esp-idf/components/bootloader_support/src/esp32/bootloader_esp32.c

421 lines
15 KiB
C
Raw Normal View History

// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_image_format.h"
#include "flash_qio_mode.h"
#include "bootloader_init.h"
#include "bootloader_clock.h"
#include "bootloader_common.h"
#include "bootloader_flash_config.h"
#include "bootloader_mem.h"
#include "bootloader_console.h"
#include "soc/cpu.h"
#include "soc/dport_reg.h"
#include "soc/efuse_reg.h"
2020-02-18 08:10:37 -05:00
#include "soc/gpio_periph.h"
#include "soc/gpio_sig_map.h"
#include "soc/io_mux_reg.h"
#include "soc/rtc.h"
#include "soc/spi_periph.h"
#include "esp32/rom/cache.h"
#include "esp32/rom/ets_sys.h"
#include "esp_rom_gpio.h"
#include "esp_rom_efuse.h"
#include "esp32/rom/spi_flash.h"
#include "esp32/rom/rtc.h"
static const char *TAG = "boot.esp32";
#define FLASH_CLK_IO SPI_CLK_GPIO_NUM
#define FLASH_CS_IO SPI_CS0_GPIO_NUM
#define FLASH_SPIQ_IO SPI_Q_GPIO_NUM
#define FLASH_SPID_IO SPI_D_GPIO_NUM
#define FLASH_SPIWP_IO SPI_WP_GPIO_NUM
#define FLASH_SPIHD_IO SPI_HD_GPIO_NUM
void bootloader_configure_spi_pins(int drv)
{
uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
uint32_t pkg_ver = chip_ver & 0x7;
if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 ||
pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 ||
pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4 ||
pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) {
// For ESP32D2WD or ESP32-PICO series,the SPI pins are already configured
// flash clock signal should come from IO MUX.
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
} else {
const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info();
if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_SPI) {
esp_rom_gpio_connect_out_signal(FLASH_CS_IO, SPICS0_OUT_IDX, 0, 0);
esp_rom_gpio_connect_out_signal(FLASH_SPIQ_IO, SPIQ_OUT_IDX, 0, 0);
esp_rom_gpio_connect_in_signal(FLASH_SPIQ_IO, SPIQ_IN_IDX, 0);
esp_rom_gpio_connect_out_signal(FLASH_SPID_IO, SPID_OUT_IDX, 0, 0);
esp_rom_gpio_connect_in_signal(FLASH_SPID_IO, SPID_IN_IDX, 0);
esp_rom_gpio_connect_out_signal(FLASH_SPIWP_IO, SPIWP_OUT_IDX, 0, 0);
esp_rom_gpio_connect_in_signal(FLASH_SPIWP_IO, SPIWP_IN_IDX, 0);
esp_rom_gpio_connect_out_signal(FLASH_SPIHD_IO, SPIHD_OUT_IDX, 0, 0);
esp_rom_gpio_connect_in_signal(FLASH_SPIHD_IO, SPIHD_IN_IDX, 0);
//select pin function gpio
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA0_U, PIN_FUNC_GPIO);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA1_U, PIN_FUNC_GPIO);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA2_U, PIN_FUNC_GPIO);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA3_U, PIN_FUNC_GPIO);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, PIN_FUNC_GPIO);
// flash clock signal should come from IO MUX.
// set drive ability for clock
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
#if CONFIG_SPIRAM_TYPE_ESPPSRAM32 || CONFIG_SPIRAM_TYPE_ESPPSRAM64
uint32_t flash_id = g_rom_flashchip.device_id;
if (flash_id == FLASH_ID_GD25LQ32C) {
// Set drive ability for 1.8v flash in 80Mhz.
