esp-idf/components/esp32/sleep_modes.c

727 lines
26 KiB
C
Raw Normal View History

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <sys/lock.h>
#include <sys/param.h>
2016-12-13 13:23:04 +08:00
#include "esp_attr.h"
#include "esp_sleep.h"
#include "esp_private/esp_timer_impl.h"
2016-12-13 13:23:04 +08:00
#include "esp_log.h"
#include "esp32/clk.h"
#include "esp_newlib.h"
#include "esp_spi_flash.h"
#include "esp32/rom/cache.h"
#include "esp32/rom/rtc.h"
#include "esp32/rom/uart.h"
2016-12-13 13:23:04 +08:00
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/spi_periph.h"
#include "soc/dport_reg.h"
#include "soc/rtc_wdt.h"
global: move the soc component out of the common list This MR removes the common dependency from every IDF components to the SOC component. Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components. But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components. In CMAKE, we have two kinds of header visibilities (set by include path visibility): (Assume component A --(depends on)--> B, B is the current component) 1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B) 2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only) and we have two kinds of depending ways: (Assume component A --(depends on)--> B --(depends on)--> C, B is the current component) 1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B) 2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B) 1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default. 2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it. 3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers 4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link) This is a breaking change. Previous code may depends on the long include chain. You may need to include the following headers for some files after this commit: - soc/soc.h - soc/soc_memory_layout.h - driver/gpio.h - esp_sleep.h The major broken include chain includes: 1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h. 2. ets_sys.h no longer includes soc/soc.h 3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h BREAKING CHANGE
2019-04-03 13:17:38 +08:00
#include "soc/soc_memory_layout.h"
#include "driver/rtc_io.h"
#include "driver/uart.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "sdkconfig.h"
// If light sleep time is less than that, don't power down flash
#define FLASH_PD_MIN_SLEEP_TIME_US 2000
// Time from VDD_SDIO power up to first flash read in ROM code
#define VDD_SDIO_POWERUP_TO_FLASH_READ_US 700
// Extra time it takes to enter and exit light sleep and deep sleep
// For deep sleep, this is until the wake stub runs (not the app).
#ifdef CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS
#define LIGHT_SLEEP_TIME_OVERHEAD_US (650 + 30 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
#define DEEP_SLEEP_TIME_OVERHEAD_US (650 + 100 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
#else
#define LIGHT_SLEEP_TIME_OVERHEAD_US (250 + 30 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
#define DEEP_SLEEP_TIME_OVERHEAD_US (250 + 100 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
#endif // CONFIG_ESP32_RTC_CLK_SRC
// Minimal amount of time we can sleep for
#define LIGHT_SLEEP_MIN_TIME_US 200
#define CHECK_SOURCE(source, value, mask) ((s_config.wakeup_triggers & mask) && \
(source == value))
/**
* Internal structure which holds all requested deep sleep parameters
*/
typedef struct {
esp_sleep_pd_option_t pd_options[ESP_PD_DOMAIN_MAX];
uint64_t sleep_duration;
uint32_t wakeup_triggers : 11;
uint32_t ext1_trigger_mode : 1;
uint32_t ext1_rtc_gpio_mask : 18;
uint32_t ext0_trigger_level : 1;
uint32_t ext0_rtc_gpio_num : 5;
uint32_t sleep_time_adjustment;
uint64_t rtc_ticks_at_sleep_start;
} sleep_config_t;
static sleep_config_t s_config = {
.pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO },
.wakeup_triggers = 0
};
/* Internal variable used to track if light sleep wakeup sources are to be
expected when determining wakeup cause. */
static bool s_light_sleep_wakeup = false;
/* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc()
is not thread-safe. */
static _lock_t lock_rtc_memory_crc;
static const char* TAG = "sleep";
static uint32_t get_power_down_flags();
static void ext0_wakeup_prepare();
static void ext1_wakeup_prepare();
static void timer_wakeup_prepare();
/* Wake from deep sleep stub
See esp_deepsleep.h esp_wake_deep_sleep() comments for details.
