define PRO_CPU_NUM (0)
#define DR_REG_RTC_BLE_TIMER_BASE( i ) ( \
( (i) == 0 ) ? ( 0x6004E000 ) : \
( (i) == 1 ) ? ( 0x6004E100 ) : \
( (i) == 2 ) ? ( 0x6004E200 ) : \
0 \
)
#define REG_UHCI_BASE(i) (DR_REG_UHCI0_BASE - (i) * 0x8000)
#define REG_UART_BASE(i) (DR_REG_UART_BASE + (i) * 0x10000)
#define REG_UART_AHB_BASE(i) (0x60000000 + (i) * 0x10000)
#define UART_FIFO_AHB_REG(i) (REG_UART_AHB_BASE(i) + 0x0)
#define REG_TIMG_BASE(i) (DR_REG_TIMERGROUP0_BASE + (i)*0x1000)
#define REG_SPI_MEM_BASE(i) (DR_REG_SPI0_BASE - (i) * 0x1000)
#define REG_I2C_BASE(i) (DR_REG_I2C_EXT_BASE + (i) * 0x14000 )
//Registers Operation {{
#define ETS_UNCACHED_ADDR(addr) (addr)
#define ETS_CACHED_ADDR(addr) (addr)
#ifndef __ASSEMBLER__
//write value to register
#define REG_WRITE(_r, _v) do { \
(*(volatile uint32_t *)(_r)) = (_v); \
} while(0)
//read value from register
#define REG_READ(_r) ({ \
(*(volatile uint32_t *)(_r)); \
})
//get bit or get bits from register
#define REG_GET_BIT(_r, _b) ({ \
(*(volatile uint32_t*)(_r) & (_b)); \
})
//set bit or set bits to register
#define REG_SET_BIT(_r, _b) do { \
*(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r)) | (_b); \
} while(0)
//clear bit or clear bits of register
#define REG_CLR_BIT(_r, _b) do { \
*(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r)) & (~(_b)); \
} while(0)
//set bits of register controlled by mask
#define REG_SET_BITS(_r, _b, _m) do { \
*(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r) & ~(_m)) | ((_b) & (_m)); \
} while(0)
//get field from register, uses field _S & _V to determine mask
#define REG_GET_FIELD(_r, _f) ({ \
((REG_READ(_r) >> (_f##_S)) & (_f##_V)); \
})
//set field of a register from variable, uses field _S & _V to determine mask
#define REG_SET_FIELD(_r, _f, _v) do { \
REG_WRITE((_r),((REG_READ(_r) & ~((_f##_V) << (_f##_S)))|(((_v) & (_f##_V))<<(_f##_S)))); \
} while(0)
//get field value from a variable, used when _f is not left shifted by _f##_S
#define VALUE_GET_FIELD(_r, _f) (((_r) >> (_f##_S)) & (_f))
//get field value from a variable, used when _f is left shifted by _f##_S
#define VALUE_GET_FIELD2(_r, _f) (((_r) & (_f))>> (_f##_S))
//set field value to a variable, used when _f is not left shifted by _f##_S
#define VALUE_SET_FIELD(_r, _f, _v) ((_r)=(((_r) & ~((_f) << (_f##_S)))|((_v)<<(_f##_S))))
//set field value to a variable, used when _f is left shifted by _f##_S
#define VALUE_SET_FIELD2(_r, _f, _v) ((_r)=(((_r) & ~(_f))|((_v)<<(_f##_S))))
//generate a value from a field value, used when _f is not left shifted by _f##_S
#define FIELD_TO_VALUE(_f, _v) (((_v)&(_f))<<_f##_S)
//generate a value from a field value, used when _f is left shifted by _f##_S
#define FIELD_TO_VALUE2(_f, _v) (((_v)<<_f##_S) & (_f))
//read value from register
#define READ_PERI_REG(addr) ({ \
(*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))); \
})
//write value to register
#define WRITE_PERI_REG(addr, val) do { \
(*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))) = (uint32_t)(val); \
} while(0)
//clear bits of register controlled by mask
#define CLEAR_PERI_REG_MASK(reg, mask) do { \
WRITE_PERI_REG((reg), (READ_PERI_REG(reg)&(~(mask)))); \
} while(0)
//set bits of register controlled by mask
#define SET_PERI_REG_MASK(reg, mask) do { \
WRITE_PERI_REG((reg), (READ_PERI_REG(reg)|(mask))); \
} while(0)
//get bits of register controlled by mask
#define GET_PERI_REG_MASK(reg, mask) ({ \
(READ_PERI_REG(reg) & (mask)); \
})
//get bits of register controlled by highest bit and lowest bit
#define GET_PERI_REG_BITS(reg, hipos,lowpos) ({ \
((READ_PERI_REG(reg)>>(lowpos))&((1<<((hipos)-(lowpos)+1))-1)); \
})
//set bits of register controlled by mask and shift
#define SET_PERI_REG_BITS(reg,bit_map,value,shift) do { \
