esp-idf/components/bootloader_support/src/bootloader_utility.c

879 lines
34 KiB
C

/*
* SPDX-FileCopyrightText: 2018-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_rom_sys.h"
#include "esp_rom_uart.h"
#include "sdkconfig.h"
#if CONFIG_IDF_TARGET_ESP32
#include "soc/dport_reg.h"
#include "esp32/rom/cache.h"
#include "esp32/rom/secure_boot.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/secure_boot.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/secure_boot.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/efuse.h"
#include "esp32c3/rom/crc.h"
#include "esp32c3/rom/uart.h"
#include "esp32c3/rom/gpio.h"
#include "esp32c3/rom/secure_boot.h"
#elif CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/rom/efuse.h"
#include "esp32h2/rom/crc.h"
#include "esp32h2/rom/uart.h"
#include "esp32h2/rom/gpio.h"
#include "esp32h2/rom/secure_boot.h"
#elif CONFIG_IDF_TARGET_ESP32C2
#include "esp32c2/rom/efuse.h"
#include "esp32c2/rom/crc.h"
#include "esp32c2/rom/rtc.h"
#include "esp32c2/rom/uart.h"
#include "esp32c2/rom/gpio.h"
#include "esp32c2/rom/secure_boot.h"
#else // CONFIG_IDF_TARGET_*
#error "Unsupported IDF_TARGET"
#endif
#include "esp_rom_spiflash.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/gpio_periph.h"
#include "soc/efuse_periph.h"
#include "soc/rtc_periph.h"
#include "soc/timer_periph.h"
#include "hal/mmu_hal.h"
#include "hal/cache_types.h"
#include "hal/cache_ll.h"
#include "hal/cache_hal.h"
#include "esp_cpu.h"
#include "esp_image_format.h"
#include "esp_secure_boot.h"
#include "esp_flash_encrypt.h"
#include "esp_flash_partitions.h"
#include "bootloader_flash_priv.h"
#include "bootloader_random.h"
#include "bootloader_config.h"
#include "bootloader_common.h"
#include "bootloader_utility.h"
#include "bootloader_sha.h"
#include "bootloader_console.h"
#include "bootloader_soc.h"
#include "esp_efuse.h"
#include "esp_fault.h"
static const char *TAG = "boot";
/* Reduce literal size for some generic string literals */
#define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped."
static bool ota_has_initial_contents;
static void load_image(const esp_image_metadata_t *image_data);
static void unpack_load_app(const esp_image_metadata_t *data);
static void set_cache_and_start_app(uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr);
// Read ota_info partition and fill array from two otadata structures.
static esp_err_t read_otadata(const esp_partition_pos_t *ota_info, esp_ota_select_entry_t *two_otadata)
{
const esp_ota_select_entry_t *ota_select_map;
if (ota_info->offset == 0) {
return ESP_ERR_NOT_FOUND;
}
// partition table has OTA data partition
if (ota_info->size < 2 * SPI_SEC_SIZE) {
ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", ota_info->size, (2 * SPI_SEC_SIZE));
return ESP_FAIL; // can't proceed
}
ESP_LOGD(TAG, "OTA data offset 0x%x", ota_info->offset);
ota_select_map = bootloader_mmap(ota_info->offset, ota_info->size);
if (!ota_select_map) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ota_info->offset, ota_info->size);
return ESP_FAIL; // can't proceed
}
memcpy(&two_otadata[0], ota_select_map, sizeof(esp_ota_select_entry_t));
memcpy(&two_otadata[1], (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
bootloader_munmap(ota_select_map);
return ESP_OK;
}
bool bootloader_utility_load_partition_table(bootloader_state_t *bs)
{
const esp_partition_info_t *partitions;
const char *partition_usage;
esp_err_t err;
int num_partitions;
partitions = bootloader_mmap(ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
if (!partitions) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
return false;
}
ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_OFFSET, (intptr_t)partitions);
err = esp_partition_table_verify(partitions, true, &num_partitions);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table");
return false;
}
ESP_LOGI(TAG, "Partition Table:");
ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
for (int i = 0; i < num_partitions; i++) {
const esp_partition_info_t *partition = &partitions[i];
ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
partition_usage = "unknown";
/* valid partition table */
switch (partition->type) {
case PART_TYPE_APP: /* app partition */