*/
esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void)
{
_lock_acquire(&lock_rtc_memory_crc);
uint32_t stored_crc = REG_READ(RTC_MEMORY_CRC_REG);
set_rtc_memory_crc();
uint32_t calc_crc = REG_READ(RTC_MEMORY_CRC_REG);
REG_WRITE(RTC_MEMORY_CRC_REG, stored_crc);
_lock_release(&lock_rtc_memory_crc);
if(stored_crc != calc_crc) {
return NULL;
}
esp_deep_sleep_wake_stub_fn_t stub_ptr = (esp_deep_sleep_wake_stub_fn_t) REG_READ(RTC_ENTRY_ADDR_REG);
if (!esp_ptr_executable(stub_ptr)) {
return NULL;
}
return stub_ptr;
}
void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub)
{
_lock_acquire(&lock_rtc_memory_crc);
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub);
set_rtc_memory_crc();
_lock_release(&lock_rtc_memory_crc);
}
void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void) {
/* Clear MMU for CPU 0 */
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) | DPORT_PRO_CACHE_MMU_IA_CLR);
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) & (~DPORT_PRO_CACHE_MMU_IA_CLR));
#if CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY > 0
// ROM code has not started yet, so we need to set delay factor
// used by ets_delay_us first.
ets_update_cpu_frequency_rom(ets_get_detected_xtal_freq() / 1000000);
// This delay is configured in menuconfig, it can be used to give
// the flash chip some time to become ready.
ets_delay_us(CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY);
#endif
}
void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void);
void esp_deep_sleep(uint64_t time_in_us)
{
esp_sleep_enable_timer_wakeup(time_in_us);
esp_deep_sleep_start();
}
static void IRAM_ATTR flush_uarts()
{
for (int i = 0; i < 3; ++i) {
uart_tx_wait_idle(i);
}
}
static void IRAM_ATTR suspend_uarts()
{
for (int i = 0; i < 3; ++i) {
REG_SET_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XOFF);
while (REG_GET_FIELD(UART_STATUS_REG(i), UART_ST_UTX_OUT) != 0) {
;
}
}
}
static void IRAM_ATTR resume_uarts()
{
for (int i = 0; i < 3; ++i) {
REG_CLR_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XOFF);
REG_SET_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XON);
REG_CLR_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XON);
}
}
static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags)
{
// Stop UART output so that output is not lost due to APB frequency change.
// For light sleep, suspend UART output — it will resume after wakeup.
// For deep sleep, wait for the contents of UART FIFO to be sent.
if (pd_flags & RTC_SLEEP_PD_DIG) {
flush_uarts();
} else {
suspend_uarts();
}
// Save current frequency and switch to XTAL
rtc_cpu_freq_config_t cpu_freq_config;
rtc_clk_cpu_freq_get_config(&cpu_freq_config);
rtc_clk_cpu_freq_set_xtal();
// Configure pins for external wakeup
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ext0_wakeup_prepare();
}
if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) {
ext1_wakeup_prepare();
}
// Enable ULP wakeup
if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) {
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_WAKEUP_FORCE_EN);
}
uint32_t reject_triggers = 0;
if ((pd_flags & RTC_SLEEP_PD_DIG) == 0 && (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN)) {
/* Light sleep, enable sleep reject for faster return from this function,
* in case the wakeup is already triggerred.
*/
reject_triggers = RTC_CNTL_LIGHT_SLP_REJECT_EN_M | RTC_CNTL_GPIO_REJECT_EN_M;
}
// Enter sleep
rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags);
rtc_sleep_init(config);
// Configure timer wakeup
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) &&
s_config.sleep_duration > 0) {
timer_wakeup_prepare();
}
uint32_t result = rtc_sleep_start(s_config.wakeup_triggers, reject_triggers);
// Restore CPU frequency
rtc_clk_cpu_freq_set_config(&cpu_freq_config);
// re-enable UART output
resume_uarts();
return result;
}
void IRAM_ATTR esp_deep_sleep_start()
{
// record current RTC time
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
esp_sync_counters_rtc_and_frc();
// Configure wake stub
if (esp_get_deep_sleep_wake_stub() == NULL) {
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
}
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Correct the sleep time
s_config.sleep_time_adjustment = DEEP_SLEEP_TIME_OVERHEAD_US;
// Enter sleep
esp_sleep_start(RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO | RTC_SLEEP_PD_XTAL | pd_flags);
// Because RTC is in a slower clock domain than the CPU, it
// can take several CPU cycles for the sleep mode to start.
while (1) {
;
}
}
/**
* Helper function which handles entry to and exit from light sleep
* Placed into IRAM as flash may need some time to be powered on.
