driver(adc): update adc ll and hal driver for esp32c3

This commit is contained in:
fuzhibo 2020-12-31 22:44:36 +08:00 committed by bot
parent 5798c22a5c
commit 19fb11549b
7 changed files with 344 additions and 548 deletions

View File

@ -675,11 +675,7 @@ esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_hal_digi_filter_set_factor(ADC_NUM_1, config->mode);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_hal_digi_filter_set_factor(ADC_NUM_2, config->mode);
}
adc_hal_digi_filter_set_factor(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
@ -687,28 +683,13 @@ esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_
esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
config->adc_unit = ADC_UNIT_1;
config->channel = ADC_CHANNEL_MAX;
adc_hal_digi_filter_get_factor(ADC_NUM_1, &config->mode);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
config->adc_unit = ADC_UNIT_2;
config->channel = ADC_CHANNEL_MAX;
adc_hal_digi_filter_get_factor(ADC_NUM_2, &config->mode);
}
adc_hal_digi_filter_get_factor(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_hal_digi_filter_enable(ADC_NUM_1, enable);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_hal_digi_filter_enable(ADC_NUM_2, enable);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
@ -721,13 +702,7 @@ esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
*/
int adc_digi_filter_read_data(adc_digi_filter_idx_t idx)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
return adc_hal_digi_filter_read_data(ADC_NUM_1);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
return adc_hal_digi_filter_read_data(ADC_NUM_2);
} else {
return -1;
}
return -1;
}
/**************************************/
@ -737,24 +712,13 @@ int adc_digi_filter_read_data(adc_digi_filter_idx_t idx)
esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_MONITOR_IDX0) {
adc_hal_digi_monitor_config(ADC_NUM_1, config);
} else if (idx == ADC_DIGI_MONITOR_IDX1) {
adc_hal_digi_monitor_config(ADC_NUM_2, config);
}
adc_hal_digi_monitor_config(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_MONITOR_IDX0) {
adc_hal_digi_monitor_enable(ADC_NUM_1, enable);
} else if (idx == ADC_DIGI_MONITOR_IDX1) {
adc_hal_digi_monitor_enable(ADC_NUM_2, enable);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}

View File

@ -39,6 +39,7 @@ void adc_hal_deinit(void)
adc_ll_set_power_manage(ADC_POWER_SW_OFF);
}
#ifndef CONFIG_IDF_TARGET_ESP32C3
int adc_hal_convert(adc_ll_num_t adc_n, int channel, int *value)
{
adc_ll_rtc_enable_channel(adc_n, channel);
@ -47,6 +48,7 @@ int adc_hal_convert(adc_ll_num_t adc_n, int channel, int *value)
*value = adc_ll_rtc_get_convert_value(adc_n);
return (int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*value));
}
#endif
#if CONFIG_IDF_TARGET_ESP32C3
//This feature is currently supported on ESP32C3, will be supported on other chips soon
@ -193,7 +195,7 @@ esp_err_t adc_hal_single_read(adc_ll_num_t unit, int *out_raw)
*out_raw = adc_ll_adc1_read();
} else if (unit == ADC_NUM_2) {
*out_raw = adc_ll_adc2_read();
if (adc_ll_rtc_analysis_raw_data(unit, *out_raw)) {
if (adc_ll_analysis_raw_data(unit, *out_raw)) {
return ESP_ERR_INVALID_STATE;
}
}