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA0_U, FUN_DRV, 3, FUN_DRV_S);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA1_U, FUN_DRV, 3, FUN_DRV_S);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA2_U, FUN_DRV, 3, FUN_DRV_S);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA3_U, FUN_DRV, 3, FUN_DRV_S);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CMD_U, FUN_DRV, 3, FUN_DRV_S);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, 3, FUN_DRV_S);
}
#endif
}
}
}
static void bootloader_reset_mmu(void)
{
/* completely reset MMU in case serial bootloader was running */
Cache_Read_Disable(0);
#if !CONFIG_FREERTOS_UNICORE
Cache_Read_Disable(1);
#endif
Cache_Flush(0);
#if !CONFIG_FREERTOS_UNICORE
Cache_Flush(1);
#endif
mmu_init(0);
#if !CONFIG_FREERTOS_UNICORE
/* The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are
necessary to work around a hardware bug. */
DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
mmu_init(1);
DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
#endif
/* normal ROM boot exits with DROM0 cache unmasked,
but serial bootloader exits with it masked. */
DPORT_REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0);
#if !CONFIG_FREERTOS_UNICORE
DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0);
#endif
}
static esp_err_t bootloader_check_rated_cpu_clock(void)
{
int rated_freq = bootloader_clock_get_rated_freq_mhz();
if (rated_freq < CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ) {
ESP_LOGE(TAG, "Chip CPU frequency rated for %dMHz, configured for %dMHz. Modify CPU frequency in menuconfig",
rated_freq, CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ);
return ESP_FAIL;
}
return ESP_OK;
}
static void update_flash_config(const esp_image_header_t *bootloader_hdr)
{
uint32_t size;
switch (bootloader_hdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
size = 1;
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
size = 2;
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
size = 4;
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
size = 8;
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
size = 16;
break;
default:
size = 2;
}
Cache_Read_Disable(0);
// Set flash chip size
esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff);
// TODO: set mode
// TODO: set frequency
Cache_Flush(0);
Cache_Read_Enable(0);
}
static void print_flash_info(const esp_image_header_t *bootloader_hdr)
{
ESP_LOGD(TAG, "magic %02x", bootloader_hdr->magic);
ESP_LOGD(TAG, "segments %02x", bootloader_hdr->segment_count);
ESP_LOGD(TAG, "spi_mode %02x", bootloader_hdr->spi_mode);
ESP_LOGD(TAG, "spi_speed %02x", bootloader_hdr->spi_speed);
ESP_LOGD(TAG, "spi_size %02x", bootloader_hdr->spi_size);
const char *str;
switch (bootloader_hdr->spi_speed) {
case ESP_IMAGE_SPI_SPEED_40M:
str = "40MHz";
break;
case ESP_IMAGE_SPI_SPEED_26M:
str = "26.7MHz";
break;
case ESP_IMAGE_SPI_SPEED_20M:
str = "20MHz";
break;
case ESP_IMAGE_SPI_SPEED_80M:
str = "80MHz";
break;
default:
str = "20MHz";
break;
}
ESP_LOGI(TAG, "SPI Speed : %s", str);
/* SPI mode could have been set to QIO during boot already,
so test the SPI registers not the flash header */
uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0));
if (spi_ctrl & SPI_FREAD_QIO) {
str = "QIO";
} else if (spi_ctrl & SPI_FREAD_QUAD) {
str = "QOUT";
} else if (spi_ctrl & SPI_FREAD_DIO) {
str = "DIO";
} else if (spi_ctrl & SPI_FREAD_DUAL) {
str = "DOUT";
} else if (spi_ctrl & SPI_FASTRD_MODE) {
str = "FAST READ";
} else {
str = "SLOW READ";
}
ESP_LOGI(TAG, "SPI Mode : %s", str);
switch (bootloader_hdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
str = "1MB";
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
str = "2MB";
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
str = "4MB";
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
str = "8MB";
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
str = "16MB";
break;
default:
str = "2MB";
break;
}
ESP_LOGI(TAG, "SPI Flash Size : %s", str);
}
static void IRAM_ATTR bootloader_init_flash_configure(void)
{
bootloader_flash_gpio_config(&bootloader_image_hdr);
bootloader_flash_dummy_config(&bootloader_image_hdr);
bootloader_flash_cs_timing_config();
}
static esp_err_t bootloader_init_spi_flash(void)
{
bootloader_init_flash_configure();
#ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info();
if (spiconfig != ESP_ROM_EFUSE_FLASH_DEFAULT_SPI && spiconfig != ESP_ROM_EFUSE_FLASH_DEFAULT_HSPI) {
ESP_LOGE(TAG, "SPI flash pins are overridden. Enable CONFIG_SPI_FLASH_ROM_DRIVER_PATCH in menuconfig");
return ESP_FAIL;
}
#endif
esp_rom_spiflash_unlock();
#if CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_ESPTOOLPY_FLASHMODE_QOUT
bootloader_enable_qio_mode();
#endif
print_flash_info(&bootloader_image_hdr);
update_flash_config(&bootloader_image_hdr);
return ESP_OK;
}
static void wdt_reset_cpu0_info_enable(void)
{
//We do not reset core1 info here because it didn't work before cpu1 was up. So we put it into call_start_cpu1.
