esp-idf/components/sdmmc/test/test_sd.c
2021-07-08 18:39:57 +08:00

665 lines
23 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include "sdkconfig.h"
#include "unity.h"
#include "driver/gpio.h"
#include "soc/soc_caps.h"
#if SOC_SDMMC_HOST_SUPPORTED
#include "driver/sdmmc_host.h"
#endif
#include "driver/sdspi_host.h"
#include "driver/sdmmc_defs.h"
#include "sdmmc_cmd.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "esp_rom_gpio.h"
#include "test_utils.h"
// Currently no runners for S3
#define WITH_SD_TEST (SOC_SDMMC_HOST_SUPPORTED && !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3))
//Currently no runners for S2, S3 and C3
#define WITH_SDSPI_TEST (!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3, ESP32C3))
// Can't test eMMC (slot 0) and PSRAM together
#define WITH_EMMC_TEST (SOC_SDMMC_HOST_SUPPORTED && !CONFIG_SPIRAM && !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3))
/* power supply enable pin */
#define SD_TEST_BOARD_VSEL_EN_GPIO 27
/* power supply voltage select pin */
#define SD_TEST_BOARD_VSEL_GPIO 26
#define SD_TEST_BOARD_VSEL_3V3 1
#define SD_TEST_BOARD_VSEL_1V8 0
#define TEST_SDSPI_DMACHAN 1
/* time to wait for reset / power-on */
#define SD_TEST_BOARD_PWR_RST_DELAY_MS 5
#define SD_TEST_BOARD_PWR_ON_DELAY_MS 50
/* gpio which is not connected to actual CD pin, used to simulate CD behavior */
#define CD_WP_TEST_GPIO 18
TEST_CASE("MMC_RSP_BITS", "[sd]")
{
uint32_t data[2] = { 0x01234567, 0x89abcdef };
TEST_ASSERT_EQUAL_HEX32(0x7, MMC_RSP_BITS(data, 0, 4));
TEST_ASSERT_EQUAL_HEX32(0x567, MMC_RSP_BITS(data, 0, 12));
TEST_ASSERT_EQUAL_HEX32(0xf0, MMC_RSP_BITS(data, 28, 8));
TEST_ASSERT_EQUAL_HEX32(0x3, MMC_RSP_BITS(data, 1, 3));
TEST_ASSERT_EQUAL_HEX32(0x11, MMC_RSP_BITS(data, 59, 5));
}
#if WITH_SD_TEST || WITH_EMMC_TEST
static void sd_test_board_power_on(void)
{
gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_OUTPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, SD_TEST_BOARD_VSEL_3V3);
gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_OUTPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0);
usleep(SD_TEST_BOARD_PWR_RST_DELAY_MS * 1000);
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 1);
usleep(SD_TEST_BOARD_PWR_ON_DELAY_MS * 1000);
}
static void sd_test_board_power_off(void)
{
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0);
gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_INPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, 0);
gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_INPUT);
}
static void probe_sd(int slot, int width, int freq_khz, int ddr)
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
config.slot = slot;
config.max_freq_khz = freq_khz;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
if (width == 1) {
config.flags = SDMMC_HOST_FLAG_1BIT;
slot_config.width = 1;
} else if (width == 4) {
config.flags &= ~SDMMC_HOST_FLAG_8BIT;
slot_config.width = 4;
} else {
assert(!ddr && "host driver does not support 8-line DDR mode yet");
}
if (!ddr) {
config.flags &= ~SDMMC_HOST_FLAG_DDR;
}
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(slot, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
sdmmc_card_print_info(stdout, card);
uint8_t* buffer = heap_caps_malloc(512, MALLOC_CAP_DMA);
TEST_ESP_OK(sdmmc_read_sectors(card, buffer, 0, 1));
free(buffer);
TEST_ESP_OK(sdmmc_host_deinit());
free(card);
sd_test_board_power_off();
}
#endif //WITH_SD_TEST || WITH_EMMC_TEST
#if WITH_SD_TEST
TEST_CASE("probe SD, slot 1, 4-bit", "[sd][test_env=UT_T1_SDMODE]")
{
probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_HIGHSPEED, 0);
}
TEST_CASE("probe SD, slot 1, 1-bit", "[sd][test_env=UT_T1_SDMODE]")
{
probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_HIGHSPEED, 0);
}
//No runners for slot 0
TEST_CASE("probe SD, slot 0, 4-bit", "[sd][ignore]")
{
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 0);
}
TEST_CASE("probe SD, slot 0, 1-bit", "[sd][ignore]")
{
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_HIGHSPEED, 0);
}
#endif //WITH_SD_TEST
#if WITH_EMMC_TEST
TEST_CASE("probe eMMC, slot 0, 4-bit", "[sd][test_env=EMMC]")
{
//Test with SDR
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 0);
//Test with DDR
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 1);
}
TEST_CASE("probe eMMC, slot 0, 8-bit", "[sd][test_env=EMMC]")
{
//8-bit DDR not supported yet, test with SDR only
probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_HIGHSPEED, 0);
}
#endif // WITH_EMMC_TEST
#if WITH_SDSPI_TEST