switch (partition->subtype) {
case PART_SUBTYPE_FACTORY: /* factory binary */
bs->factory = partition->pos;
partition_usage = "factory app";
break;
case PART_SUBTYPE_TEST: /* test binary */
bs->test = partition->pos;
partition_usage = "test app";
break;
default:
/* OTA binary */
if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
++bs->app_count;
partition_usage = "OTA app";
} else {
partition_usage = "Unknown app";
}
break;
}
break; /* PART_TYPE_APP */
case PART_TYPE_DATA: /* data partition */
switch (partition->subtype) {
case PART_SUBTYPE_DATA_OTA: /* ota data */
bs->ota_info = partition->pos;
partition_usage = "OTA data";
break;
case PART_SUBTYPE_DATA_RF:
partition_usage = "RF data";
break;
case PART_SUBTYPE_DATA_WIFI:
partition_usage = "WiFi data";
break;
case PART_SUBTYPE_DATA_NVS_KEYS:
partition_usage = "NVS keys";
break;
case PART_SUBTYPE_DATA_EFUSE_EM:
partition_usage = "efuse";
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_init_virtual_mode_in_flash(partition->pos.offset, partition->pos.size);
#endif
break;
default:
partition_usage = "Unknown data";
break;
}
break; /* PARTITION_USAGE_DATA */
default: /* other partition type */
break;
}
/* print partition type info */
ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
partition->type, partition->subtype,
partition->pos.offset, partition->pos.size);
}
bootloader_munmap(partitions);
ESP_LOGI(TAG, "End of partition table");
return true;
}
/* Given a partition index, return the partition position data from the bootloader_state_t structure */
static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index)
{
if (index == FACTORY_INDEX) {
return bs->factory;
}
if (index == TEST_APP_INDEX) {
return bs->test;
}
if (index >= 0 && index < MAX_OTA_SLOTS && index < (int)bs->app_count) {
return bs->ota[index];
}
esp_partition_pos_t invalid = { 0 };
return invalid;
}
static void log_invalid_app_partition(int index)
{
const char *not_bootable = " is not bootable"; /* save a few string literal bytes */
switch (index) {
case FACTORY_INDEX:
ESP_LOGE(TAG, "Factory app partition%s", not_bootable);
break;
case TEST_APP_INDEX:
ESP_LOGE(TAG, "Factory test app partition%s", not_bootable);
break;
default:
ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable);
break;
}
}
static esp_err_t write_otadata(esp_ota_select_entry_t *otadata, uint32_t offset, bool write_encrypted)
{
esp_err_t err = bootloader_flash_erase_sector(offset / FLASH_SECTOR_SIZE);
if (err == ESP_OK) {
err = bootloader_flash_write(offset, otadata, sizeof(esp_ota_select_entry_t), write_encrypted);
}
if (err != ESP_OK) {
ESP_LOGE(TAG, "Error in write_otadata operation. err = 0x%x", err);
}
return err;
}
static bool check_anti_rollback(const esp_partition_pos_t *partition)
{
#ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
esp_app_desc_t app_desc = {};
esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to get partition description %d", err);
return false;
}
bool sec_ver = esp_efuse_check_secure_version(app_desc.secure_version);
/* Anti FI check */
ESP_FAULT_ASSERT(sec_ver == esp_efuse_check_secure_version(app_desc.secure_version));
return sec_ver;
#else
return true;
#endif
}
#ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
static void update_anti_rollback(const esp_partition_pos_t *partition)
{
esp_app_desc_t app_desc;
esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc);
if (err == ESP_OK) {
esp_efuse_update_secure_version(app_desc.secure_version);
} else {
ESP_LOGE(TAG, "Failed to get partition description %d", err);
}
}
static int get_active_otadata_with_check_anti_rollback(const bootloader_state_t *bs, esp_ota_select_entry_t *two_otadata)
{
uint32_t ota_seq;
uint32_t ota_slot;
bool valid_otadata[2];
valid_otadata[0] = bootloader_common_ota_select_valid(&two_otadata[0]);
valid_otadata[1] = bootloader_common_ota_select_valid(&two_otadata[1]);
bool sec_ver_valid_otadata[2] = { 0 };
for (int i = 0; i < 2; ++i) {
if (valid_otadata[i] == true) {
ota_seq = two_otadata[i].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots
ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection
if (check_anti_rollback(&bs->ota[ota_slot]) == false) {
// invalid. This otadata[i] will not be selected as active.