View File

@ -94,17 +94,49 @@ void adc_hal_digi_disable(void)
adc_ll_digi_dma_disable();
}
/**
* Set adc digital controller filter factor.
*
* @param idx ADC filter unit.
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
void adc_hal_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
if (filter->mode == ADC_DIGI_FILTER_DIS) {
adc_ll_digi_filter_disable(idx);
} else {
adc_ll_digi_filter_set_factor(idx, filter);
}
}
/**
* Get adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
void adc_hal_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
adc_ll_digi_filter_get_factor(idx, filter);
if (((filter->adc_unit << 3) | filter->channel) > 9) {
filter->mode = ADC_DIGI_FILTER_DIS;
}
}
/**
* Config monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param idx ADC monitor index.
* @param config Refer to `adc_digi_monitor_t`.
*/
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
void adc_hal_digi_monitor_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
{
adc_ll_digi_monitor_set_mode(adc_n, config->mode);
adc_ll_digi_monitor_set_thres(adc_n, config->threshold);
if (config->mode == ADC_DIGI_MONITOR_DIS) {
adc_ll_digi_monitor_disable(idx);
} else {
adc_ll_digi_monitor_set_mode(idx, config);
}
}
/*---------------------------------------------------------------

View File

@ -91,10 +91,10 @@ void adc_hal_digi_clk_config(const adc_digi_clk_t *clk);
/**
* Set adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
* @param idx ADC filter unit.
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
#define adc_hal_digi_filter_set_factor(adc_n, factor) adc_ll_digi_filter_set_factor(adc_n, factor)
void adc_hal_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter);
/**
* Get adc digital controller filter factor.
@ -102,43 +102,16 @@ void adc_hal_digi_clk_config(const adc_digi_clk_t *clk);
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
#define adc_hal_digi_filter_get_factor(adc_n, factor) adc_ll_digi_filter_get_factor(adc_n, factor)
/**
* Enable/disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
#define adc_hal_digi_filter_enable(adc_n, enable) adc_ll_digi_filter_enable(adc_n, enable)
/**
* Get the filtered data of adc digital controller filter.
* The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @return Filtered data.
*/
#define adc_hal_digi_filter_read_data(adc_n) adc_ll_digi_filter_read_data(adc_n)
void adc_hal_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter);
/**
* Config monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param idx ADC monitor index.
* @param config Refer to `adc_digi_monitor_t`.
*/
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config);
/**
* Enable/disable monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
#define adc_hal_digi_monitor_enable(adc_n, enable) adc_ll_digi_monitor_enable(adc_n, enable)
void adc_hal_digi_monitor_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config);
/**
* Enable interrupt of adc digital controller by bitmask.
@ -197,14 +170,6 @@ void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
*/
#define adc_hal_digi_reset() adc_ll_digi_reset()
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/**
* Reset RTC controller FSM.
*/
#define adc_hal_rtc_reset() adc_ll_rtc_reset()
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/