*/
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config) IRAM_ATTR __attribute__((noinline));
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config)
{
// Enter sleep
esp_err_t err = esp_sleep_start(pd_flags);
// If VDDSDIO regulator was controlled by RTC registers before sleep,
// restore the configuration.
if (vddsdio_config.force) {
rtc_vddsdio_set_config(vddsdio_config);
}
// If SPI flash was powered down, wait for it to become ready
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
// Wait for the flash chip to start up
ets_delay_us(flash_enable_time_us);
}
return err;
}
esp_err_t esp_light_sleep_start()
{
static portMUX_TYPE light_sleep_lock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&light_sleep_lock);
/* We will be calling esp_timer_impl_advance inside DPORT access critical
* section. Make sure the code on the other CPU is not holding esp_timer
* lock, otherwise there will be deadlock.
*/
esp_timer_impl_lock();
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
uint64_t frc_time_at_start = esp_timer_get_time();
DPORT_STALL_OTHER_CPU_START();
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Amount of time to subtract from actual sleep time.
// This is spent on entering and leaving light sleep.
s_config.sleep_time_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US;
// Decide if VDD_SDIO needs to be powered down;
// If it needs to be powered down, adjust sleep time.
const uint32_t flash_enable_time_us = VDD_SDIO_POWERUP_TO_FLASH_READ_US
+ CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY;
#ifndef CONFIG_ESP32_SPIRAM_SUPPORT
const uint32_t vddsdio_pd_sleep_duration = MAX(FLASH_PD_MIN_SLEEP_TIME_US,
flash_enable_time_us + LIGHT_SLEEP_TIME_OVERHEAD_US + LIGHT_SLEEP_MIN_TIME_US);
if (s_config.sleep_duration > vddsdio_pd_sleep_duration) {
pd_flags |= RTC_SLEEP_PD_VDDSDIO;
s_config.sleep_time_adjustment += flash_enable_time_us;
}
#endif //CONFIG_ESP32_SPIRAM_SUPPORT
rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config();
// Safety net: enable WDT in case exit from light sleep fails
bool wdt_was_enabled = rtc_wdt_is_on(); // If WDT was enabled in the user code, then do not change it here.
if (!wdt_was_enabled) {
rtc_wdt_protect_off();
rtc_wdt_disable();
rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_3_2us);
rtc_wdt_set_length_of_reset_signal(RTC_WDT_CPU_RESET_SIG, RTC_WDT_LENGTH_3_2us);
rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC);
rtc_wdt_set_time(RTC_WDT_STAGE0, 1000);
rtc_wdt_enable();
rtc_wdt_protect_on();
}
// Enter sleep, then wait for flash to be ready on wakeup
esp_err_t err = esp_light_sleep_inner(pd_flags,
flash_enable_time_us, vddsdio_config);
s_light_sleep_wakeup = true;
// FRC1 has been clock gated for the duration of the sleep, correct for that.
uint64_t rtc_ticks_at_end = rtc_time_get();
uint64_t frc_time_at_end = esp_timer_get_time();
uint64_t rtc_time_diff = rtc_time_slowclk_to_us(rtc_ticks_at_end - s_config.rtc_ticks_at_sleep_start,
esp_clk_slowclk_cal_get());
uint64_t frc_time_diff = frc_time_at_end - frc_time_at_start;
int64_t time_diff = rtc_time_diff - frc_time_diff;
/* Small negative values (up to 1 RTC_SLOW clock period) are possible,
* for very small values of sleep_duration. Ignore those to keep esp_timer
* monotonic.