ESP_LOGD(TAG, "OTA slot %d has an app with secure_version, this version is smaller than in the device. This OTA slot will not be selected.", ota_slot);
} else {
sec_ver_valid_otadata[i] = true;
}
}
}
return bootloader_common_select_otadata(two_otadata, sec_ver_valid_otadata, true);
}
#endif
int bootloader_utility_get_selected_boot_partition(const bootloader_state_t *bs)
{
esp_ota_select_entry_t otadata[2];
int boot_index = FACTORY_INDEX;
if (bs->ota_info.offset == 0) {
return FACTORY_INDEX;
}
if (read_otadata(&bs->ota_info, otadata) != ESP_OK) {
return INVALID_INDEX;
}
ota_has_initial_contents = false;
ESP_LOGD(TAG, "otadata[0]: sequence values 0x%08x", otadata[0].ota_seq);
ESP_LOGD(TAG, "otadata[1]: sequence values 0x%08x", otadata[1].ota_seq);
#ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
bool write_encrypted = esp_flash_encryption_enabled();
for (int i = 0; i < 2; ++i) {
if (otadata[i].ota_state == ESP_OTA_IMG_PENDING_VERIFY) {
ESP_LOGD(TAG, "otadata[%d] is marking as ABORTED", i);
otadata[i].ota_state = ESP_OTA_IMG_ABORTED;
write_otadata(&otadata[i], bs->ota_info.offset + FLASH_SECTOR_SIZE * i, write_encrypted);
}
}
#endif
#ifndef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
if ((bootloader_common_ota_select_invalid(&otadata[0]) &&
bootloader_common_ota_select_invalid(&otadata[1])) ||
bs->app_count == 0) {
ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF) or partition table does not have bootable ota_apps (app_count=%d)", bs->app_count);
if (bs->factory.offset != 0) {
ESP_LOGI(TAG, "Defaulting to factory image");
boot_index = FACTORY_INDEX;
} else {
ESP_LOGI(TAG, "No factory image, trying OTA 0");
boot_index = 0;
// Try to boot from ota_0.
if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) &&
(otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) {
// Factory is not found and both otadata are initial(0xFFFFFFFF) or incorrect crc.
// will set correct ota_seq.
ota_has_initial_contents = true;
}
}
} else {
int active_otadata = bootloader_common_get_active_otadata(otadata);
#else
ESP_LOGI(TAG, "Enabled a check secure version of app for anti rollback");
ESP_LOGI(TAG, "Secure version (from eFuse) = %d", esp_efuse_read_secure_version());
// When CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK is enabled factory partition should not be in partition table, only two ota_app are there.
if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) &&
(otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) {
ESP_LOGI(TAG, "otadata[0..1] in initial state");
// both otadata are initial(0xFFFFFFFF) or incorrect crc.