View File

@ -22,7 +22,8 @@
#include "hal/adc_types.h"
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#ifdef __cplusplus
extern "C" {
@ -56,32 +57,6 @@ typedef enum {
} adc_ll_intr_t;
FLAG_ATTR(adc_ll_intr_t)
#ifdef _MSC_VER
#pragma pack(push, 1)
#endif /* _MSC_VER */
/**
* @brief Analyze whether the obtained raw data is correct.
* ADC2 use arbiter by default. The arbitration result can be judged by the flag bit in the original data.
*
*/
typedef struct {
union {
struct {
uint16_t data: 13; /*!<ADC real output data info. Resolution: 13 bit. */
uint16_t reserved: 1; /*!<reserved */
uint16_t flag: 2; /*!<ADC data flag info.
If (flag == 0), The data is valid.
If (flag > 0), The data is invalid. */
};
uint16_t val;
};
} adc_rtc_output_data_t;
#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */
/**
* @brief ADC controller type selection.
*
@ -128,7 +103,9 @@ static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wa
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
// APB_SARADC.fsm.sample_cycle = sample_cycle;
/* Should be called before writing I2C registers. */
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
@ -143,16 +120,6 @@ static inline void adc_ll_digi_set_clk_div(uint32_t div)
APB_SARADC.ctrl.sar_clk_div = div;
}
/**
* Set adc output data format for digital controller.
*
* @param format Output data format.
*/
static inline void adc_ll_digi_set_output_format(adc_digi_output_format_t format)
{
/*take off*/
}
/**
* Set adc max conversion number for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
@ -182,50 +149,32 @@ static inline void adc_ll_digi_convert_limit_disable(void)
APB_SARADC.ctrl2.meas_num_limit = 0;
}
/**
* Set adc conversion mode for digital controller.
*
* @note ESP32 only support ADC1 single mode.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_digi_convert_mode_t mode)
{
/*take off*/
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
* and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
{
/*
* channel 06 04 ADC1 5 ADC2 6 EN_TEST
*/
APB_SARADC.ctrl.sar_patt_len = patt_len - 1;
}
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 15.
* @param pattern_index Items index. Range: 0 ~ 7.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t pattern)
{
/*
* channel 06 04 ADC1 5 ADC2 6 EN_TEST
*/
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 6;
@ -234,7 +183,6 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
tab &= (~(0xFC0000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 18) >> offset; // Fill in the new data
APB_SARADC.sar_patt_tab[index].sar_patt_tab1 = tab; // Write back
}
/**
@ -244,9 +192,6 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
*/
static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n)
{
/*
* channel 06 04 ADC1 5 ADC2 6 EN_TEST
*/
APB_SARADC.ctrl.sar_patt_p_clear = 1;
APB_SARADC.ctrl.sar_patt_p_clear = 0;
}
@ -310,7 +255,7 @@ static inline void adc_ll_digi_trigger_disable(void)
*
* @param div_num Division factor. Range: 1 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
@ -356,18 +301,18 @@ static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
/**
* Set adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
* @note If the channel info is not supported, the filter function will not be enabled.
* @param idx ADC filter unit.
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t factor)
static inline void adc_ll_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
adc_channel_t channel = 0;
if (!APB_SARADC.filter_ctrl0.filter_channel0) {
APB_SARADC.filter_ctrl0.filter_channel0 = (adc_n<<4) | channel;
APB_SARADC.filter_ctrl1.filter_factor0 = factor;
} else if (!APB_SARADC.filter_ctrl0.filter_channel1) {
APB_SARADC.filter_ctrl0.filter_channel1 = (adc_n<<4) | channel;
APB_SARADC.filter_ctrl1.filter_factor1 = factor;
if (idx == ADC_DIGI_FILTER_IDX0) {
APB_SARADC.filter_ctrl0.filter_channel0 = (filter->adc_unit << 3) | (filter->channel & 0x7);
APB_SARADC.filter_ctrl1.filter_factor0 = filter->mode;
} else if (idx == ADC_DIGI_FILTER_IDX1) {
APB_SARADC.filter_ctrl0.filter_channel1 = (filter->adc_unit << 3) | (filter->channel & 0x7);
APB_SARADC.filter_ctrl1.filter_factor1 = filter->mode;
}
}
@ -377,91 +322,71 @@ static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_fi
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t *factor)
static inline void adc_ll_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel0 >> 3) & 0x1;
filter->channel = APB_SARADC.filter_ctrl0.filter_channel0 & 0x7;
filter->mode = APB_SARADC.filter_ctrl1.filter_factor0;