static void test_sdspi_init_bus(spi_host_device_t host, int mosi_pin, int miso_pin, int clk_pin, int dma_chan)
{
spi_bus_config_t bus_config = {
.mosi_io_num = mosi_pin,
.miso_io_num = miso_pin,
.sclk_io_num = clk_pin,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
};
esp_err_t err = spi_bus_initialize(host, &bus_config, dma_chan);
TEST_ESP_OK(err);
}
static void test_sdspi_deinit_bus(spi_host_device_t host)
{
esp_err_t err = spi_bus_free(host);
TEST_ESP_OK(err);
}
static void probe_core(int slot)
{
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
config.slot = slot;
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
sdmmc_card_print_info(stdout, card);
free(card);
}
static void probe_spi(int freq_khz, int pin_miso, int pin_mosi, int pin_sck, int pin_cs)
{
sd_test_board_power_on();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.gpio_cs = pin_cs;
test_sdspi_init_bus(dev_config.host_id, pin_mosi, pin_miso, pin_sck, TEST_SDSPI_DMACHAN);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
probe_core(handle);
TEST_ESP_OK(sdspi_host_deinit());
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
static void probe_spi_legacy(int freq_khz, int pin_miso, int pin_mosi, int pin_sck, int pin_cs)
{
sd_test_board_power_on();
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT();
slot_config.gpio_miso = pin_miso;
slot_config.gpio_mosi = pin_mosi;
slot_config.gpio_sck = pin_sck;
slot_config.gpio_cs = pin_cs;
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config));
probe_core(config.slot);
TEST_ESP_OK(sdspi_host_deinit());
sd_test_board_power_off();
}
TEST_CASE("probe SD in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
probe_spi(SDMMC_FREQ_DEFAULT, 2, 15, 14, 13);
probe_spi_legacy(SDMMC_FREQ_DEFAULT, 2, 15, 14, 13);
}
// No runner for this
TEST_CASE("probe SD in SPI mode, slot 0", "[sd][ignore]")
{
probe_spi(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10);
probe_spi_legacy(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10);
}
#endif //WITH_SDSPI_TEST
#if WITH_SD_TEST || WITH_SDSPI_TEST || WITH_EMMC_TEST
// Fill buffer pointed to by 'dst' with 'count' 32-bit ints generated
// from 'rand' with the starting value of 'seed'
static void fill_buffer(uint32_t seed, uint8_t* dst, size_t count) {
srand(seed);
for (size_t i = 0; i < count; ++i) {
uint32_t val = rand();
memcpy(dst + i * sizeof(uint32_t), &val, sizeof(val));
}
}
// Check if the buffer pointed to by 'dst' contains 'count' 32-bit
// ints generated from 'rand' with the starting value of 'seed'
static void check_buffer(uint32_t seed, const uint8_t* src, size_t count) {
srand(seed);
for (size_t i = 0; i < count; ++i) {
uint32_t val;
memcpy(&val, src + i * sizeof(uint32_t), sizeof(val));
TEST_ASSERT_EQUAL_HEX32(rand(), val);
}
}
static void do_single_write_read_test(sdmmc_card_t* card, size_t start_block,
size_t block_count, size_t alignment, bool performance_log)
{
size_t block_size = card->csd.sector_size;
size_t total_size = block_size * block_count;
printf(" %8d | %3d | %d | %4.1f ", start_block, block_count, alignment, total_size / 1024.0f);
uint32_t* buffer = heap_caps_malloc(total_size + 4, MALLOC_CAP_DMA);
size_t offset = alignment % 4;
uint8_t* c_buffer = (uint8_t*) buffer + offset;
fill_buffer(start_block, c_buffer, total_size / sizeof(buffer[0]));
struct timeval t_start_wr;
gettimeofday(&t_start_wr, NULL);
TEST_ESP_OK(sdmmc_write_sectors(card, c_buffer, start_block, block_count));
struct timeval t_stop_wr;
gettimeofday(&t_stop_wr, NULL);
float time_wr = 1e3f * (t_stop_wr.tv_sec - t_start_wr.tv_sec) + 1e-3f * (t_stop_wr.tv_usec - t_start_wr.tv_usec);
memset(buffer, 0xbb, total_size + 4);
struct timeval t_start_rd;
gettimeofday(&t_start_rd, NULL);
TEST_ESP_OK(sdmmc_read_sectors(card, c_buffer, start_block, block_count));
struct timeval t_stop_rd;
gettimeofday(&t_stop_rd, NULL);
float time_rd = 1e3f * (t_stop_rd.tv_sec - t_start_rd.tv_sec) + 1e-3f * (t_stop_rd.tv_usec - t_start_rd.tv_usec);
printf(" | %6.2f | %5.2f | %6.2f | %5.2f\n",
time_wr, total_size / (time_wr / 1000) / (1024 * 1024),
time_rd, total_size / (time_rd / 1000) / (1024 * 1024));
check_buffer(start_block, c_buffer, total_size / sizeof(buffer[0]));
free(buffer);
if (performance_log) {
static const char wr_speed_str[] = "SDMMC_WR_SPEED";
static const char rd_speed_str[] = "SDMMC_RD_SPEED";
int aligned = ((alignment % 4) == 0)? 1: 0;
IDF_LOG_PERFORMANCE(wr_speed_str, "%d, blk_n: %d, aligned: %d",
(int)(total_size * 1000 / time_wr), block_count, aligned);