// will set correct ota_seq.
ota_has_initial_contents = true;
} else {
int active_otadata = get_active_otadata_with_check_anti_rollback(bs, otadata);
#endif
if (active_otadata != -1) {
ESP_LOGD(TAG, "Active otadata[%d]", active_otadata);
uint32_t ota_seq = otadata[active_otadata].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots
boot_index = ota_seq % bs->app_count; // Actual OTA partition selection
ESP_LOGD(TAG, "Mapping seq %d -> OTA slot %d", ota_seq, boot_index);
#ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
if (otadata[active_otadata].ota_state == ESP_OTA_IMG_NEW) {
ESP_LOGD(TAG, "otadata[%d] is selected as new and marked PENDING_VERIFY state", active_otadata);
otadata[active_otadata].ota_state = ESP_OTA_IMG_PENDING_VERIFY;
write_otadata(&otadata[active_otadata], bs->ota_info.offset + FLASH_SECTOR_SIZE * active_otadata, write_encrypted);
}
#endif // CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
#ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
if (otadata[active_otadata].ota_state == ESP_OTA_IMG_VALID) {
update_anti_rollback(&bs->ota[boot_index]);
}
#endif // CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
} else if (bs->factory.offset != 0) {
ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
boot_index = FACTORY_INDEX;
} else {
ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions");
boot_index = FACTORY_INDEX;
}
}
return boot_index;
}
/* Return true if a partition has a valid app image that was successfully loaded */
static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data)
{
if (partition->size == 0) {
ESP_LOGD(TAG, "Can't boot from zero-length partition");
return false;
}
#ifdef BOOTLOADER_BUILD
if (bootloader_load_image(partition, data) == ESP_OK) {
ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x",
partition->offset);
return true;
}
#endif
return false;
}
// ota_has_initial_contents flag is set if factory does not present in partition table and
// otadata has initial content(0xFFFFFFFF), then set actual ota_seq.
static void set_actual_ota_seq(const bootloader_state_t *bs, int index)
{
if (index > FACTORY_INDEX && ota_has_initial_contents == true) {
esp_ota_select_entry_t otadata;
memset(&otadata, 0xFF, sizeof(otadata));
otadata.ota_seq = index + 1;
otadata.ota_state = ESP_OTA_IMG_VALID;
otadata.crc = bootloader_common_ota_select_crc(&otadata);
bool write_encrypted = esp_flash_encryption_enabled();
write_otadata(&otadata, bs->ota_info.offset + FLASH_SECTOR_SIZE * 0, write_encrypted);
ESP_LOGI(TAG, "Set actual ota_seq=%d in otadata[0]", otadata.ota_seq);
#ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
update_anti_rollback(&bs->ota[index]);
#endif
}
#if defined( CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP ) || defined( CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC )
esp_partition_pos_t partition = index_to_partition(bs, index);
bootloader_common_update_rtc_retain_mem(&partition, true);
#endif
}
#ifdef CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP
void bootloader_utility_load_boot_image_from_deep_sleep(void)
{
if (esp_rom_get_reset_reason(0) == RESET_REASON_CORE_DEEP_SLEEP) {
esp_partition_pos_t *partition = bootloader_common_get_rtc_retain_mem_partition();
if (partition != NULL) {
esp_image_metadata_t image_data;
if (bootloader_load_image_no_verify(partition, &image_data) == ESP_OK) {
ESP_LOGI(TAG, "Fast booting app from partition at offset 0x%x", partition->offset);
bootloader_common_update_rtc_retain_mem(NULL, true);
load_image(&image_data);
}
}
ESP_LOGE(TAG, "Fast booting is not successful");
ESP_LOGI(TAG, "Try to load an app as usual with all validations");
}
}
#endif
#define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x"
void bootloader_utility_load_boot_image(const bootloader_state_t *bs, int start_index)
{
int index = start_index;
esp_partition_pos_t part;
esp_image_metadata_t image_data;
if (start_index == TEST_APP_INDEX) {
if (check_anti_rollback(&bs->test) && try_load_partition(&bs->test, &image_data)) {
load_image(&image_data);
} else {
ESP_LOGE(TAG, "No bootable test partition in the partition table");
bootloader_reset();
}
}
/* work backwards from start_index, down to the factory app */
for (index = start_index; index >= FACTORY_INDEX; index--) {
part = index_to_partition(bs, index);
if (part.size == 0) {
continue;
}
ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) {
set_actual_ota_seq(bs, index);
load_image(&image_data);
}
log_invalid_app_partition(index);
}
/* failing that work forwards from start_index, try valid OTA slots */
for (index = start_index + 1; index < (int)bs->app_count; index++) {
part = index_to_partition(bs, index);
if (part.size == 0) {
continue;
}
ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) {
set_actual_ota_seq(bs, index);
load_image(&image_data);
}
log_invalid_app_partition(index);
}
if (check_anti_rollback(&bs->test) && try_load_partition(&bs->test, &image_data)) {
ESP_LOGW(TAG, "Falling back to test app as only bootable partition");
load_image(&image_data);
}
ESP_LOGE(TAG, "No bootable app partitions in the partition table");
bzero(&image_data, sizeof(esp_image_metadata_t));
bootloader_reset();
}
// Copy loaded segments to RAM, set up caches for mapped segments, and start application.