} else if (idx == ADC_DIGI_FILTER_IDX1) {
filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel1 >> 3) & 0x1;
filter->channel = APB_SARADC.filter_ctrl0.filter_channel1 & 0x7;
filter->mode = APB_SARADC.filter_ctrl1.filter_factor1;
}
}
/**
* Enable/disable adc digital controller filter.
* Disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
*
* @note If the channel info is not supported, the filter function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_digi_filter_disable(adc_digi_filter_idx_t idx)
{
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.filter_ctrl.adc1_filter_en = enable;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.filter_ctrl.adc2_filter_en = enable;
// }
}
/**
* Get the filtered data of adc digital controller filter.
* The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @return Filtered data.
*/
static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
{
abort(); // FIXME
// if (adc_n == ADC_NUM_1) {
// return APB_SARADC.filter_status.adc1_filter_data;
// } else { // adc_n == ADC_NUM_2
// return APB_SARADC.filter_status.adc2_filter_data;
// }
if (idx == ADC_DIGI_FILTER_IDX0) {
APB_SARADC.filter_ctrl0.filter_channel0 = 0xF;
APB_SARADC.filter_ctrl1.filter_factor0 = 0;
} else if (idx == ADC_DIGI_FILTER_IDX1) {
APB_SARADC.filter_ctrl0.filter_channel1 = 0xF;
APB_SARADC.filter_ctrl1.filter_factor1 = 0;
}
}
/**
* Set monitor mode of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
* false: If ADC_OUT < threshold, Generates monitor interrupt.
*/
static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larger)
static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg)
{
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.thres_ctrl.adc1_thres_mode = is_larger;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.thres_ctrl.adc2_thres_mode = is_larger;
// }
}
/**
* Set monitor threshold of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @param threshold Monitor threshold.
*/
static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t threshold)
{
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.thres_ctrl.adc1_thres = threshold;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.thres_ctrl.adc2_thres = threshold;
// }
if (idx == ADC_DIGI_MONITOR_IDX0) {
APB_SARADC.thres0_ctrl.thres0_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
APB_SARADC.thres0_ctrl.thres0_high = cfg->h_threshold;
APB_SARADC.thres0_ctrl.thres0_low = cfg->l_threshold;
} else { // ADC_DIGI_MONITOR_IDX1
APB_SARADC.thres1_ctrl.thres1_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
APB_SARADC.thres1_ctrl.thres1_high = cfg->h_threshold;
APB_SARADC.thres1_ctrl.thres1_low = cfg->l_threshold;
}
}
/**
* Enable/disable monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx)
{
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.thres_ctrl.adc1_thres_en = enable;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.thres_ctrl.adc2_thres_en = enable;
// }
if (idx == ADC_DIGI_MONITOR_IDX0) {
APB_SARADC.thres0_ctrl.thres0_channel = 0xF;
} else { // ADC_DIGI_MONITOR_IDX1
APB_SARADC.thres1_ctrl.thres1_channel = 0xF;
}
}
/**
@ -472,21 +397,27 @@ static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
*/
static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
{
// if (adc_n == ADC_NUM_1) {
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc1_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc1_done = 1;
// }
// } else { // adc_n == ADC_NUM_2
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc2_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc2_done = 1;
// }
// }
if (adc_n == ADC_NUM_1) {
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
APB_SARADC.int_ena.adc1_done = 1;
}
} else { // adc_n == ADC_NUM_2
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
APB_SARADC.int_ena.adc2_done = 1;
}
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_HIGH) {
APB_SARADC.int_ena.thres0_high = 1;
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_LOW) {
APB_SARADC.int_ena.thres0_low = 1;
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_HIGH) {
APB_SARADC.int_ena.thres1_high = 1;
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_LOW) {
APB_SARADC.int_ena.thres1_low = 1;
}
}
/**
@ -497,21 +428,27 @@ static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t i
*/
static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
{
// if (adc_n == ADC_NUM_1) {
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc1_thres = 0;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc1_done = 0;
// }
// } else { // adc_n == ADC_NUM_2
