esp-idf/components/driver/esp32c3/adc.c

855 lines
28 KiB
C
Raw Normal View History

// Copyright 2016-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <esp_types.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "sys/lock.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "freertos/ringbuf.h"
#include "esp32c3/rom/ets_sys.h"
#include "driver/periph_ctrl.h"
#include "driver/gpio.h"
#include "driver/adc.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#include "hal/dma_types.h"
2020-12-22 23:29:57 -05:00
#include "esp32c3/esp_efuse_rtc_calib.h"
#define ADC_CHECK_RET(fun_ret) ({ \
if (fun_ret != ESP_OK) { \
ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \
return ESP_FAIL; \
} \
})
static const char *ADC_TAG = "ADC";
#define ADC_CHECK(a, str, ret_val) ({ \
if (!(a)) { \
ESP_LOGE(ADC_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret_val); \
} \
})
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
#define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
/*---------------------------------------------------------------
Digital Controller Context
---------------------------------------------------------------*/
/**
* 1. adc_digi_mutex: this mutex lock is used for ADC digital controller. On ESP32-C3, the ADC single read APIs (unit1 & unit2)
* and ADC DMA continuous read APIs share the ``apb_saradc_struct.h`` regs.
*
* 2. sar_adc_mutex: this mutex lock is used for SARADC2 module. On ESP32C-C3, the ADC single read APIs (unit2), ADC DMA
* continuous read APIs and WIFI share the SARADC2 analog IP.
*
* Sequence:
* Acquire: 1. sar_adc_mutex; 2. adc_digi_mutex;
* Release: 1. adc_digi_mutex; 2. sar_adc_mutex;
*/
static _lock_t adc_digi_mutex;
#define ADC_DIGI_LOCK_ACQUIRE() _lock_acquire(&adc_digi_mutex)
#define ADC_DIGI_LOCK_RELEASE() _lock_release(&adc_digi_mutex)
static _lock_t sar_adc2_mutex;
#define SAC_ADC2_LOCK_ACQUIRE() _lock_acquire(&sar_adc2_mutex)
#define SAC_ADC2_LOCK_RELEASE() _lock_release(&sar_adc2_mutex)
#define INTERNAL_BUF_NUM 5
#define IN_SUC_EOF_BIT GDMA_LL_EVENT_RX_SUC_EOF
typedef struct adc_digi_context_t {
intr_handle_t dma_intr_hdl; //MD interrupt handle
uint32_t bytes_between_intr; //bytes between in suc eof intr
uint8_t *rx_dma_buf; //dma buffer
adc_dma_hal_context_t hal_dma; //dma context (hal)
adc_dma_hal_config_t hal_dma_config; //dma config (hal)
RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler
bool ringbuf_overflow_flag; //1: ringbuffer overflow
bool driver_start_flag; //1: driver is started; 0: driver is stoped
2020-12-22 23:29:57 -05:00
bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
2020-12-22 23:29:57 -05:00
adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
adc_digi_config_t digi_controller_config; //Digital Controller Configuration
} adc_digi_context_t;
static adc_digi_context_t *s_adc_digi_ctx = NULL;
2020-12-22 23:29:57 -05:00
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten);
/*---------------------------------------------------------------
ADC Continuous Read Mode (via DMA)
---------------------------------------------------------------*/
static void adc_dma_intr(void* arg);
static int8_t adc_digi_get_io_num(uint8_t adc_unit, uint8_t adc_channel)
{
return adc_channel_io_map[adc_unit][adc_channel];
}
static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
{
esp_err_t ret = ESP_OK;
uint64_t gpio_mask = 0;
uint32_t n = 0;
int8_t io = 0;
while (channel_mask) {