static void load_image(const esp_image_metadata_t *image_data)
{
/**
* Rough steps for a first boot, when encryption and secure boot are both disabled:
* 1) Generate secure boot key and write to EFUSE.
* 2) Write plaintext digest based on plaintext bootloader
* 3) Generate flash encryption key and write to EFUSE.
* 4) Encrypt flash in-place including bootloader, then digest,
* then app partitions and other encrypted partitions
* 5) Burn EFUSE to enable flash encryption (FLASH_CRYPT_CNT)
* 6) Burn EFUSE to enable secure boot (ABS_DONE_0)
*
* If power failure happens during Step 1, probably the next boot will continue from Step 2.
* There is some small chance that EFUSEs will be part-way through being written so will be
* somehow corrupted here. Thankfully this window of time is very small, but if that's the
* case, one has to use the espefuse tool to manually set the remaining bits and enable R/W
* protection. Once the relevant EFUSE bits are set and R/W protected, Step 1 will be skipped
* successfully on further reboots.
*
* If power failure happens during Step 2, Step 1 will be skipped and Step 2 repeated:
* the digest will get re-written on the next boot.
*
* If power failure happens during Step 3, it's possible that EFUSE was partially written
* with the generated flash encryption key, though the time window for that would again
* be very small. On reboot, Step 1 will be skipped and Step 2 repeated, though, Step 3
* may fail due to the above mentioned reason, in which case, one has to use the espefuse
* tool to manually set the remaining bits and enable R/W protection. Once the relevant EFUSE
* bits are set and R/W protected, Step 3 will be skipped successfully on further reboots.
*
* If power failure happens after start of 4 and before end of 5, the next boot will fail
* (bootloader header is encrypted and flash encryption isn't enabled yet, so it looks like
* noise to the ROM bootloader). The check in the ROM is pretty basic so if the first byte of
* ciphertext happens to be the magic byte E9 then it may try to boot, but it will definitely
* crash (no chance that the remaining ciphertext will look like a valid bootloader image).
* Only solution is to reflash with all plaintext and the whole process starts again: skips
* Step 1, repeats Step 2, skips Step 3, etc.
*
* If power failure happens after 5 but before 6, the device will reboot with flash
* encryption on and will regenerate an encrypted digest in Step 2. This should still
* be valid as the input data for the digest is read via flash cache (so will be decrypted)
* and the code in secure_boot_generate() tells bootloader_flash_write() to encrypt the data
* on write if flash encryption is enabled. Steps 3 - 5 are skipped (encryption already on),
* then Step 6 enables secure boot.