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc2_thres = 0;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc2_done = 0;
// }
// }
if (adc_n == ADC_NUM_1) {
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
APB_SARADC.int_ena.adc1_done = 0;
}
} else { // adc_n == ADC_NUM_2
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
APB_SARADC.int_ena.adc2_done = 0;
}
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_HIGH) {
APB_SARADC.int_ena.thres0_high = 0;
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_LOW) {
APB_SARADC.int_ena.thres0_low = 0;
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_HIGH) {
APB_SARADC.int_ena.thres1_high = 0;
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_LOW) {
APB_SARADC.int_ena.thres1_low = 0;
}
}
/**
@ -522,21 +459,27 @@ static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t
*/
static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t intr)
{
// if (adc_n == ADC_NUM_1) {
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_clr.adc1_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_clr.adc1_done = 1;
// }
// } else { // adc_n == ADC_NUM_2
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_clr.adc2_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_clr.adc2_done = 1;
// }
// }
if (adc_n == ADC_NUM_1) {
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
APB_SARADC.int_clr.adc1_done = 1;
}
} else { // adc_n == ADC_NUM_2
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
APB_SARADC.int_clr.adc2_done = 1;
}
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_HIGH) {
APB_SARADC.int_clr.thres0_high = 1;
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_LOW) {
APB_SARADC.int_clr.thres0_low = 1;
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_HIGH) {
APB_SARADC.int_clr.thres1_high = 1;
}
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_LOW) {
APB_SARADC.int_clr.thres1_low = 1;
}
}
/**
@ -548,28 +491,32 @@ static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t in
*/
static inline uint32_t adc_ll_digi_get_intr_status(adc_ll_num_t adc_n)
{
abort(); // FIXME
uint32_t int_st = APB_SARADC.int_st.val;
uint32_t ret_msk = 0;
// uint32_t int_st = APB_SARADC.int_st.val;
// uint32_t ret_msk = 0;
if (adc_n == ADC_NUM_1) {
if (int_st & APB_SARADC_ADC1_DONE_INT_ST_M) {
ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
}
} else { // adc_n == ADC_NUM_2
if (int_st & APB_SARADC_ADC2_DONE_INT_ST_M) {
ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
}
}
if (int_st & APB_SARADC_THRES0_HIGH_INT_ST) {
ret_msk |= ADC_DIGI_INTR_MASK_MONITOR0_HIGH;
}
if (int_st & APB_SARADC_THRES0_LOW_INT_ST_M) {
ret_msk |= ADC_DIGI_INTR_MASK_MONITOR0_LOW;
}
if (int_st & APB_SARADC_THRES1_HIGH_INT_ST_M) {
ret_msk |= ADC_DIGI_INTR_MASK_MONITOR1_HIGH;
}
if (int_st & APB_SARADC_THRES1_LOW_INT_ST_M) {
ret_msk |= ADC_DIGI_INTR_MASK_MONITOR1_LOW;
}
// if (adc_n == ADC_NUM_1) {
// if (int_st & APB_SARADC_ADC1_DONE_INT_ST_M) {
// ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
// }
// // if (int_st & APB_SARADC_ADC1_THRES_INT_ST) {
// // ret_msk |= ADC_DIGI_INTR_MASK_MONITOR;
// // }
// } else { // adc_n == ADC_NUM_2
// if (int_st & APB_SARADC_ADC2_DONE_INT_ST_M) {
// ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
// }
// // if (int_st & APB_SARADC_ADC2_THRES_INT_ST_M) {
// // ret_msk |= ADC_DIGI_INTR_MASK_MONITOR;
// // }
// }
// return ret_msk;
return ret_msk;
}
/**
@ -619,8 +566,8 @@ static inline void adc_ll_digi_reset(void)
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
// /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
// SENS.sar_meas2_mux.sar2_pwdet_cct = cct;
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
RTCCNTL.sensor_ctrl.sar2_pwdet_cct = cct;
}
/**
@ -632,186 +579,12 @@ static inline void adc_ll_pwdet_set_cct(uint32_t cct)
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
// return SENS.sar_meas2_mux.sar2_pwdet_cct;
return 0;
}
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/**
* Set adc output data format for RTC controller.
*
* @note ESP32S2 RTC controller only support 13bit.
* @prarm adc_n ADC unit.
* @prarm bits Output data bits width option.
*/
static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_width_t bits)
{
return;
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for once measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
{
// if (adc_n == ADC_NUM_1) {
// SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
// } else { // adc_n == ADC_NUM_2
// SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected.
// }
}