if (channel_mask & 0x1) {
io = adc_digi_get_io_num(adc_unit, n);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
}
gpio_mask |= BIT64(io);
}
channel_mask = channel_mask >> 1;
n++;
}
gpio_config_t cfg = {
.pin_bit_mask = gpio_mask,
.mode = GPIO_MODE_DISABLE,
};
ret = gpio_config(&cfg);
return ret;
}
esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
{
esp_err_t ret = ESP_OK;
s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t));
if (s_adc_digi_ctx == NULL) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
ret = esp_intr_alloc(SOC_GDMA_ADC_INTR_SOURCE, 0, adc_dma_intr, (void *)s_adc_digi_ctx, &s_adc_digi_ctx->dma_intr_hdl);
if (ret != ESP_OK) {
goto cleanup;
}
//ringbuffer
s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF);
if (!s_adc_digi_ctx->ringbuf_hdl) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc internal buffer
s_adc_digi_ctx->bytes_between_intr = init_config->conv_num_each_intr;
s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, s_adc_digi_ctx->bytes_between_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL);
if (!s_adc_digi_ctx->rx_dma_buf) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc dma descriptor
s_adc_digi_ctx->hal_dma_config.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * INTERNAL_BUF_NUM, MALLOC_CAP_DMA);
if (!s_adc_digi_ctx->hal_dma_config.rx_desc) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
s_adc_digi_ctx->hal_dma_config.desc_max_num = INTERNAL_BUF_NUM;
s_adc_digi_ctx->hal_dma_config.dma_chan = init_config->dma_chan;
//malloc pattern table
s_adc_digi_ctx->digi_controller_config.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_table_t));
if (!s_adc_digi_ctx->digi_controller_config.adc_pattern) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
if (init_config->adc1_chan_mask) {
ret = adc_digi_gpio_init(ADC_NUM_1, init_config->adc1_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
}
if (init_config->adc2_chan_mask) {
ret = adc_digi_gpio_init(ADC_NUM_2, init_config->adc2_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
}
periph_module_enable(PERIPH_SARADC_MODULE);
periph_module_enable(PERIPH_GDMA_MODULE);
adc_hal_calibration_init(ADC_NUM_1);
adc_hal_calibration_init(ADC_NUM_2);
return ret;
cleanup:
adc_digi_deinitialize();
return ret;
}
static IRAM_ATTR void adc_dma_intr(void *arg)
{
portBASE_TYPE taskAwoken = 0;
BaseType_t ret;
//clear the in suc eof interrupt
adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT);
while (s_adc_digi_ctx->hal_dma_config.cur_desc_ptr->dw0.owner == 0) {
dma_descriptor_t *current_desc = s_adc_digi_ctx->hal_dma_config.cur_desc_ptr;
ret = xRingbufferSendFromISR(s_adc_digi_ctx->ringbuf_hdl, current_desc->buffer, current_desc->dw0.length, &taskAwoken);
if (ret == pdFALSE) {
//ringbuffer overflow
s_adc_digi_ctx->ringbuf_overflow_flag = 1;
}
s_adc_digi_ctx->hal_dma_config.desc_cnt += 1;
//cycle the dma descriptor and buffers
s_adc_digi_ctx->hal_dma_config.cur_desc_ptr = s_adc_digi_ctx->hal_dma_config.cur_desc_ptr->next;
if (!s_adc_digi_ctx->hal_dma_config.cur_desc_ptr) {
break;
}
}
if (!s_adc_digi_ctx->hal_dma_config.cur_desc_ptr) {
assert(s_adc_digi_ctx->hal_dma_config.desc_cnt == s_adc_digi_ctx->hal_dma_config.desc_max_num);
//reset the current descriptor status
s_adc_digi_ctx->hal_dma_config.cur_desc_ptr = s_adc_digi_ctx->hal_dma_config.rx_desc;
s_adc_digi_ctx->hal_dma_config.desc_cnt = 0;
//start next turns of dma operation