*/
if (time_diff > 0) {
esp_timer_impl_advance(time_diff);
}
esp_set_time_from_rtc();
esp_timer_impl_unlock();
DPORT_STALL_OTHER_CPU_END();
if (!wdt_was_enabled) {
rtc_wdt_disable();
}
portEXIT_CRITICAL(&light_sleep_lock);
return err;
}
esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source)
{
// For most of sources it is enough to set trigger mask in local
// configuration structure. The actual RTC wake up options
// will be updated by esp_sleep_start().
if (source == ESP_SLEEP_WAKEUP_ALL) {
s_config.wakeup_triggers = 0;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TIMER, RTC_TIMER_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_TIMER_TRIG_EN;
s_config.sleep_duration = 0;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT0, RTC_EXT0_TRIG_EN)) {
s_config.ext0_rtc_gpio_num = 0;
s_config.ext0_trigger_level = 0;
s_config.wakeup_triggers &= ~RTC_EXT0_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT1, RTC_EXT1_TRIG_EN)) {
s_config.ext1_rtc_gpio_mask = 0;
s_config.ext1_trigger_mode = 0;
s_config.wakeup_triggers &= ~RTC_EXT1_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TOUCHPAD, RTC_TOUCH_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_TOUCH_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_GPIO, RTC_GPIO_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_GPIO_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_UART, (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN))) {
s_config.wakeup_triggers &= ~(RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN);
}
#ifdef CONFIG_ESP32_ULP_COPROC_ENABLED
else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_ULP, RTC_ULP_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_ULP_TRIG_EN;
}
#endif
else {
ESP_LOGE(TAG, "Incorrect wakeup source (%d) to disable.", (int) source);
return ESP_ERR_INVALID_STATE;
}
return ESP_OK;
}
esp_err_t esp_sleep_enable_ulp_wakeup()
{
#ifdef CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT
2018-12-22 14:19:46 +08:00
return ESP_ERR_NOT_SUPPORTED;
#endif
#ifdef CONFIG_ESP32_ULP_COPROC_ENABLED
if(s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_ULP_TRIG_EN;
return ESP_OK;
#else
return ESP_ERR_INVALID_STATE;
#endif
}
esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us)
{
s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN;
s_config.sleep_duration = time_in_us;
return ESP_OK;
}
static void timer_wakeup_prepare()
{
uint32_t period = esp_clk_slowclk_cal_get();
int64_t sleep_duration = (int64_t) s_config.sleep_duration - (int64_t) s_config.sleep_time_adjustment;
if (sleep_duration < 0) {
sleep_duration = 0;
}
int64_t rtc_count_delta = rtc_time_us_to_slowclk(sleep_duration, period);
rtc_sleep_set_wakeup_time(s_config.rtc_ticks_at_sleep_start + rtc_count_delta);
}
esp_err_t esp_sleep_enable_touchpad_wakeup()
{
#ifdef CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT
2018-12-22 14:19:46 +08:00
return ESP_ERR_NOT_SUPPORTED;
#endif
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_TOUCH_TRIG_EN;
return ESP_OK;
}
touch_pad_t esp_sleep_get_touchpad_wakeup_status()
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TOUCHPAD) {
return TOUCH_PAD_MAX;
}
touch_pad_t pad_num;
esp_err_t ret = touch_pad_get_wakeup_status(&pad_num);
assert(ret == ESP_OK && "wakeup reason is RTC_TOUCH_TRIG_EN but SENS_TOUCH_MEAS_EN is zero");
return pad_num;
}
esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level)
{
if (level < 0 || level > 1) {
return ESP_ERR_INVALID_ARG;
}
if (!RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
s_config.ext0_rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;