IDF_LOG_PERFORMANCE(rd_speed_str, "%d, blk_n: %d, aligned: %d",
(int)(total_size * 1000 / time_rd), block_count, aligned);
}
}
typedef void (*sd_test_func_t)(sdmmc_card_t* card);
static void test_read_write_performance(sdmmc_card_t* card)
{
sdmmc_card_print_info(stdout, card);
printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n");
const int offset = 0;
const bool do_log = true;
//aligned
do_single_write_read_test(card, offset, 1, 4, do_log);
do_single_write_read_test(card, offset, 4, 4, do_log);
do_single_write_read_test(card, offset, 8, 4, do_log);
do_single_write_read_test(card, offset, 16, 4, do_log);
do_single_write_read_test(card, offset, 32, 4, do_log);
do_single_write_read_test(card, offset, 64, 4, do_log);
do_single_write_read_test(card, offset, 128, 4, do_log);
//unaligned
do_single_write_read_test(card, offset, 1, 1, do_log);
do_single_write_read_test(card, offset, 8, 1, do_log);
do_single_write_read_test(card, offset, 128, 1, do_log);
}
static void test_read_write_with_offset(sdmmc_card_t* card)
{
sdmmc_card_print_info(stdout, card);
printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n");
const bool no_log = false;;
//aligned
do_single_write_read_test(card, 1, 16, 4, no_log);
do_single_write_read_test(card, 16, 32, 4, no_log);
do_single_write_read_test(card, 48, 64, 4, no_log);
do_single_write_read_test(card, 128, 128, 4, no_log);
do_single_write_read_test(card, card->csd.capacity - 64, 32, 4, no_log);
do_single_write_read_test(card, card->csd.capacity - 64, 64, 4, no_log);
do_single_write_read_test(card, card->csd.capacity - 8, 1, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 1, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 4, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 8, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 16, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 32, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 64, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 128, 4, no_log);
//unaligned
do_single_write_read_test(card, card->csd.capacity/2, 1, 1, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 8, 1, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 128, 1, no_log);
}
#endif //WITH_SD_TEST || WITH_SDSPI_TEST || WITH_EMMC_TEST
#if WITH_SD_TEST || WITH_EMMC_TEST
void sd_test_rw_blocks(int slot, int width, sd_test_func_t test_func)
{
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
config.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
config.slot = slot;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
if (width != 0) {
slot_config.width = width;
}
if (slot_config.width == 8) {
config.flags &= ~SDMMC_HOST_FLAG_DDR;
}
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(slot, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
test_func(card);
free(card);
TEST_ESP_OK(sdmmc_host_deinit());
}
#endif //WITH_SD_TEST || WITH_EMMC_TEST
#if WITH_SD_TEST
TEST_CASE("SDMMC performance test (SD slot 1, 4 line)", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sd_test_rw_blocks(1, 4, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC performance test (SD slot 1, 1 line)", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sd_test_rw_blocks(1, 1, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC test read/write with offset (SD slot 1)", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sd_test_rw_blocks(1, 4, test_read_write_with_offset);
sd_test_board_power_off();
}
#endif //WITH_SD_TEST
#if WITH_EMMC_TEST
TEST_CASE("SDMMC performance test (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 4, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC test read/write with offset (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 4, test_read_write_with_offset);
sd_test_board_power_off();
}
TEST_CASE("SDMMC performance test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 8, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC test read/write with offset (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 8, test_read_write_with_offset);
sd_test_board_power_off();
}
#endif // WITH_EMMC_TEST
#if WITH_SDSPI_TEST
void sdspi_test_rw_blocks(sd_test_func_t test_func)
{
sd_test_board_power_on();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
test_sdspi_init_bus(dev_config.host_id, GPIO_NUM_15, GPIO_NUM_2, GPIO_NUM_14, TEST_SDSPI_DMACHAN);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
config.slot = handle;
// This test can only run under 20MHz on ESP32, because the runner connects the card to
// non-IOMUX pins of HSPI.