2020-12-08 01:50:32 -05:00
adc_hal_digi_dma_multi_descriptor(&s_adc_digi_ctx->hal_dma_config, s_adc_digi_ctx->rx_dma_buf, s_adc_digi_ctx->bytes_between_intr, s_adc_digi_ctx->hal_dma_config.desc_max_num);
adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
}
if(taskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
esp_err_t adc_digi_start(void)
{
if (s_adc_digi_ctx->driver_start_flag != 0) {
ESP_LOGE(ADC_TAG, "The driver is already started");
return ESP_ERR_INVALID_STATE;
}
//reset flags
s_adc_digi_ctx->ringbuf_overflow_flag = 0;
s_adc_digi_ctx->driver_start_flag = 1;
//When using SARADC2 module, this task needs to be protected from WIFI
if (s_adc_digi_ctx->use_adc2) {
SAC_ADC2_LOCK_ACQUIRE();
}
ADC_DIGI_LOCK_ACQUIRE();
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
2020-12-22 23:29:57 -05:00
if (s_adc_digi_ctx->use_adc1) {
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
}
if (s_adc_digi_ctx->use_adc2) {
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
}
adc_hal_init();
adc_hal_arbiter_config(&config);
adc_hal_digi_init(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
adc_hal_digi_controller_config(&s_adc_digi_ctx->digi_controller_config);
//create dma descriptors
adc_hal_digi_dma_multi_descriptor(&s_adc_digi_ctx->hal_dma_config, s_adc_digi_ctx->rx_dma_buf, s_adc_digi_ctx->bytes_between_intr, s_adc_digi_ctx->hal_dma_config.desc_max_num);
adc_hal_digi_set_eof_num(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, (s_adc_digi_ctx->bytes_between_intr)/4);
//set the current descriptor pointer
s_adc_digi_ctx->hal_dma_config.cur_desc_ptr = s_adc_digi_ctx->hal_dma_config.rx_desc;
s_adc_digi_ctx->hal_dma_config.desc_cnt = 0;
//enable in suc eof intr
adc_hal_digi_ena_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT);
//start ADC
adc_hal_digi_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
//start DMA
adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
return ESP_OK;
}
esp_err_t adc_digi_stop(void)
{
if (s_adc_digi_ctx->driver_start_flag != 1) {
ESP_LOGE(ADC_TAG, "The driver is already stopped");
return ESP_ERR_INVALID_STATE;
}
s_adc_digi_ctx->driver_start_flag = 0;
//disable the in suc eof intrrupt
adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT);
//clear the in suc eof interrupt
adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT);
//stop DMA
adc_hal_digi_rxdma_stop(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
//stop ADC
adc_hal_digi_stop(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
adc_hal_digi_deinit();
ADC_DIGI_LOCK_RELEASE();
//When using SARADC2 module, this task needs to be protected from WIFI
if (s_adc_digi_ctx->use_adc2) {
SAC_ADC2_LOCK_RELEASE();
}
return ESP_OK;
}
esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms)
{
TickType_t ticks_to_wait;
esp_err_t ret = ESP_OK;
uint8_t *data = NULL;
size_t size = 0;
ticks_to_wait = timeout_ms / portTICK_RATE_MS;
if (timeout_ms == ADC_MAX_DELAY) {
ticks_to_wait = portMAX_DELAY;
}
data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
if (!data) {
ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
ret = ESP_ERR_TIMEOUT;
*out_length = 0;
return ret;
}
memcpy(buf, data, size);
vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data);
assert((size % 4) == 0);
*out_length = size;
if (s_adc_digi_ctx->ringbuf_overflow_flag) {
ret = ESP_ERR_INVALID_STATE;
}
2020-12-08 01:50:32 -05:00
return ret;
}
