esp-idf/components/hal/usbh_hal.c
Alex Lisitsyn 46020fe13a usb/hal/soc: initial copy of usbh support from esp32s2
copy required usbh driver files from esp32s2
check usb host functionality using unit tests on esp32s3
2021-06-02 17:57:50 +08:00

425 lines
19 KiB
C

// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdint.h>
#include <assert.h>
#include <string.h>
#include "sdkconfig.h"
#include "hal/usbh_hal.h"
#include "hal/usbh_ll.h"
// ------------------------------------------------ Macros and Types ---------------------------------------------------
// ---------------------- Constants ------------------------
#define BENDPOINTADDRESS_NUM_MSK 0x0F //Endpoint number mask of the bEndpointAddress field of an endpoint descriptor
#define BENDPOINTADDRESS_DIR_MSK 0x80 //Endpoint direction mask of the bEndpointAddress field of an endpoint descriptor
#define CORE_REG_GSNPSID 0x4F54400A
#define CORE_REG_GHWCFG1 0x00000000
#define CORE_REG_GHWCFG2 0x224DD930
#define CORE_REG_GHWCFG3 0x00C804B5
#define CORE_REG_GHWCFG4 0xD3F0A030
// -------------------- Configurable -----------------------
/**
* The following core interrupts will be enabled (listed LSB to MSB). Some of these
* interrupts are enabled later than others.
* - USB_LL_INTR_CORE_PRTINT
* - USB_LL_INTR_CORE_HCHINT
* - USB_LL_INTR_CORE_DISCONNINT
* The following PORT interrupts cannot be masked, listed LSB to MSB
* - USBH_LL_INTR_HPRT_PRTCONNDET
* - USBH_LL_INTR_HPRT_PRTENCHNG
* - USBH_LL_INTR_HPRT_PRTOVRCURRCHNG
*/
#define CORE_INTRS_EN_MSK (USB_LL_INTR_CORE_DISCONNINT)
//Interrupts that pertain to core events
#define CORE_EVENTS_INTRS_MSK (USB_LL_INTR_CORE_DISCONNINT | \
USB_LL_INTR_CORE_HCHINT)
//Interrupt that pertain to host port events
#define PORT_EVENTS_INTRS_MSK (USBH_LL_INTR_HPRT_PRTCONNDET | \
USBH_LL_INTR_HPRT_PRTENCHNG | \
USBH_LL_INTR_HPRT_PRTOVRCURRCHNG)
/**
* The following channel interrupt bits are currently checked (in order LSB to MSB)
* - USBH_LL_INTR_CHAN_XFERCOMPL
* - USBH_LL_INTR_CHAN_CHHLTD
* - USBH_LL_INTR_CHAN_STALL
* - USBH_LL_INTR_CHAN_BBLEER
* - USBH_LL_INTR_CHAN_BNAINTR
* - USBH_LL_INTR_CHAN_XCS_XACT_ERR
*
* Note the following points about channel interrupts:
* - Not all bits are unmaskable under scatter/gather
* - Those bits proxy their interrupt through the USBH_LL_INTR_CHAN_CHHLTD bit
* - USBH_LL_INTR_CHAN_XCS_XACT_ERR is always unmasked
* - When USBH_LL_INTR_CHAN_BNAINTR occurs, USBH_LL_INTR_CHAN_CHHLTD will NOT.
* - USBH_LL_INTR_CHAN_AHBERR doesn't actually ever happen on our system (i.e., ESP32-S2, ESP32-S3):
* - If the QTD list's starting address is an invalid address (e.g., NULL), the core will attempt to fetch that
* address for a transfer descriptor and probably gets all zeroes. It will interpret the zero as a bad QTD and
* return a USBH_LL_INTR_CHAN_BNAINTR instead.
* - If the QTD's buffer pointer is an invalid address, the core will attempt to read/write data to/from that
* invalid buffer address with NO INDICATION OF ERROR. The transfer will be acknowledged and treated as
* successful. Bad buffer pointers MUST BE CHECKED FROM HIGHER LAYERS INSTEAD.