/**
* Disable adc channel to start convert.
*
* @note Only one channel can be selected in once measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n, int channel)
{
// if (adc_n == ADC_NUM_1) {
// SENS.sar_meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
// } else { // adc_n == ADC_NUM_2
// SENS.sar_meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
// }
}
/**
* Start conversion once by software for RTC controller.
*
* @note It may be block to wait conversion idle for ADC1.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
{
// if (adc_n == ADC_NUM_1) {
// while (SENS.sar_slave_addr1.meas_status != 0);
// SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
// SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0
// SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1
// }
}
/**
* Check the conversion done flag for each ADCn for RTC controller.
*
* @param adc_n ADC unit.
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
{
bool ret = true;
// if (adc_n == ADC_NUM_1) {
// ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar;
// } else { // adc_n == ADC_NUM_2
// ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar;
// }
return ret;
}
/**
* Get the converted value for each ADCn for RTC controller.
*
* @param adc_n ADC unit.
* @return
* - Converted value.
*/
static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
{
int ret_val = 0;
// if (adc_n == ADC_NUM_1) {
// ret_val = SENS.sar_meas1_ctrl2.meas1_data_sar;
// } else { // adc_n == ADC_NUM_2
// ret_val = SENS.sar_meas2_ctrl2.meas2_data_sar;
// }
return ret_val;
}
/**
* ADC module RTC output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
{
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
// }
}
/**
* Enable ADCn conversion complete interrupt for RTC controller.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
{
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_int_en = 1;
// RTCCNTL.int_ena.rtc_saradc1 = 1;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_int_en = 1;
// RTCCNTL.int_ena.rtc_saradc2 = 1;
// }
}
/**
* Disable ADCn conversion complete interrupt for RTC controller.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
{
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_int_en = 0;
// RTCCNTL.int_ena.rtc_saradc1 = 0;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_int_en = 0;
// RTCCNTL.int_ena.rtc_saradc2 = 0;
// }
}
/**
* Reset RTC controller FSM.
*/
static inline void adc_ll_rtc_reset(void)
{
// SENS.sar_meas1_ctrl1.rtc_saradc_reset = 1;
// SENS.sar_meas1_ctrl1.rtc_saradc_reset = 0;
}
/**
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
*
* @note Only ADC2 have arbiter function.
* @param cycle range: [0,4].
*/
static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
{
// SENS.sar_reader2_ctrl.sar2_wait_arb_cycle = cycle;
return RTCCNTL.sensor_ctrl.sar2_pwdet_cct;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter.
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
@ -819,13 +592,14 @@ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
* - 0: The data is correct to use.
* - -1: The data is invalid.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
{
if (adc_n == ADC_NUM_1) {
return ADC_RTC_DATA_OK;
}
if (((APB_SARADC.apb_saradc2_data_status.adc2_data & 0xffff) >> 13) >= ADC_LL_ADC2_CHANNEL_MAX) {
//The raw data API returns value without channel information. Read value directly from the register
if (((APB_SARADC.apb_saradc2_data_status.adc2_data >> 13) & 0xF) > 9) {
return ADC_RTC_DATA_FAIL;
}
@ -851,8 +625,8 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
APB_SARADC.ctrl.sar_clk_gated = 1;
APB_SARADC.ctrl.xpd_sar_force = 0;
} else if (manage == ADC_POWER_SW_OFF) {
APB_SARADC.ctrl.sar_clk_gated = 1;
APB_SARADC.ctrl.xpd_sar_force = 2;
APB_SARADC.ctrl.sar_clk_gated = 0;
}
}
@ -866,16 +640,15 @@ static inline adc_ll_power_t adc_ll_get_power_manage(void)
{
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
// adc_ll_power_t manage;
// if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PU) {
// manage = ADC_POWER_SW_ON;
// } else if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PD) {
// manage = ADC_POWER_SW_OFF;
// } else {
// manage = ADC_POWER_BY_FSM;
// }
// return manage;
return 0;
adc_ll_power_t manage;
if (APB_SARADC.ctrl.xpd_sar_force == 3) {
manage = ADC_POWER_SW_ON;
} else if (APB_SARADC.ctrl.xpd_sar_force == 2) {
manage = ADC_POWER_SW_OFF;
} else {
manage = ADC_POWER_BY_FSM;
}
return manage;
}
/**
@ -885,14 +658,8 @@ static inline adc_ll_power_t adc_ll_get_power_manage(void)
*/