esp_err_t adc_digi_deinitialize(void)
{
if (!s_adc_digi_ctx) {
return ESP_ERR_INVALID_STATE;
}
if (s_adc_digi_ctx->driver_start_flag != 0) {
ESP_LOGE(ADC_TAG, "The driver is not stopped");
return ESP_ERR_INVALID_STATE;
}
if (s_adc_digi_ctx->dma_intr_hdl) {
esp_intr_free(s_adc_digi_ctx->dma_intr_hdl);
}
if(s_adc_digi_ctx->ringbuf_hdl) {
vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl);
s_adc_digi_ctx->ringbuf_hdl = NULL;
}
2020-12-22 23:29:57 -05:00
free(s_adc_digi_ctx->rx_dma_buf);
free(s_adc_digi_ctx->hal_dma_config.rx_desc);
free(s_adc_digi_ctx->digi_controller_config.adc_pattern);
free(s_adc_digi_ctx);
s_adc_digi_ctx = NULL;
periph_module_disable(PERIPH_SARADC_MODULE);
periph_module_disable(PERIPH_GDMA_MODULE);
return ESP_OK;
}
/*---------------------------------------------------------------
ADC Single Read Mode
---------------------------------------------------------------*/
static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC1, used by single read API
static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC2, used by single read API
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
2020-12-08 01:50:32 -05:00
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
s_atten1_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_NUM_1, BIT(channel));
adc_hal_calibration_init(ADC_NUM_1);
return ret;
}
int adc1_get_raw(adc1_channel_t channel)
{
2020-12-08 01:50:32 -05:00
int raw_out = 0;
adc_digi_config_t dig_cfg = {
.conv_limit_en = 0,
.conv_limit_num = 250,
.sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH,
};
ADC_DIGI_LOCK_ACQUIRE();
2020-12-08 01:50:32 -05:00
periph_module_enable(PERIPH_SARADC_MODULE);
2020-12-22 23:29:57 -05:00
adc_atten_t atten = s_atten1_single[channel];
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
adc_hal_digi_controller_config(&dig_cfg);
adc_hal_intr_clear(ADC_EVENT_ADC1_DONE);
adc_hal_adc1_onetime_sample_enable(true);
adc_hal_onetime_channel(ADC_NUM_1, channel);
2020-12-22 23:29:57 -05:00
adc_hal_set_onetime_atten(atten);
//Trigger single read.
adc_hal_onetime_start(&dig_cfg);
while (!adc_hal_intr_get_raw(ADC_EVENT_ADC1_DONE));
adc_hal_single_read(ADC_NUM_1, &raw_out);
adc_hal_intr_clear(ADC_EVENT_ADC1_DONE);
adc_hal_adc1_onetime_sample_enable(false);
adc_hal_digi_deinit();
2020-12-08 01:50:32 -05:00
periph_module_disable(PERIPH_SARADC_MODULE);
ADC_DIGI_LOCK_RELEASE();
2020-12-08 01:50:32 -05:00
return raw_out;
}
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
s_atten2_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));
adc_hal_calibration_init(ADC_NUM_2);
return ret;
}
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
{
2020-12-08 01:50:32 -05:00
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
2020-12-08 01:50:32 -05:00
esp_err_t ret = ESP_OK;
adc_digi_config_t dig_cfg = {
.conv_limit_en = 0,
.conv_limit_num = 250,
.sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH,
};
SAC_ADC2_LOCK_ACQUIRE();
ADC_DIGI_LOCK_ACQUIRE();
2020-12-08 01:50:32 -05:00
periph_module_enable(PERIPH_SARADC_MODULE);
2020-12-22 23:29:57 -05:00
adc_atten_t atten = s_atten2_single[channel];
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
adc_hal_digi_controller_config(&dig_cfg);
adc_hal_intr_clear(ADC_EVENT_ADC2_DONE);
adc_hal_adc2_onetime_sample_enable(true);
adc_hal_onetime_channel(ADC_NUM_2, channel);
2020-12-22 23:29:57 -05:00
adc_hal_set_onetime_atten(atten);
//Trigger single read.