*/
#define CHAN_INTRS_EN_MSK (USBH_LL_INTR_CHAN_XFERCOMPL | \
USBH_LL_INTR_CHAN_CHHLTD | \
USBH_LL_INTR_CHAN_BNAINTR)
#define CHAN_INTRS_ERROR_MSK (USBH_LL_INTR_CHAN_STALL | \
USBH_LL_INTR_CHAN_BBLEER | \
USBH_LL_INTR_CHAN_BNAINTR | \
USBH_LL_INTR_CHAN_XCS_XACT_ERR)
// -------------------------------------------------- Core (Global) ----------------------------------------------------
static void set_defaults(usbh_hal_context_t *hal)
{
usbh_ll_internal_phy_conf(hal->wrap_dev); //Enable and configure internal PHY
//GAHBCFG register
usb_ll_en_dma_mode(hal->dev);
#ifdef CONFIG_IDF_TARGET_ESP32S2
usb_ll_set_hbstlen(hal->dev, 1); //Use INCR AHB burst. See the ESP32-S2 and later chip ERRATA.
#elif CONFIG_IDF_TARGET_ESP32S3
usb_ll_set_hbstlen(hal->dev, 0); //Do not use USB burst INCR mode for the ESP32-S3, to avoid interference with other peripherals.
#endif
//GUSBCFG register
usb_ll_dis_hnp_cap(hal->dev); //Disable HNP
usb_ll_dis_srp_cap(hal->dev); //Disable SRP
//Enable interruts
usb_ll_dis_intrs(hal->dev, 0xFFFFFFFF); //Mask all interrupts first
usb_ll_en_intrs(hal->dev, CORE_INTRS_EN_MSK); //Unmask global interrupts
usb_ll_intr_read_and_clear(hal->dev); //Clear interrupts
usb_ll_en_global_intr(hal->dev); //Enable interrupt signal
//Enable host mode
usb_ll_set_host_mode(hal->dev);
}
void usbh_hal_init(usbh_hal_context_t *hal)
{
//Check if a peripheral is alive by reading the core ID registers
usbh_dev_t *dev = &USBH;
uint32_t core_id = usb_ll_get_controller_core_id(dev);
assert(core_id == CORE_REG_GSNPSID);
(void) core_id; //Suppress unused variable warning if asserts are disabled
//Initialize HAL context
memset(hal, 0, sizeof(usbh_hal_context_t));
hal->dev = dev;
hal->wrap_dev = &USB_WRAP;
set_defaults(hal);
}
void usbh_hal_deinit(usbh_hal_context_t *hal)
{
//Disable and clear global interrupt
usb_ll_dis_intrs(hal->dev, 0xFFFFFFFF); //Disable all interrupts
usb_ll_intr_read_and_clear(hal->dev); //Clear interrupts
usb_ll_dis_global_intr(hal->dev); //Disable interrupt signal
hal->dev = NULL;
hal->wrap_dev = NULL;
}
void usbh_hal_core_soft_reset(usbh_hal_context_t *hal)
{
usb_ll_core_soft_reset(hal->dev);
while (usb_ll_check_core_soft_reset(hal->dev)) {
; //Wait until core reset is done
}
while (!usb_ll_check_ahb_idle(hal->dev)) {
; //Wait until AHB Master bus is idle before doing any other operations
}
//Set the default bits
set_defaults(hal);
//Clear all the flags and channels
hal->periodic_frame_list = NULL;
hal->flags.val = 0;
hal->channels.num_allocd = 0;
hal->channels.chan_pend_intrs_msk = 0;
memset(hal->channels.hdls, 0, sizeof(usbh_hal_chan_t *) * USBH_HAL_NUM_CHAN);
}
void usbh_hal_set_fifo_size(usbh_hal_context_t *hal, const usbh_hal_fifo_config_t *fifo_config)
{
assert((fifo_config->rx_fifo_lines + fifo_config->nptx_fifo_lines + fifo_config->ptx_fifo_lines) <= USBH_HAL_FIFO_TOTAL_USABLE_LINES);
//Check that none of the channels are active
for (int i = 0; i < USBH_HAL_NUM_CHAN; i++) {
if (hal->channels.hdls[i] != NULL) {
assert(!hal->channels.hdls[i]->flags.active);
}
}
//Set the new FIFO lengths
usb_ll_set_rx_fifo_size(hal->dev, fifo_config->rx_fifo_lines);
usb_ll_set_nptx_fifo_size(hal->dev, fifo_config->rx_fifo_lines, fifo_config->nptx_fifo_lines);
usbh_ll_set_ptx_fifo_size(hal->dev, fifo_config->rx_fifo_lines + fifo_config->nptx_fifo_lines, fifo_config->ptx_fifo_lines);
//Flush the FIFOs
usb_ll_flush_nptx_fifo(hal->dev);