*/
#if defined(CONFIG_SECURE_BOOT) || defined(CONFIG_SECURE_FLASH_ENC_ENABLED)
esp_err_t err;
#endif
#ifdef CONFIG_SECURE_BOOT_V2_ENABLED
err = esp_secure_boot_v2_permanently_enable(image_data);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Secure Boot v2 failed (%d)", err);
return;
}
#endif
#ifdef CONFIG_SECURE_BOOT_V1_ENABLED
/* Steps 1 & 2 (see above for full description):
* 1) Generate secure boot EFUSE key
* 2) Compute digest of plaintext bootloader
*/
err = esp_secure_boot_generate_digest();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Bootloader digest generation for secure boot failed (%d).", err);
return;
}
#endif
#ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
/* Steps 3, 4 & 5 (see above for full description):
* 3) Generate flash encryption EFUSE key
* 4) Encrypt flash contents
* 5) Burn EFUSE to enable flash encryption
*/
ESP_LOGI(TAG, "Checking flash encryption...");
bool flash_encryption_enabled = esp_flash_encryption_enabled();
err = esp_flash_encrypt_check_and_update();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
return;
}
#endif
#ifdef CONFIG_SECURE_BOOT_V1_ENABLED
/* Step 6 (see above for full description):
* 6) Burn EFUSE to enable secure boot
*/
ESP_LOGI(TAG, "Checking secure boot...");
err = esp_secure_boot_permanently_enable();
if (err != ESP_OK) {
ESP_LOGE(TAG, "FAILED TO ENABLE SECURE BOOT (%d).", err);
/* Panic here as secure boot is not properly enabled
due to one of the reasons in above function
*/
abort();
}
#endif
#ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
/* Flash encryption was just enabled for the first time,
so issue a system reset to ensure flash encryption
cache resets properly */
ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
esp_rom_uart_tx_wait_idle(0);
bootloader_reset();
}
#endif
ESP_LOGI(TAG, "Disabling RNG early entropy source...");
bootloader_random_disable();
/* Disable glitch reset after all the security checks are completed.
* Glitch detection can be falsely triggered by EMI interference (high RF TX power, etc)
* and to avoid such false alarms, disable it.
*/
bootloader_ana_clock_glitch_reset_config(false);
// copy loaded segments to RAM, set up caches for mapped segments, and start application
unpack_load_app(image_data);
}
static void unpack_load_app(const esp_image_metadata_t *data)
{
uint32_t drom_addr = 0;
uint32_t drom_load_addr = 0;
uint32_t drom_size = 0;
uint32_t irom_addr = 0;
uint32_t irom_load_addr = 0;
uint32_t irom_size = 0;
// Find DROM & IROM addresses, to configure cache mappings
for (int i = 0; i < data->image.segment_count; i++) {
const esp_image_segment_header_t *header = &data->segments[i];
if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) {
if (drom_addr != 0) {
ESP_LOGE(TAG, MAP_ERR_MSG, "DROM");
} else {
ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM");
}
drom_addr = data->segment_data[i];
drom_load_addr = header->load_addr;
drom_size = header->data_len;
}
if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) {
if (irom_addr != 0) {
ESP_LOGE(TAG, MAP_ERR_MSG, "IROM");
} else {
ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM");
}
irom_addr = data->segment_data[i];
irom_load_addr = header->load_addr;
irom_size = header->data_len;
}
}
ESP_LOGD(TAG, "calling set_cache_and_start_app");
set_cache_and_start_app(drom_addr,
drom_load_addr,
drom_size,
irom_addr,
irom_load_addr,
irom_size,
data->image.entry_addr);
}
static void set_cache_and_start_app(
uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr)
{
int rc __attribute__((unused));
ESP_EARLY_LOGD(TAG, "configure drom and irom and start");
//-----------------------Disable Cache to do the mapping---------
#if CONFIG_IDF_TARGET_ESP32
Cache_Read_Disable(0);
Cache_Flush(0);
#else
cache_hal_disable(CACHE_TYPE_ALL);
#endif
mmu_hal_init();
//-----------------------MAP DROM--------------------------
uint32_t drom_load_addr_aligned = drom_load_addr & MMU_FLASH_MASK;
uint32_t drom_addr_aligned = drom_addr & MMU_FLASH_MASK;
ESP_EARLY_LOGV(TAG, "rodata starts from paddr=0x%08x, vaddr=0x%08x, size=0x%x", drom_addr, drom_load_addr, drom_size);
//The addr is aligned, so we add the mask off length to the size, to make sure the corresponding buses are enabled.