DPORT_REG_SET_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_PDEBUG_ENABLE | DPORT_PRO_CPU_RECORD_ENABLE);
DPORT_REG_CLR_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_RECORD_ENABLE);
}
static void wdt_reset_info_dump(int cpu)
{
uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0,
lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0;
const char *cpu_name = cpu ? "APP" : "PRO";
if (cpu == 0) {
stat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_STATUS_REG);
pid = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PID_REG);
inst = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGINST_REG);
dstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGSTATUS_REG);
data = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGDATA_REG);
pc = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGPC_REG);
lsstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0STAT_REG);
lsaddr = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0ADDR_REG);
lsdata = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0DATA_REG);
} else {
#if !CONFIG_FREERTOS_UNICORE
stat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_STATUS_REG);
pid = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PID_REG);
inst = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGINST_REG);
dstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGSTATUS_REG);
data = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGDATA_REG);
pc = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGPC_REG);
lsstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0STAT_REG);
lsaddr = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0ADDR_REG);
lsdata = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0DATA_REG);
#endif
}
if (DPORT_RECORD_PDEBUGINST_SZ(inst) == 0 &&
DPORT_RECORD_PDEBUGSTATUS_BBCAUSE(dstat) == DPORT_RECORD_PDEBUGSTATUS_BBCAUSE_WAITI) {
ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x (waiti mode)", cpu_name, pc);
} else {
ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x", cpu_name, pc);
}
ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata);
}
static void bootloader_check_wdt_reset(void)
{
int wdt_rst = 0;
RESET_REASON rst_reas[2];
rst_reas[0] = rtc_get_reset_reason(0);
rst_reas[1] = rtc_get_reset_reason(1);
if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET ||
rst_reas[0] == TGWDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) {
ESP_LOGW(TAG, "PRO CPU has been reset by WDT.");
wdt_rst = 1;
}
if (rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET || rst_reas[1] == TG1WDT_SYS_RESET ||
rst_reas[1] == TGWDT_CPU_RESET || rst_reas[1] == RTCWDT_CPU_RESET) {
ESP_LOGW(TAG, "APP CPU has been reset by WDT.");
wdt_rst = 1;
}
if (wdt_rst) {
// if reset by WDT dump info from trace port
wdt_reset_info_dump(0);
#if !CONFIG_FREERTOS_UNICORE
wdt_reset_info_dump(1);
#endif
}
wdt_reset_cpu0_info_enable();
}
void abort(void)
{
#if !CONFIG_ESP_SYSTEM_PANIC_SILENT_REBOOT
ets_printf("abort() was called at PC 0x%08x\r\n", (intptr_t)__builtin_return_address(0) - 3);
#endif
if (esp_cpu_in_ocd_debug_mode()) {
__asm__("break 0,0");
}
while (1) {
}
}
esp_err_t bootloader_init(void)
{
esp_err_t ret = ESP_OK;
bootloader_init_mem();
// check that static RAM is after the stack
#ifndef NDEBUG
{
assert(&_bss_start <= &_bss_end);
assert(&_data_start <= &_data_end);
int *sp = get_sp();
assert(sp < &_bss_start);
assert(sp < &_data_start);
}
#endif
// clear bss section
bootloader_clear_bss_section();
// bootst up vddsdio
bootloader_common_vddsdio_configure();
// reset MMU
bootloader_reset_mmu();
// check rated CPU clock
if ((ret = bootloader_check_rated_cpu_clock()) != ESP_OK) {
goto err;
}
// config clock
bootloader_clock_configure();
// initialize uart console, from now on, we can use esp_log
bootloader_console_init();
/* print 2nd bootloader banner */
bootloader_print_banner();
// update flash ID
bootloader_flash_update_id();
// read bootloader header
if ((ret = bootloader_read_bootloader_header()) != ESP_OK) {
goto err;
}
// read chip revision and check if it's compatible to bootloader
if ((ret = bootloader_check_bootloader_validity()) != ESP_OK) {
goto err;
}
// initialize spi flash
if ((ret = bootloader_init_spi_flash()) != ESP_OK) {
goto err;
}
// check whether a WDT reset happend
bootloader_check_wdt_reset();
// config WDT
bootloader_config_wdt();
// enable RNG early entropy source
bootloader_enable_random();
err:
return ret;
}