s_config.ext0_trigger_level = level;
s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN;
return ESP_OK;
}
static void ext0_wakeup_prepare()
{
int rtc_gpio_num = s_config.ext0_rtc_gpio_num;
// Set GPIO to be used for wakeup
REG_SET_FIELD(RTC_IO_EXT_WAKEUP0_REG, RTC_IO_EXT_WAKEUP0_SEL, rtc_gpio_num);
// Set level which will trigger wakeup
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
s_config.ext0_trigger_level, RTC_CNTL_EXT_WAKEUP0_LV_S);
// Find GPIO descriptor in the rtc_gpio_desc table and configure the pad
for (size_t gpio_num = 0; gpio_num < GPIO_PIN_COUNT; ++gpio_num) {
const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio_num];
if (desc->rtc_num == rtc_gpio_num) {
REG_SET_BIT(desc->reg, desc->mux);
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
sleep: make sure input enable is set for EXT0/EXT1 wakeup Since commit 94250e4, EXT0 wakeup mechanism, when wakeup level was set to 0, started waking up chip immediately after entering deep sleep. This failure was triggered in that commit by a change of RTC_CNTL_MIN_SLP_VAL (i.e. minimum time in sleep mode until wakeup can happen) from 128 cycles to 2 cycles. The reason for this behaviour is related to the way input enable (IE) signal going into an RTC pad is obtained: PAD_IE = (SLP_SEL) ? SLP_IE & CHIP_SLEEP : IE, where SLP_IE, SLP_SEL, and IE are bits of an RTC_IO register related to the given pad. CHIP_SLEEP is the signal indicating that chip has entered sleep mode. The code in prepare_ext{0,1}_wakeup did not enable IE, but did enable SLP_SEL and SLP_IE. This meant that until CHIP_SLEEP went high, PAD_IE was 0, hence the input from the pad read 0 even if external signal was 1. CHIP_SLEEP went high on the 2nd cycle of sleep. So when RTC_CNTL_MIN_SLP_VAL was set to 2, the input signal from the pad was latched as 0 at the moment when CHIP_SLEEP went high, causing EXT0 wakeup with level 0 to trigger. This commit changes the way PAD_IE is enabled: SLP_SEL and SLP_IE are no longer used, and IE is set to 1. If EXT0 wakeup is used, RTC_IO is not powered down, so IE signal stays 1 both before CHIP_SLEEP goes high and after. If EXT1 wakeup is used, RTC_IO may be powered down. However prepare_ext1_wakeup enables Hold on the pad, locking states of all the control signals, including IE. Closes https://github.com/espressif/esp-idf/issues/1931 Closes https://github.com/espressif/esp-idf/issues/2043
2018-06-12 20:23:26 +08:00
REG_SET_BIT(desc->reg, desc->ie);
break;
}
}
}
esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t mask, esp_sleep_ext1_wakeup_mode_t mode)
{
if (mode > ESP_EXT1_WAKEUP_ANY_HIGH) {
return ESP_ERR_INVALID_ARG;
}
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
uint32_t rtc_gpio_mask = 0;
for (int gpio = 0; mask; ++gpio, mask >>= 1) {
if ((mask & 1) == 0) {
continue;
}
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio);
return ESP_ERR_INVALID_ARG;
}
rtc_gpio_mask |= BIT(rtc_gpio_desc[gpio].rtc_num);
}
s_config.ext1_rtc_gpio_mask = rtc_gpio_mask;
s_config.ext1_trigger_mode = mode;
s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN;
return ESP_OK;
}
static void ext1_wakeup_prepare()
{
// Configure all RTC IOs selected as ext1 wakeup inputs
uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask;
for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) {
int rtc_pin = rtc_gpio_desc[gpio].rtc_num;
if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) {
continue;
}
const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio];
// Route pad to RTC
REG_SET_BIT(desc->reg, desc->mux);
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