usb_ll_flush_ptx_fifo(hal->dev);
usb_ll_flush_rx_fifo(hal->dev);
hal->flags.fifo_sizes_set = 1;
}
// ---------------------------------------------------- Host Port ------------------------------------------------------
static inline void debounce_lock_enable(usbh_hal_context_t *hal)
{
//Disable the hprt (connection) and disconnection interrupts to prevent repeated triggerings
usb_ll_dis_intrs(hal->dev, USB_LL_INTR_CORE_PRTINT | USB_LL_INTR_CORE_DISCONNINT);
hal->flags.dbnc_lock_enabled = 1;
}
void usbh_hal_port_enable(usbh_hal_context_t *hal)
{
usb_priv_speed_t speed = usbh_ll_hprt_get_speed(hal->dev);
//Host Configuration
usbh_ll_hcfg_set_defaults(hal->dev, speed);
//Configure HFIR
usbh_ll_hfir_set_defaults(hal->dev, speed);
}
// ----------------------------------------------------- Channel -------------------------------------------------------
// ----------------- Channel Allocation --------------------
bool usbh_hal_chan_alloc(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj, void *chan_ctx)
{
assert(hal->flags.fifo_sizes_set); //FIFO sizes should be set befor attempting to allocate a channel
//Attempt to allocate channel
if (hal->channels.num_allocd == USBH_HAL_NUM_CHAN) {
return false; //Out of free channels
}
int chan_idx = -1;
for (int i = 0; i < USBH_HAL_NUM_CHAN; i++) {
if (hal->channels.hdls[i] == NULL) {
hal->channels.hdls[i] = chan_obj;
chan_idx = i;
hal->channels.num_allocd++;
break;
}
}
assert(chan_idx != -1);
//Initialize channel object
memset(chan_obj, 0, sizeof(usbh_hal_chan_t));
chan_obj->flags.chan_idx = chan_idx;
chan_obj->regs = usbh_ll_get_chan_regs(hal->dev, chan_idx);
chan_obj->chan_ctx = chan_ctx;
//Note: EP characteristics configured separately
//Clean and unmask the channel's interrupt
usbh_ll_chan_intr_read_and_clear(chan_obj->regs); //Clear the interrupt bits for that channel
usbh_ll_haintmsk_en_chan_intr(hal->dev, 1 << chan_obj->flags.chan_idx);
usbh_ll_chan_set_intr_mask(chan_obj->regs, CHAN_INTRS_EN_MSK); //Unmask interrupts for this channel
usbh_ll_chan_set_pid(chan_obj->regs, 0); //Set the initial PID to zero
usbh_ll_chan_hctsiz_init(chan_obj->regs); //Set the non changing parts of the HCTSIZ registers (e.g., do_ping and sched info)
return true;
}
void usbh_hal_chan_free(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj)
{
if (chan_obj->type == USB_PRIV_XFER_TYPE_INTR || chan_obj->type == USB_PRIV_XFER_TYPE_ISOCHRONOUS) {
//Unschedule this channel
for (int i = 0; i < hal->frame_list_len; i++) {
hal->periodic_frame_list[i] &= ~(1 << chan_obj->flags.chan_idx);
}
}
//Can only free a channel when in the disabled state and descriptor list released
assert(!chan_obj->flags.active && !chan_obj->flags.error_pending);
//Deallocate channel
hal->channels.hdls[chan_obj->flags.chan_idx] = NULL;
hal->channels.num_allocd--;
assert(hal->channels.num_allocd >= 0);
}
// ---------------- Channel Configuration ------------------
void usbh_hal_chan_set_ep_char(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj, usbh_hal_ep_char_t *ep_char)
{
//Cannot change ep_char whilst channel is still active or in error
assert(!chan_obj->flags.active && !chan_obj->flags.error_pending);
//Set the endpoint characteristics of the pipe
usbh_ll_chan_hcchar_init(chan_obj->regs,
ep_char->dev_addr,
ep_char->bEndpointAddress & BENDPOINTADDRESS_NUM_MSK,
ep_char->mps,
ep_char->type,
