/* * SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #pragma once #ifndef __ASSEMBLER__ #include #include "esp_assert.h" #endif #include "esp_bit_defs.h" #include "reg_base.h" #define PRO_CPU_NUM (0) #define DR_REG_RTC_BLE_TIMER_BASE( i ) ( \ ( (i) == 0 ) ? ( 0x6004E000 ) : \ ( (i) == 1 ) ? ( 0x6004E100 ) : \ ( (i) == 2 ) ? ( 0x6004E200 ) : \ 0 \ ) #define REG_UHCI_BASE(i) (DR_REG_UHCI0_BASE - (i) * 0x8000) #define REG_UART_BASE(i) (DR_REG_UART_BASE + (i) * 0x10000) #define REG_UART_AHB_BASE(i) (0x60000000 + (i) * 0x10000) #define UART_FIFO_AHB_REG(i) (REG_UART_AHB_BASE(i) + 0x0) #define REG_TIMG_BASE(i) (DR_REG_TIMERGROUP0_BASE + (i)*0x1000) #define REG_SPI_MEM_BASE(i) (DR_REG_SPI0_BASE - (i) * 0x1000) #define REG_I2C_BASE(i) (DR_REG_I2C_EXT_BASE + (i) * 0x14000 ) //Registers Operation {{ #define ETS_UNCACHED_ADDR(addr) (addr) #define ETS_CACHED_ADDR(addr) (addr) #ifndef __ASSEMBLER__ //write value to register #define REG_WRITE(_r, _v) do { \ (*(volatile uint32_t *)(_r)) = (_v); \ } while(0) //read value from register #define REG_READ(_r) ({ \ (*(volatile uint32_t *)(_r)); \ }) //get bit or get bits from register #define REG_GET_BIT(_r, _b) ({ \ (*(volatile uint32_t*)(_r) & (_b)); \ }) //set bit or set bits to register #define REG_SET_BIT(_r, _b) do { \ *(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r)) | (_b); \ } while(0) //clear bit or clear bits of register #define REG_CLR_BIT(_r, _b) do { \ *(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r)) & (~(_b)); \ } while(0) //set bits of register controlled by mask #define REG_SET_BITS(_r, _b, _m) do { \ *(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r) & ~(_m)) | ((_b) & (_m)); \ } while(0) //get field from register, uses field _S & _V to determine mask #define REG_GET_FIELD(_r, _f) ({ \ ((REG_READ(_r) >> (_f##_S)) & (_f##_V)); \ }) //set field of a register from variable, uses field _S & _V to determine mask #define REG_SET_FIELD(_r, _f, _v) do { \ REG_WRITE((_r),((REG_READ(_r) & ~((_f##_V) << (_f##_S)))|(((_v) & (_f##_V))<<(_f##_S)))); \ } while(0) //get field value from a variable, used when _f is not left shifted by _f##_S #define VALUE_GET_FIELD(_r, _f) (((_r) >> (_f##_S)) & (_f)) //get field value from a variable, used when _f is left shifted by _f##_S #define VALUE_GET_FIELD2(_r, _f) (((_r) & (_f))>> (_f##_S)) //set field value to a variable, used when _f is not left shifted by _f##_S #define VALUE_SET_FIELD(_r, _f, _v) ((_r)=(((_r) & ~((_f) << (_f##_S)))|((_v)<<(_f##_S)))) //set field value to a variable, used when _f is left shifted by _f##_S #define VALUE_SET_FIELD2(_r, _f, _v) ((_r)=(((_r) & ~(_f))|((_v)<<(_f##_S)))) //generate a value from a field value, used when _f is not left shifted by _f##_S #define FIELD_TO_VALUE(_f, _v) (((_v)&(_f))<<_f##_S) //generate a value from a field value, used when _f is left shifted by _f##_S #define FIELD_TO_VALUE2(_f, _v) (((_v)<<_f##_S) & (_f)) //read value from register #define READ_PERI_REG(addr) ({ \ (*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))); \ }) //write value to register #define WRITE_PERI_REG(addr, val) do { \ (*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))) = (uint32_t)(val); \ } while(0) //clear bits of register controlled by mask #define CLEAR_PERI_REG_MASK(reg, mask) do { \ WRITE_PERI_REG((reg), (READ_PERI_REG(reg)&(~(mask)))); \ } while(0) //set bits of register controlled by mask #define SET_PERI_REG_MASK(reg, mask) do { \ WRITE_PERI_REG((reg), (READ_PERI_REG(reg)|(mask))); \ } while(0) //get bits of register controlled by mask #define GET_PERI_REG_MASK(reg, mask) ({ \ (READ_PERI_REG(reg) & (mask)); \ }) //get bits of register controlled by highest bit and lowest bit #define GET_PERI_REG_BITS(reg, hipos,lowpos) ({ \ ((READ_PERI_REG(reg)>>(lowpos))&((1<<((hipos)-(lowpos)+1))-1)); \ }) //set bits of register controlled by mask and shift #define SET_PERI_REG_BITS(reg,bit_map,value,shift) do { \ WRITE_PERI_REG((reg),(READ_PERI_REG(reg)&(~((bit_map)<<(shift))))|(((value) & (bit_map))<<(shift)) ); \ } while(0) //get field of register #define GET_PERI_REG_BITS2(reg, mask,shift) ({ \ ((READ_PERI_REG(reg)>>(shift))&(mask)); \ }) #endif /* !