sleep: make sure input enable is set for EXT0/EXT1 wakeup Since commit 94250e4, EXT0 wakeup mechanism, when wakeup level was set to 0, started waking up chip immediately after entering deep sleep. This failure was triggered in that commit by a change of RTC_CNTL_MIN_SLP_VAL (i.e. minimum time in sleep mode until wakeup can happen) from 128 cycles to 2 cycles. The reason for this behaviour is related to the way input enable (IE) signal going into an RTC pad is obtained: PAD_IE = (SLP_SEL) ? SLP_IE & CHIP_SLEEP : IE, where SLP_IE, SLP_SEL, and IE are bits of an RTC_IO register related to the given pad. CHIP_SLEEP is the signal indicating that chip has entered sleep mode. The code in prepare_ext{0,1}_wakeup did not enable IE, but did enable SLP_SEL and SLP_IE. This meant that until CHIP_SLEEP went high, PAD_IE was 0, hence the input from the pad read 0 even if external signal was 1. CHIP_SLEEP went high on the 2nd cycle of sleep. So when RTC_CNTL_MIN_SLP_VAL was set to 2, the input signal from the pad was latched as 0 at the moment when CHIP_SLEEP went high, causing EXT0 wakeup with level 0 to trigger. This commit changes the way PAD_IE is enabled: SLP_SEL and SLP_IE are no longer used, and IE is set to 1. If EXT0 wakeup is used, RTC_IO is not powered down, so IE signal stays 1 both before CHIP_SLEEP goes high and after. If EXT1 wakeup is used, RTC_IO may be powered down. However prepare_ext1_wakeup enables Hold on the pad, locking states of all the control signals, including IE. Closes https://github.com/espressif/esp-idf/issues/1931 Closes https://github.com/espressif/esp-idf/issues/2043
2018-06-12 20:23:26 +08:00
// set input enable in sleep mode
REG_SET_BIT(desc->reg, desc->ie);
// Pad configuration depends on RTC_PERIPH state in sleep mode
sleep: make sure input enable is set for EXT0/EXT1 wakeup Since commit 94250e4, EXT0 wakeup mechanism, when wakeup level was set to 0, started waking up chip immediately after entering deep sleep. This failure was triggered in that commit by a change of RTC_CNTL_MIN_SLP_VAL (i.e. minimum time in sleep mode until wakeup can happen) from 128 cycles to 2 cycles. The reason for this behaviour is related to the way input enable (IE) signal going into an RTC pad is obtained: PAD_IE = (SLP_SEL) ? SLP_IE & CHIP_SLEEP : IE, where SLP_IE, SLP_SEL, and IE are bits of an RTC_IO register related to the given pad. CHIP_SLEEP is the signal indicating that chip has entered sleep mode. The code in prepare_ext{0,1}_wakeup did not enable IE, but did enable SLP_SEL and SLP_IE. This meant that until CHIP_SLEEP went high, PAD_IE was 0, hence the input from the pad read 0 even if external signal was 1. CHIP_SLEEP went high on the 2nd cycle of sleep. So when RTC_CNTL_MIN_SLP_VAL was set to 2, the input signal from the pad was latched as 0 at the moment when CHIP_SLEEP went high, causing EXT0 wakeup with level 0 to trigger. This commit changes the way PAD_IE is enabled: SLP_SEL and SLP_IE are no longer used, and IE is set to 1. If EXT0 wakeup is used, RTC_IO is not powered down, so IE signal stays 1 both before CHIP_SLEEP goes high and after. If EXT1 wakeup is used, RTC_IO may be powered down. However prepare_ext1_wakeup enables Hold on the pad, locking states of all the control signals, including IE. Closes https://github.com/espressif/esp-idf/issues/1931 Closes https://github.com/espressif/esp-idf/issues/2043
2018-06-12 20:23:26 +08:00
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
// RTC_PERIPH will be powered down, so RTC_IO_ registers will
// loose their state. Lock pad configuration.
// Pullups/pulldowns also need to be disabled.