ep_char->bEndpointAddress & BENDPOINTADDRESS_DIR_MSK,
ep_char->ls_via_fs_hub);
//Save channel type
chan_obj->type = ep_char->type;
//If this is a periodic endpoint/channel, set its schedule in the frame list
if (ep_char->type == USB_PRIV_XFER_TYPE_ISOCHRONOUS || ep_char->type == USB_PRIV_XFER_TYPE_INTR) {
assert((int)ep_char->periodic.interval <= (int)hal->frame_list_len); //Interval cannot exceed the length of the frame list
//Find the effective offset in the frame list (in case the phase_offset_frames > interval)
int offset = ep_char->periodic.phase_offset_frames % ep_char->periodic.interval;
//Schedule the channel in the frame list
for (int i = offset; i < hal->frame_list_len; i+= ep_char->periodic.interval) {
hal->periodic_frame_list[i] |= 1 << chan_obj->flags.chan_idx;
}
}
}
// ------------------- Channel Control ---------------------
void usbh_hal_chan_activate(usbh_hal_chan_t *chan_obj, void *xfer_desc_list, int desc_list_len, int start_idx)
{
//Cannot activate a channel that has already been enabled or is pending error handling
assert(!chan_obj->flags.active && !chan_obj->flags.error_pending);
//Set start address of the QTD list and starting QTD index
usbh_ll_chan_set_dma_addr_non_iso(chan_obj->regs, xfer_desc_list, start_idx);
usbh_ll_chan_set_qtd_list_len(chan_obj->regs, desc_list_len);
usbh_ll_chan_start(chan_obj->regs); //Start the channel
chan_obj->flags.active = 1;
}
bool usbh_hal_chan_request_halt(usbh_hal_chan_t *chan_obj)
{
//Cannot request halt on a channel that is pending error handling
assert(!chan_obj->flags.error_pending);
if (usbh_ll_chan_is_active(chan_obj->regs) || chan_obj->flags.active) {
usbh_ll_chan_halt(chan_obj->regs);
chan_obj->flags.halt_requested = 1;
return false;
}
return true;
}
// ------------------------------------------------- Event Handling ----------------------------------------------------
//When a device on the port is no longer valid (e.g., disconnect, port error). All channels are no longer valid
static void chan_all_halt(usbh_hal_context_t *hal)
{
for (int i = 0; i < USBH_HAL_NUM_CHAN; i++) {
if (hal->channels.hdls[i] != NULL) {
hal->channels.hdls[i]->flags.active = 0;
}
}
}
usbh_hal_port_event_t usbh_hal_decode_intr(usbh_hal_context_t *hal)
{
uint32_t intrs_core = usb_ll_intr_read_and_clear(hal->dev); //Read and clear core interrupts
uint32_t intrs_port = 0;
if (intrs_core & USB_LL_INTR_CORE_PRTINT) {
//There are host port interrupts. Read and clear those as well.
intrs_port = usbh_ll_hprt_intr_read_and_clear(hal->dev);
}
//Note: Do not change order of checks. Regressing events (e.g. enable -> disabled, connected -> connected)
//always take precendance. ENABLED < DISABLED < CONN < DISCONN < OVRCUR
usbh_hal_port_event_t event = USBH_HAL_PORT_EVENT_NONE;
//Check if this is a core or port event
if ((intrs_core & CORE_EVENTS_INTRS_MSK) || (intrs_port & PORT_EVENTS_INTRS_MSK)) {
//Do not change the order of the following checks. Some events/interrupts take precedence over others
if (intrs_core & USB_LL_INTR_CORE_DISCONNINT) {
event = USBH_HAL_PORT_EVENT_DISCONN;
debounce_lock_enable(hal);
chan_all_halt(hal); //All channels are halted on a disconnect
//Mask the port connection and disconnection interrupts to prevent repeated triggering
} else if (intrs_port & USBH_LL_INTR_HPRT_PRTOVRCURRCHNG) {
//Check if this is an overcurrent or an overcurrent cleared
if (usbh_ll_hprt_get_port_overcur(hal->dev)) {