static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
{
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_clk_div = div;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_clk_div = div;
// }
}
/**
* Set ADC module controller.
* There are five SAR ADC controllers:
@ -906,40 +673,6 @@ static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_controller_t ctrl)
{
//NOTE: ULP is removed on C3, please remove ULP related (if there still are any) code and this comment
// if (adc_n == ADC_NUM_1) {
// switch ( ctrl ) {
// case ADC_CTRL_RTC:
// SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
// SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// case ADC_CTRL_DIG:
// SENS.sar_meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
// SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// default:
// break;
// }
// } else { // adc_n == ADC_NUM_2
// switch ( ctrl ) {
// case ADC_CTRL_RTC:
// SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// case ADC_CTRL_DIG:
// SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// case ADC2_CTRL_PWDET: // currently only used by Wi-Fi
// SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// default:
// break;
// }
// }
}
/**
@ -1009,35 +742,55 @@ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig,
}
}
/**
* Force switch ADC2 to RTC controller in sleep mode. Shield arbiter.
* In sleep mode, the arbiter is in power-down mode.
* Need to switch the controller to RTC to shield the control of the arbiter.
* After waking up, it needs to switch to arbiter control.
*
* @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller.
* @note Only support ADC2.
*/
static inline void adc_ll_enable_sleep_controller(void)
{
// SENS.sar_meas2_mux.sar2_rtc_force = 1;
}
/**
* Force switch ADC2 to arbiter in wakeup mode.
* In sleep mode, the arbiter is in power-down mode.
* Need to switch the controller to RTC to shield the control of the arbiter.
* After waking up, it needs to switch to arbiter control.
*
* @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller.
* @note Only support ADC2.
*/
static inline void adc_ll_disable_sleep_controller(void)
{
// SENS.sar_meas2_mux.sar2_rtc_force = 0;
}
/* ADC calibration code. */
/**
* Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
* @param channel adc channel number.
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
{
/* Should be called before writing I2C registers. */
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
/* Enable/disable internal connect GND (for calibration). */
if (adc_n == ADC_NUM_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 4);
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
}
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 4);
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
}
}
}
/**
* Resume register status after calibration.
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
{
if (adc_n == ADC_NUM_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
}
}
/**
* Set the calibration result to ADC.
*
@ -1059,6 +812,60 @@ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t par
}
/* Temp code end. */
/**
* Output ADCn inter reference voltage to ADC2 channels.
*
* This function routes the internal reference voltage of ADCn to one of
* ADC1's channels. This reference voltage can then be manually measured
* for calibration purposes.
*
* @param[in] adc ADC unit select
* @param[in] channel ADC1 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en)
{
if (en) {
REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 3);
SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 2);
SET_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
APB_SARADC.sar_patt_tab[0].sar_patt_tab1 = 0xFFFFFF;
APB_SARADC.sar_patt_tab[1].sar_patt_tab1 = 0xFFFFFF;
APB_SARADC.onetime_sample.adc1_onetime_sample = 1;
APB_SARADC.onetime_sample.onetime_channel = channel;
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
if (adc == ADC_NUM_1) {
/* Config test mux to route v_ref to ADC1 Channels */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 1);
} else {
/* Config test mux to route v_ref to ADC2 Channels */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
}
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
APB_SARADC.onetime_sample.adc1_onetime_sample = 0;
APB_SARADC.onetime_sample.onetime_channel = 0xf;
REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 0);
REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 0);
CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
}
}
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/