drom_size = (drom_load_addr - drom_load_addr_aligned) + drom_size;
#if CONFIG_IDF_TARGET_ESP32
uint32_t drom_page_count = (drom_size + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
rc = cache_flash_mmu_set(0, 0, drom_load_addr_aligned, drom_addr_aligned, 64, drom_page_count);
ESP_EARLY_LOGV(TAG, "rc=%d", rc);
rc = cache_flash_mmu_set(1, 0, drom_load_addr_aligned, drom_addr_aligned, 64, drom_page_count);
ESP_EARLY_LOGV(TAG, "rc=%d", rc);
ESP_EARLY_LOGV(TAG, "after mapping rodata, starting from paddr=0x%08x and vaddr=0x%08x, 0x%x bytes are mapped", drom_addr_aligned, drom_load_addr_aligned, drom_page_count * MMU_PAGE_SIZE);
#else
uint32_t actual_mapped_len = 0;
mmu_hal_map_region(0, MMU_TARGET_FLASH0, drom_load_addr_aligned, drom_addr_aligned, drom_size, &actual_mapped_len);
ESP_EARLY_LOGV(TAG, "after mapping rodata, starting from paddr=0x%08x and vaddr=0x%08x, 0x%x bytes are mapped", drom_addr_aligned, drom_load_addr_aligned, actual_mapped_len);
#endif
//-----------------------MAP IROM--------------------------
uint32_t irom_load_addr_aligned = irom_load_addr & MMU_FLASH_MASK;
uint32_t irom_addr_aligned = irom_addr & MMU_FLASH_MASK;
ESP_EARLY_LOGV(TAG, "text starts from paddr=0x%08x, vaddr=0x%08x, size=0x%x", irom_addr, irom_load_addr, irom_size);
//The addr is aligned, so we add the mask off length to the size, to make sure the corresponding buses are enabled.
irom_size = (irom_load_addr - irom_load_addr_aligned) + irom_size;
#if CONFIG_IDF_TARGET_ESP32
uint32_t irom_page_count = (irom_size + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
rc = cache_flash_mmu_set(0, 0, irom_load_addr_aligned, irom_addr_aligned, 64, irom_page_count);
ESP_EARLY_LOGV(TAG, "rc=%d", rc);
rc = cache_flash_mmu_set(1, 0, irom_load_addr_aligned, irom_addr_aligned, 64, irom_page_count);
ESP_LOGV(TAG, "rc=%d", rc);
ESP_EARLY_LOGV(TAG, "after mapping text, starting from paddr=0x%08x and vaddr=0x%08x, 0x%x bytes are mapped", irom_addr_aligned, irom_load_addr_aligned, irom_page_count * MMU_PAGE_SIZE);
#else
mmu_hal_map_region(0, MMU_TARGET_FLASH0, irom_load_addr_aligned, irom_addr_aligned, irom_size, &actual_mapped_len);
ESP_EARLY_LOGV(TAG, "after mapping text, starting from paddr=0x%08x and vaddr=0x%08x, 0x%x bytes are mapped", irom_addr_aligned, irom_load_addr_aligned, actual_mapped_len);
#endif
//----------------------Enable corresponding buses----------------
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, drom_load_addr_aligned, drom_size);
cache_ll_l1_enable_bus(0, bus_mask);
bus_mask = cache_ll_l1_get_bus(0, irom_load_addr_aligned, irom_size);
cache_ll_l1_enable_bus(0, bus_mask);
#if !CONFIG_FREERTOS_UNICORE
bus_mask = cache_ll_l1_get_bus(1, drom_load_addr_aligned, drom_size);
cache_ll_l1_enable_bus(1, bus_mask);
bus_mask = cache_ll_l1_get_bus(1, irom_load_addr_aligned, irom_size);
cache_ll_l1_enable_bus(1, bus_mask);
#endif
//----------------------Enable Cache----------------
#if CONFIG_IDF_TARGET_ESP32
// Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
Cache_Read_Enable(0);
#else
cache_hal_enable(CACHE_TYPE_ALL);
#endif
ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
bootloader_atexit();
typedef void (*entry_t)(void) __attribute__((noreturn));
entry_t entry = ((entry_t) entry_addr);
// TODO: we have used quite a bit of stack at this point.