event = USBH_HAL_PORT_EVENT_OVRCUR;
chan_all_halt(hal); //All channels are halted on an overcurrent
} else {
event = USBH_HAL_PORT_EVENT_OVRCUR_CLR;
}
} else if (intrs_port & USBH_LL_INTR_HPRT_PRTENCHNG) {
if (usbh_ll_hprt_get_port_en(hal->dev)) { //Host port was enabled
event = USBH_HAL_PORT_EVENT_ENABLED;
} else { //Host port has been disabled
event = USBH_HAL_PORT_EVENT_DISABLED;
chan_all_halt(hal); //All channels are halted when the port is disabled
}
} else if (intrs_port & USBH_LL_INTR_HPRT_PRTCONNDET && !hal->flags.dbnc_lock_enabled) {
event = USBH_HAL_PORT_EVENT_CONN;
debounce_lock_enable(hal);
}
}
//Port events always take precendance over channel events
if (event == USBH_HAL_PORT_EVENT_NONE && (intrs_core & USB_LL_INTR_CORE_HCHINT)) {
//One or more channels have pending interrupts. Store the mask of those channels
hal->channels.chan_pend_intrs_msk = usbh_ll_get_chan_intrs_msk(hal->dev);
event = USBH_HAL_PORT_EVENT_CHAN;
}
return event;
}
usbh_hal_chan_t *usbh_hal_get_chan_pending_intr(usbh_hal_context_t *hal)
{
int chan_num = __builtin_ffs(hal->channels.chan_pend_intrs_msk);
if (chan_num) {
hal->channels.chan_pend_intrs_msk &= ~(1 << (chan_num - 1)); //Clear the pending bit for that channel
return hal->channels.hdls[chan_num - 1];
} else {
return NULL;
}
}
usbh_hal_chan_event_t usbh_hal_chan_decode_intr(usbh_hal_chan_t *chan_obj)
{
uint32_t chan_intrs = usbh_ll_chan_intr_read_and_clear(chan_obj->regs);
usbh_hal_chan_event_t chan_event;
if (chan_intrs & CHAN_INTRS_ERROR_MSK) { //Note: Errors are uncommon, so we check against the entire interrupt mask to reduce frequency of entering this call path
assert(chan_intrs & USBH_LL_INTR_CHAN_CHHLTD); //An error should have halted the channel
//Store the error in hal context
usbh_hal_chan_error_t error;
if (chan_intrs & USBH_LL_INTR_CHAN_STALL) {
error = USBH_HAL_CHAN_ERROR_STALL;
} else if (chan_intrs & USBH_LL_INTR_CHAN_BBLEER) {
error = USBH_HAL_CHAN_ERROR_PKT_BBL;
} else if (chan_intrs & USBH_LL_INTR_CHAN_BNAINTR) {
error = USBH_HAL_CHAN_ERROR_BNA;
} else { //USBH_LL_INTR_CHAN_XCS_XACT_ERR
error = USBH_HAL_CHAN_ERROR_XCS_XACT;
}
//Update flags
chan_obj->error = error;
chan_obj->flags.active = 0;
chan_obj->flags.error_pending = 1;
//Save the error to be handled later
chan_event = USBH_HAL_CHAN_EVENT_ERROR;
} else if (chan_intrs & USBH_LL_INTR_CHAN_CHHLTD) {
if (chan_obj->flags.halt_requested) {
chan_obj->flags.halt_requested = 0;
chan_event = USBH_HAL_CHAN_EVENT_HALT_REQ;
} else {
//Must have been halted due to QTD HOC
chan_event = USBH_HAL_CHAN_EVENT_CPLT;
}
chan_obj->flags.active = 0;
} else if (chan_intrs & USBH_LL_INTR_CHAN_XFERCOMPL) {
/*
A transfer complete interrupt WITHOUT the channel halting only occurs when receiving a short interrupt IN packet
and the underlying QTD does not have the HOC bit set. This signifies the last packet of the Interrupt transfer
as all interrupt packets must MPS sized except the last.
*/
//The channel isn't halted yet, so we need to halt it manually to stop the execution of the next QTD/packet
usbh_ll_chan_halt(chan_obj->regs);
/*
After setting the halt bit, this will generate another channel halted interrupt. We treat this interrupt as
a NONE event, then cycle back with the channel halted interrupt to handle the CPLT event.
*/
chan_event = USBH_HAL_CHAN_EVENT_NONE;
} else {
abort(); //Should never reach this point
}
return chan_event;
}