adc_hal_onetime_start(&dig_cfg);
while (!adc_hal_intr_get_raw(ADC_EVENT_ADC2_DONE));
ret = adc_hal_single_read(ADC_NUM_2, raw_out);
adc_hal_intr_clear(ADC_EVENT_ADC2_DONE);
adc_hal_adc2_onetime_sample_enable(false);
adc_hal_digi_deinit();
2020-12-08 01:50:32 -05:00
periph_module_disable(PERIPH_SARADC_MODULE);
ADC_DIGI_LOCK_RELEASE();
SAC_ADC2_LOCK_RELEASE();
return ret;
}
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
{
if (!s_adc_digi_ctx) {
return ESP_ERR_INVALID_STATE;
}
ADC_CHECK(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, "ADC sampling frequency out of range", ESP_ERR_INVALID_ARG);
s_adc_digi_ctx->digi_controller_config.conv_limit_en = config->conv_limit_en;
s_adc_digi_ctx->digi_controller_config.conv_limit_num = config->conv_limit_num;
s_adc_digi_ctx->digi_controller_config.adc_pattern_len = config->adc_pattern_len;
s_adc_digi_ctx->digi_controller_config.sample_freq_hz = config->sample_freq_hz;
memcpy(s_adc_digi_ctx->digi_controller_config.adc_pattern, config->adc_pattern, config->adc_pattern_len * sizeof(adc_digi_pattern_table_t));
const int atten_uninitialised = 999;
s_adc_digi_ctx->adc1_atten = atten_uninitialised;
s_adc_digi_ctx->adc2_atten = atten_uninitialised;
2020-12-22 23:29:57 -05:00
s_adc_digi_ctx->use_adc1 = 0;
s_adc_digi_ctx->use_adc2 = 0;
for (int i = 0; i < config->adc_pattern_len; i++) {
2020-12-22 23:29:57 -05:00
const adc_digi_pattern_table_t* pat = &config->adc_pattern[i];
if (pat->unit == ADC_NUM_1) {
s_adc_digi_ctx->use_adc1 = 1;
if (s_adc_digi_ctx->adc1_atten == atten_uninitialised) {
2020-12-22 23:29:57 -05:00
s_adc_digi_ctx->adc1_atten = pat->atten;
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
} else if (pat->unit == ADC_NUM_2) {
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
s_adc_digi_ctx->use_adc2 = 1;
if (s_adc_digi_ctx->adc2_atten == atten_uninitialised) {
2020-12-22 23:29:57 -05:00
s_adc_digi_ctx->adc2_atten = pat->atten;
} else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
}
}
return ESP_OK;
}
esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config)
{
if (adc_unit & ADC_UNIT_1) {
return ESP_ERR_NOT_SUPPORTED;
}
ADC_ENTER_CRITICAL();
adc_hal_arbiter_config(config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/**
* @brief Set ADC module controller.
* There are five SAR ADC controllers:
* Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes;
* Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep;
* the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2.
*
* @note Only ADC2 support arbiter to switch controllers automatically. Access to the ADC is based on the priority of the controller.
* @note For ADC1, Controller access is mutually exclusive.
*
* @param adc_unit ADC unit.
2020-12-08 01:50:32 -05:00
* @param ctrl ADC controller, Refer to `adc_controller_t`.
*
* @return
* - ESP_OK Success
*/
2020-12-08 01:50:32 -05:00
esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_controller_t ctrl)
{
adc_arbiter_t config = {0};
adc_arbiter_t cfg = ADC_ARBITER_CONFIG_DEFAULT();
if (adc_unit & ADC_UNIT_1) {
adc_hal_set_controller(ADC_NUM_1, ctrl);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_set_controller(ADC_NUM_2, ctrl);
switch (ctrl) {
case ADC2_CTRL_FORCE_PWDET:
config.pwdet_pri = 2;
config.mode = ADC_ARB_MODE_SHIELD;
adc_hal_arbiter_config(&config);
adc_hal_set_controller(ADC_NUM_2, ADC2_CTRL_PWDET);
break;
case ADC2_CTRL_FORCE_RTC:
config.rtc_pri = 2;
config.mode = ADC_ARB_MODE_SHIELD;
adc_hal_arbiter_config(&config);
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);
break;
case ADC2_CTRL_FORCE_DIG:
config.dig_pri = 2;
config.mode = ADC_ARB_MODE_SHIELD;
adc_hal_arbiter_config(&config);
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_DIG);
break;
default:
adc_hal_arbiter_config(&cfg);
break;
}
}
return ESP_OK;
}
/**
* @brief Reset FSM of adc digital controller.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_reset(void)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_reset();
adc_hal_digi_clear_pattern_table(ADC_NUM_1);
adc_hal_digi_clear_pattern_table(ADC_NUM_2);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/*************************************/
/* Digital controller filter setting */
/*************************************/
esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
{
2020-12-08 01:50:32 -05:00
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_reset(idx);