View File

@ -134,6 +134,7 @@ void adc_hal_deinit(void);
*/
#define adc_hal_pwdet_get_cct() adc_ll_pwdet_get_cct()
#ifndef CONFIG_IDF_TARGET_ESP32C3
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
@ -167,6 +168,7 @@ int adc_hal_convert(adc_ll_num_t adc_n, int channel, int *value);
* @prarm adc_n ADC unit.
*/
#define adc_hal_rtc_output_invert(adc_n, inv_en) adc_ll_rtc_output_invert(adc_n, inv_en)
#endif
/**
* Enable/disable the output of ADCn's internal reference voltage to one of ADC2's channels.

View File

@ -17,6 +17,7 @@
#include <stdint.h>
#include "sdkconfig.h"
#include "soc/soc_caps.h"
#include "esp_attr.h"
/**
* @brief ADC unit enumeration.
@ -329,10 +330,19 @@ typedef struct {
* @brief ADC digital controller (DMA mode) interrupt type options.
*/
typedef enum {
#if CONFIG_IDF_TARGET_ESP32C3
ADC_DIGI_INTR_MASK_MONITOR0_HIGH = BIT(0),
ADC_DIGI_INTR_MASK_MONITOR0_LOW = BIT(1),
ADC_DIGI_INTR_MASK_MONITOR1_HIGH = BIT(2),
ADC_DIGI_INTR_MASK_MONITOR1_LOW = BIT(3),
ADC_DIGI_INTR_MASK_MEAS_DONE = BIT(4),
#else
ADC_DIGI_INTR_MASK_MONITOR = 0x1,
ADC_DIGI_INTR_MASK_MEAS_DONE = 0x2,
ADC_DIGI_INTR_MASK_ALL = 0x3,
#endif
} adc_digi_intr_t;
FLAG_ATTR(adc_digi_intr_t)
/**
* @brief ADC digital controller (DMA mode) filter index options.
@ -352,6 +362,9 @@ typedef enum {
* Expression: filter_data = (k-1)/k * last_data + new_data / k.
*/
typedef enum {
#if CONFIG_IDF_TARGET_ESP32C3
ADC_DIGI_FILTER_DIS = -1, /*!< Disable filter */
#endif
ADC_DIGI_FILTER_IIR_2 = 0, /*!<The filter mode is first-order IIR filter. The coefficient is 2. */
ADC_DIGI_FILTER_IIR_4, /*!<The filter mode is first-order IIR filter. The coefficient is 4. */
ADC_DIGI_FILTER_IIR_8, /*!<The filter mode is first-order IIR filter. The coefficient is 8. */
@ -393,8 +406,14 @@ typedef enum {
* MONITOR_LOW: If ADC_OUT < threshold, Generates monitor interrupt.
*/
typedef enum {
#if CONFIG_IDF_TARGET_ESP32C3
ADC_DIGI_MONITOR_DIS = 0, /*!<Disable monitor. */
ADC_DIGI_MONITOR_EN, /*!<If ADC_OUT < threshold, Generates monitor interrupt. */
/*!<If ADC_OUT > threshold, Generates monitor interrupt. */
#else
ADC_DIGI_MONITOR_HIGH = 0, /*!<If ADC_OUT > threshold, Generates monitor interrupt. */
ADC_DIGI_MONITOR_LOW, /*!<If ADC_OUT < threshold, Generates monitor interrupt. */
#endif
ADC_DIGI_MONITOR_MAX
} adc_digi_monitor_mode_t;
@ -410,7 +429,12 @@ typedef struct {
adc_channel_t channel; /*!<Set adc channel number for monitor.
For ESP32-S2, it's always `ADC_CHANNEL_MAX` */
adc_digi_monitor_mode_t mode; /*!<Set adc monitor mode. See ``adc_digi_monitor_mode_t``. */
#if CONFIG_IDF_TARGET_ESP32C3
uint32_t h_threshold; /*!<Set monitor threshold of adc digital controller. */
uint32_t l_threshold; /*!<Set monitor threshold of adc digital controller. */
#else
uint32_t threshold; /*!<Set monitor threshold of adc digital controller. */
#endif
} adc_digi_monitor_t;
#endif // CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3