REG_CLR_BIT(desc->reg, desc->pulldown);
REG_CLR_BIT(desc->reg, desc->pullup);
REG_SET_BIT(RTC_CNTL_HOLD_FORCE_REG, desc->hold_force);
}
// Keep track of pins which are processed to bail out early
rtc_gpio_mask &= ~BIT(rtc_pin);
}
// Clear state from previous wakeup
REG_SET_BIT(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_STATUS_CLR);
// Set pins to be used for wakeup
REG_SET_FIELD(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_SEL, s_config.ext1_rtc_gpio_mask);
// Set logic function (any low, all high)
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
s_config.ext1_trigger_mode, RTC_CNTL_EXT_WAKEUP1_LV_S);
}
uint64_t esp_sleep_get_ext1_wakeup_status()
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_EXT1) {
return 0;
}
uint32_t status = REG_GET_FIELD(RTC_CNTL_EXT_WAKEUP1_STATUS_REG, RTC_CNTL_EXT_WAKEUP1_STATUS);
// Translate bit map of RTC IO numbers into the bit map of GPIO numbers
uint64_t gpio_mask = 0;
for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) {
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
continue;
}
int rtc_pin = rtc_gpio_desc[gpio].rtc_num;
if ((status & BIT(rtc_pin)) == 0) {
continue;
}
gpio_mask |= 1ULL << gpio;
}
return gpio_mask;
}
esp_err_t esp_sleep_enable_gpio_wakeup()
{
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN;
return ESP_OK;
}
esp_err_t esp_sleep_enable_uart_wakeup(int uart_num)
{
if (uart_num == UART_NUM_0) {
s_config.wakeup_triggers |= RTC_UART0_TRIG_EN;
} else if (uart_num == UART_NUM_1) {
s_config.wakeup_triggers |= RTC_UART1_TRIG_EN;
} else {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause()
{
if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET && !s_light_sleep_wakeup) {
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE);
if (wakeup_cause & RTC_EXT0_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT0;
} else if (wakeup_cause & RTC_EXT1_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT1;
} else if (wakeup_cause & RTC_TIMER_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TIMER;
} else if (wakeup_cause & RTC_TOUCH_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TOUCHPAD;
} else if (wakeup_cause & RTC_ULP_TRIG_EN) {
return ESP_SLEEP_WAKEUP_ULP;
} else if (wakeup_cause & RTC_GPIO_TRIG_EN) {
return ESP_SLEEP_WAKEUP_GPIO;
} else if (wakeup_cause & (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN)) {
return ESP_SLEEP_WAKEUP_UART;
} else {
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
}
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain,
esp_sleep_pd_option_t option)
{
if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) {
return ESP_ERR_INVALID_ARG;
}
s_config.pd_options[domain] = option;
return ESP_OK;
}
static uint32_t get_power_down_flags()
{
// Where needed, convert AUTO options to ON. Later interpret AUTO as OFF.
// RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP
// is used and RTC_SLOW_MEM is Auto.
// If there is any data placed into .rtc.data or .rtc.bss segments, and
// RTC_SLOW_MEM is Auto, keep it powered up as well.
// Labels are defined in the linker script, see esp32.ld.
extern int _rtc_slow_length;
if ((s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] == ESP_PD_OPTION_AUTO) &&
((size_t) &_rtc_slow_length > 0 ||
(s_config.wakeup_triggers & RTC_ULP_TRIG_EN))) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] = ESP_PD_OPTION_ON;
}
// RTC_FAST_MEM is needed for deep sleep stub.
// If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub
// can run.
// In the new chip revision, deep sleep stub will be optional,
// and this can be changed.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON;
}
// RTC_PERIPH is needed for EXT0 wakeup and GPIO wakeup.
// If RTC_PERIPH is auto, and EXT0/GPIO aren't enabled, power down RTC_PERIPH.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) {
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN | RTC_GPIO_TRIG_EN)) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
} else if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
// In both rev. 0 and rev. 1 of ESP32, forcing power up of RTC_PERIPH
// prevents ULP timer and touch FSMs from working correctly.
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF;
}
}
if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_XTAL] = ESP_PD_OPTION_OFF;
}
const char* option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */};
ESP_LOGD(TAG, "RTC_PERIPH: %s, RTC_SLOW_MEM: %s, RTC_FAST_MEM: %s",
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]],
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM]],
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]);
// Prepare flags based on the selected options
uint32_t pd_flags = 0;
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_PERIPH;
}
if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_XTAL;
}
2018-12-22 14:19:46 +08:00
if ((s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) == 0) {
// If enabled EXT1 only and enable the additional current by touch, should be keep RTC_PERIPH power on.
#if ((defined CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) && (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT))
2018-12-22 14:19:46 +08:00
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
#endif
}
return pd_flags;
}
void esp_deep_sleep_disable_rom_logging(void)
{
/* To disable logging in the ROM, only the least significant bit of the register is used,
* but since this register is also used to store the frequency of the main crystal (RTC_XTAL_FREQ_REG),
* you need to write to this register in the same format.
* Namely, the upper 16 bits and lower should be the same.
*/
REG_SET_BIT(RTC_CNTL_STORE4_REG, RTC_DISABLE_ROM_LOG);
}