2020-12-08 01:50:32 -05:00
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
2020-12-08 01:50:32 -05:00
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_set_factor(idx, config);
2020-12-08 01:50:32 -05:00
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
2020-12-08 01:50:32 -05:00
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_get_factor(idx, config);
2020-12-08 01:50:32 -05:00
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_enable(idx, enable);
ADC_EXIT_CRITICAL();
2020-12-08 01:50:32 -05:00
return ESP_OK;
}
/**************************************/
/* Digital controller monitor setting */
/**************************************/
esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_monitor_config(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_monitor_enable(idx, enable);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/**************************************/
/* Digital controller intr setting */
/**************************************/
esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_hal_digi_intr_enable(ADC_NUM_1, intr_mask);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_digi_intr_enable(ADC_NUM_2, intr_mask);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_hal_digi_intr_disable(ADC_NUM_1, intr_mask);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_digi_intr_disable(ADC_NUM_2, intr_mask);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_hal_digi_intr_clear(ADC_NUM_1, intr_mask);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_digi_intr_clear(ADC_NUM_2, intr_mask);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
uint32_t adc_digi_intr_get_status(adc_unit_t adc_unit)
{
uint32_t ret = 0;
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
ret = adc_hal_digi_get_intr_status(ADC_NUM_1);
}
if (adc_unit & ADC_UNIT_2) {
ret = adc_hal_digi_get_intr_status(ADC_NUM_2);
}
ADC_EXIT_CRITICAL();
return ret;
}
static bool s_isr_registered = 0;
static intr_handle_t s_adc_isr_handle = NULL;
esp_err_t adc_digi_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags)
{
ADC_CHECK((fn != NULL), "Parameter error", ESP_ERR_INVALID_ARG);
ADC_CHECK(s_isr_registered == 0, "ADC ISR have installed, can not install again", ESP_FAIL);
esp_err_t ret = esp_intr_alloc(ETS_APB_ADC_INTR_SOURCE, intr_alloc_flags, fn, arg, &s_adc_isr_handle);
if (ret == ESP_OK) {
s_isr_registered = 1;
}
return ret;
}
esp_err_t adc_digi_isr_deregister(void)
{
esp_err_t ret = ESP_FAIL;
if (s_isr_registered) {
ret = esp_intr_free(s_adc_isr_handle);
if (ret == ESP_OK) {
s_isr_registered = 0;
}
}
return ret;
}
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
2020-12-22 23:29:57 -05:00
static uint16_t s_adc_cali_param[ADC_UNIT_MAX][ADC_ATTEN_MAX] = {};
2020-12-22 23:29:57 -05:00
//NOTE: according to calibration version, different types of lock may be taken during the process:
// 1. Semaphore when reading efuse
// 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future
//This function shoudn't be called inside critical section or ISR
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
const bool no_cal = false;
if (s_adc_cali_param[adc_n][atten]) {
return (uint32_t)s_adc_cali_param[adc_n][atten];
2020-12-22 23:29:57 -05:00
}
if (no_cal) {
return 0; //indicating failure
}
// check if we can fetch the values from eFuse.
int version = esp_efuse_rtc_calib_get_ver();
uint32_t init_code = 0;
if (version == 1) {
//for calibration v1, both ADC units use the same init code (calibrated by ADC1)
init_code = esp_efuse_rtc_calib_get_init_code(version, atten);
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC0, 1 atten=%d: %04X", version, atten, init_code);
s_adc_cali_param[0][atten] = init_code;
s_adc_cali_param[1][atten] = init_code;
} else {
adc_power_acquire();
ADC_ENTER_CRITICAL();
const bool internal_gnd = true;
init_code = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd);
ADC_EXIT_CRITICAL();
adc_power_release();
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code);
s_adc_cali_param[adc_n][atten] = init_code;
}
2020-12-22 23:29:57 -05:00
return init_code;
}
// Internal function to calibrate PWDET for WiFi
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
adc_hal_calibration_init(adc_n);
2020-12-22 23:29:57 -05:00
uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten);
ADC_ENTER_CRITICAL();
adc_hal_set_calibration_param(adc_n, cal_val);
ADC_EXIT_CRITICAL();
return ESP_OK;
}