__ASSEMBLER__ */ //}} //Periheral Clock {{ #define APB_CLK_FREQ_ROM ( 40*1000000 ) #define CPU_CLK_FREQ_ROM APB_CLK_FREQ_ROM #define EFUSE_CLK_FREQ_ROM ( 20*1000000) #define CPU_CLK_FREQ APB_CLK_FREQ #define APB_CLK_FREQ ( 40*1000000 ) #define REF_CLK_FREQ ( 1000000 ) #define RTC_CLK_FREQ (20*1000000) #define UART_CLK_FREQ APB_CLK_FREQ #define WDT_CLK_FREQ APB_CLK_FREQ #define TIMER_CLK_FREQ (80000000>>4) //80MHz divided by 4 #define SPI_CLK_DIV 4 #define TICKS_PER_US_ROM 40 // CPU is 40MHz #define GPIO_MATRIX_DELAY_NS 0 //}} /* Overall memory map */ #define SOC_DROM_LOW 0x3C000000 #define SOC_DROM_HIGH 0x3C400000 #define SOC_IROM_LOW 0x42000000 #define SOC_IROM_HIGH 0x42400000 #define SOC_IROM_MASK_LOW 0x40000000 #define SOC_IROM_MASK_HIGH 0x40090000 #define SOC_DROM_MASK_LOW 0x3FF00000 #define SOC_DROM_MASK_HIGH 0x3FF50000 #define SOC_IRAM_LOW 0x4037C000 #define SOC_IRAM_HIGH 0x403C0000 #define SOC_DRAM_LOW 0x3FCA0000 #define SOC_DRAM_HIGH 0x3FCE0000 //First and last words of the D/IRAM region, for both the DRAM address as well as the IRAM alias. #define SOC_DIRAM_IRAM_LOW 0x40380000 #define SOC_DIRAM_IRAM_HIGH 0x403C0000 #define SOC_DIRAM_DRAM_LOW 0x3FCA0000 #define SOC_DIRAM_DRAM_HIGH 0x3FCE0000 #define SOC_I_D_OFFSET (SOC_DIRAM_IRAM_LOW - SOC_DIRAM_DRAM_LOW) #define MAP_DRAM_TO_IRAM(addr) (addr + SOC_I_D_OFFSET) #define MAP_IRAM_TO_DRAM(addr) (addr - SOC_I_D_OFFSET) // Region of memory accessible via DMA. See esp_ptr_dma_capable(). #define SOC_DMA_LOW 0x3FC88000 #define SOC_DMA_HIGH 0x3FD00000 // Region of RAM that is byte-accessible. See esp_ptr_byte_accessible(). #define SOC_BYTE_ACCESSIBLE_LOW 0x3FC88000 #define SOC_BYTE_ACCESSIBLE_HIGH 0x3FD00000 //Region of memory that is internal, as in on the same silicon die as the ESP32 CPUs //(excluding RTC data region, that's checked separately.) See esp_ptr_internal(). #define SOC_MEM_INTERNAL_LOW 0x3FCA0000 #define SOC_MEM_INTERNAL_HIGH 0x3FCE0000 #define SOC_MAX_CONTIGUOUS_RAM_SIZE (SOC_IRAM_HIGH - SOC_IRAM_LOW) ///< Largest span of contiguous memory (DRAM or IRAM) in the address space // Region of address space that holds peripherals #define SOC_PERIPHERAL_LOW 0x60000000 #define SOC_PERIPHERAL_HIGH 0x60100000 // Debug region, not used by software #define SOC_DEBUG_LOW 0x20000000 #define SOC_DEBUG_HIGH 0x28000000 // Start (highest address) of ROM boot stack, only relevant during early boot #define SOC_ROM_STACK_START 0x3fcdeb70 #define SOC_ROM_STACK_SIZE 0x2000 //On RISC-V CPUs, the interrupt sources are all external interrupts, whose type, source and priority are configured by SW. //There is no HW NMI conception. SW should controlled the masked levels through INT_THRESH_REG. //CPU0 Interrupt number reserved in riscv/vector.S, not touch this. #define ETS_T1_WDT_INUM 24 // Remove TODO: IDF-4246 #define ETS_CACHEERR_INUM 25 #define ETS_MEMPROT_ERR_INUM 26 #define ETS_DPORT_INUM 28 //CPU0 Max valid interrupt number #define ETS_MAX_INUM 31 //CPU0 Interrupt number used in ROM, should be cancelled in SDK #define ETS_SLC_INUM 1 #define ETS_UART0_INUM 5 #define ETS_UART1_INUM 5 #define ETS_SPI2_INUM 1 //CPU0 Interrupt number used in ROM code only when module init function called, should pay attention here. #define ETS_GPIO_INUM 4 //Other interrupt number should be managed by the user //Invalid interrupt for number interrupt matrix #define ETS_INVALID_INUM 0 //Interrupt medium level, used for INT WDT for example #define SOC_INTERRUPT_LEVEL_MEDIUM 4