WRITE_PERI_REG((reg),(READ_PERI_REG(reg)&(~((bit_map)<<(shift))))|(((value) & (bit_map))<<(shift)) ); \
} while(0)
//get field of register
#define GET_PERI_REG_BITS2(reg, mask,shift) ({ \
((READ_PERI_REG(reg)>>(shift))&(mask)); \
})
#endif /* !__ASSEMBLER__ */
//}}
//Periheral Clock {{
#define APB_CLK_FREQ_ROM ( 40*1000000 )
#define CPU_CLK_FREQ_ROM APB_CLK_FREQ_ROM
#define EFUSE_CLK_FREQ_ROM ( 20*1000000)
#define CPU_CLK_FREQ APB_CLK_FREQ
#define APB_CLK_FREQ ( 40*1000000 )
#define REF_CLK_FREQ ( 1000000 )
#define RTC_CLK_FREQ (20*1000000)
#define UART_CLK_FREQ APB_CLK_FREQ
#define WDT_CLK_FREQ APB_CLK_FREQ
#define TIMER_CLK_FREQ (80000000>>4) //80MHz divided by 4
#define SPI_CLK_DIV 4
#define TICKS_PER_US_ROM 40 // CPU is 40MHz
#define GPIO_MATRIX_DELAY_NS 0
//}}
/* Overall memory map */
#define SOC_DROM_LOW 0x3C000000
2022-02-09 06:48:31 -05:00
#define SOC_DROM_HIGH 0x3C400000
#define SOC_IROM_LOW 0x42000000
#define SOC_IROM_HIGH 0x42400000
#define SOC_IROM_MASK_LOW 0x40000000
2022-02-09 06:48:31 -05:00
#define SOC_IROM_MASK_HIGH 0x40090000
#define SOC_DROM_MASK_LOW 0x3FF00000
2022-02-09 06:48:31 -05:00
#define SOC_DROM_MASK_HIGH 0x3FF50000
#define SOC_IRAM_LOW 0x4037C000
#define SOC_IRAM_HIGH 0x403C0000
#define SOC_DRAM_LOW 0x3FCA0000
#define SOC_DRAM_HIGH 0x3FCE0000
//First and last words of the D/IRAM region, for both the DRAM address as well as the IRAM alias.
#define SOC_DIRAM_IRAM_LOW 0x40380000
#define SOC_DIRAM_IRAM_HIGH 0x403C0000
#define SOC_DIRAM_DRAM_LOW 0x3FCA0000
#define SOC_DIRAM_DRAM_HIGH 0x3FCE0000
#define SOC_I_D_OFFSET (SOC_DIRAM_IRAM_LOW - SOC_DIRAM_DRAM_LOW)
#define MAP_DRAM_TO_IRAM(addr) (addr + SOC_I_D_OFFSET)
#define MAP_IRAM_TO_DRAM(addr) (addr - SOC_I_D_OFFSET)
// Region of memory accessible via DMA. See esp_ptr_dma_capable().
#define SOC_DMA_LOW 0x3FC88000
#define SOC_DMA_HIGH 0x3FD00000
// Region of RAM that is byte-accessible. See esp_ptr_byte_accessible().
#define SOC_BYTE_ACCESSIBLE_LOW 0x3FC88000
#define SOC_BYTE_ACCESSIBLE_HIGH 0x3FD00000
//Region of memory that is internal, as in on the same silicon die as the ESP32 CPUs
//(excluding RTC data region, that's checked separately.) See esp_ptr_internal().
#define SOC_MEM_INTERNAL_LOW 0x3FCA0000
#define SOC_MEM_INTERNAL_HIGH 0x3FCE0000
#define SOC_MAX_CONTIGUOUS_RAM_SIZE (SOC_IRAM_HIGH - SOC_IRAM_LOW) ///< Largest span of contiguous memory (DRAM or IRAM) in the address space
// Region of address space that holds peripherals
#define SOC_PERIPHERAL_LOW 0x60000000
#define SOC_PERIPHERAL_HIGH 0x60100000
// Debug region, not used by software
#define SOC_DEBUG_LOW 0x20000000
#define SOC_DEBUG_HIGH 0x28000000
// Start (highest address) of ROM boot stack, only relevant during early boot
#define SOC_ROM_STACK_START 0x3fcdeb70
#define SOC_ROM_STACK_SIZE 0x2000
//On RISC-V CPUs, the interrupt sources are all external interrupts, whose type, source and priority are configured by SW.
//There is no HW NMI conception. SW should controlled the masked levels through INT_THRESH_REG.
//CPU0 Interrupt number reserved in riscv/vector.S, not touch this.
#define ETS_T1_WDT_INUM 24 // Remove TODO: IDF-4246
#define ETS_CACHEERR_INUM 25
#define ETS_MEMPROT_ERR_INUM 26
#define ETS_DPORT_INUM 28
//CPU0 Max valid interrupt number
#define ETS_MAX_INUM 31
//CPU0 Interrupt number used in ROM, should be cancelled in SDK
#define ETS_SLC_INUM 1
#define ETS_UART0_INUM 5
#define ETS_UART1_INUM 5
#define ETS_SPI2_INUM 1
//CPU0 Interrupt number used in ROM code only when module init function called, should pay attention here.
#define ETS_GPIO_INUM 4
//Other interrupt number should be managed by the user
//Invalid interrupt for number interrupt matrix
#define ETS_INVALID_INUM 0
//Interrupt medium level, used for INT WDT for example
#define SOC_INTERRUPT_LEVEL_MEDIUM 4