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
test_func(card);
TEST_ESP_OK(sdspi_host_deinit());
free(card);
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
TEST_CASE("SDMMC performance (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]")
{
sdspi_test_rw_blocks(test_read_write_performance);
}
TEST_CASE("SDMMC test read/write with offset (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]")
{
sdspi_test_rw_blocks(test_read_write_with_offset);
}
#endif //WITH_SDSPI_TEST
#if WITH_SD_TEST
TEST_CASE("reads and writes with an unaligned buffer", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
const size_t buffer_size = 4096;
const size_t block_count = buffer_size / 512;
const size_t extra = 4;
uint8_t* buffer = heap_caps_malloc(buffer_size + extra, MALLOC_CAP_DMA);
// Check read behavior: do aligned write, then unaligned read
const uint32_t seed = 0x89abcdef;
fill_buffer(seed, buffer, buffer_size / sizeof(uint32_t));
TEST_ESP_OK(sdmmc_write_sectors(card, buffer, 0, block_count));
memset(buffer, 0xcc, buffer_size + extra);
TEST_ESP_OK(sdmmc_read_sectors(card, buffer + 1, 0, block_count));
check_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t));
// Check write behavior: do unaligned write, then aligned read
fill_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t));
TEST_ESP_OK(sdmmc_write_sectors(card, buffer + 1, 8, block_count));
memset(buffer, 0xcc, buffer_size + extra);
TEST_ESP_OK(sdmmc_read_sectors(card, buffer, 8, block_count));
check_buffer(seed, buffer, buffer_size / sizeof(uint32_t));
free(buffer);
free(card);
TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off();
}
#endif //WITH_SD_TEST
#if WITH_SD_TEST || WITH_SDSPI_TEST
static void test_cd_input(int gpio_cd_num, const sdmmc_host_t* config)
{
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
// SDMMC host should have configured CD as input.
// Enable output as well (not using the driver, to avoid touching input
// enable bits).
esp_rom_gpio_connect_out_signal(gpio_cd_num, SIG_GPIO_OUT_IDX, false, false);
REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_cd_num));
// Check that card initialization fails if CD is high
REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_cd_num));
usleep(1000);
TEST_ESP_ERR(ESP_ERR_NOT_FOUND, sdmmc_card_init(config, card));
// Check that card initialization succeeds if CD is low
REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_cd_num));
usleep(1000);
TEST_ESP_OK(sdmmc_card_init(config, card));
free(card);
}
static void test_wp_input(int gpio_wp_num, const sdmmc_host_t* config)
{
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
// SDMMC host should have configured WP as input.
// Enable output as well (not using the driver, to avoid touching input
// enable bits).
esp_rom_gpio_connect_out_signal(gpio_wp_num, SIG_GPIO_OUT_IDX, false, false);
REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_wp_num));
// Check that the card can be initialized with WP low
REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num));
TEST_ESP_OK(sdmmc_card_init(config, card));
uint32_t* data = heap_caps_calloc(1, 512, MALLOC_CAP_DMA);
// Check that card write succeeds if WP is high
REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_wp_num));
usleep(1000);
TEST_ESP_OK(sdmmc_write_sectors(card, &data, 0, 1));
// Check that write fails if WP is low
REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num));
usleep(1000);
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, sdmmc_write_sectors(card, &data, 0, 1));
// ...but reads still work
TEST_ESP_OK(sdmmc_read_sectors(card, &data, 0, 1));
free(data);
free(card);
}
#endif //WITH_SD_TEST || WITH_SDSPI_TEST
#if WITH_SD_TEST
TEST_CASE("CD input works in SD mode", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
slot_config.gpio_cd = CD_WP_TEST_GPIO;
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
test_cd_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off();
}
TEST_CASE("WP input works in SD mode", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
slot_config.gpio_wp = CD_WP_TEST_GPIO;
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
test_wp_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off();
}
#endif //WITH_SD_TEST
#if WITH_SDSPI_TEST
TEST_CASE("CD input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
sd_test_board_power_on();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.gpio_cd = CD_WP_TEST_GPIO;
test_sdspi_init_bus(dev_config.host_id, GPIO_NUM_15, GPIO_NUM_2, GPIO_NUM_14, TEST_SDSPI_DMACHAN);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
config.slot = handle;
test_cd_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdspi_host_deinit());
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
TEST_CASE("WP input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
sd_test_board_power_on();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.gpio_wp = CD_WP_TEST_GPIO;
test_sdspi_init_bus(dev_config.host_id, GPIO_NUM_15, GPIO_NUM_2, GPIO_NUM_14, TEST_SDSPI_DMACHAN);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
config.slot = handle;
test_wp_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdspi_host_deinit());
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
#endif //WITH_SDSPI_TEST