// use "movsp" instruction to reset stack back to where ROM stack starts.
(*entry)();
}
void bootloader_reset(void)
{
#ifdef BOOTLOADER_BUILD
bootloader_atexit();
esp_rom_delay_us(1000); /* Allow last byte to leave FIFO */
REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
while (1) { } /* This line will never be reached, used to keep gcc happy */
#else
abort(); /* This function should really not be called from application code */
#endif
}
void bootloader_atexit(void)
{
#ifdef BOOTLOADER_BUILD
bootloader_console_deinit();
#else
abort();
#endif
}
esp_err_t bootloader_sha256_hex_to_str(char *out_str, const uint8_t *in_array_hex, size_t len)
{
if (out_str == NULL || in_array_hex == NULL || len == 0) {
return ESP_ERR_INVALID_ARG;
}
for (size_t i = 0; i < len; i++) {
for (int shift = 0; shift < 2; shift++) {
uint8_t nibble = (in_array_hex[i] >> (shift ? 0 : 4)) & 0x0F;
if (nibble < 10) {
out_str[i * 2 + shift] = '0' + nibble;
} else {
out_str[i * 2 + shift] = 'a' + nibble - 10;
}
}
}
return ESP_OK;
}
void bootloader_debug_buffer(const void *buffer, size_t length, const char *label)
{
#if CONFIG_BOOTLOADER_LOG_LEVEL >= 4
const uint8_t *bytes = (const uint8_t *)buffer;
const size_t output_len = MIN(length, 128);
char hexbuf[128 * 2 + 1];
bootloader_sha256_hex_to_str(hexbuf, bytes, output_len);
hexbuf[output_len * 2] = '\0';
ESP_LOGD(TAG, "%s: %s", label, hexbuf);
#else
(void) buffer;
(void) length;
(void) label;
#endif
}
esp_err_t bootloader_sha256_flash_contents(uint32_t flash_offset, uint32_t len, uint8_t *digest)
{
if (digest == NULL) {
return ESP_ERR_INVALID_ARG;
}
/* Handling firmware images larger than MMU capacity */
uint32_t mmu_free_pages_count = bootloader_mmap_get_free_pages();
bootloader_sha256_handle_t sha_handle = NULL;
sha_handle = bootloader_sha256_start();
if (sha_handle == NULL) {
return ESP_ERR_NO_MEM;
}
while (len > 0) {
uint32_t mmu_page_offset = ((flash_offset & MMAP_ALIGNED_MASK) != 0) ? 1 : 0; /* Skip 1st MMU Page if it is already populated */
uint32_t partial_image_len = MIN(len, ((mmu_free_pages_count - mmu_page_offset) * SPI_FLASH_MMU_PAGE_SIZE)); /* Read the image that fits in the free MMU pages */
const void * image = bootloader_mmap(flash_offset, partial_image_len);
if (image == NULL) {
bootloader_sha256_finish(sha_handle, NULL);
return ESP_FAIL;
}
bootloader_sha256_data(sha_handle, image, partial_image_len);
bootloader_munmap(image);
flash_offset += partial_image_len;
len -= partial_image_len;
}
bootloader_sha256_finish(sha_handle, digest);
return ESP_OK;
}