esp-idf/components
2023-08-14 12:11:13 +08:00
..
app_trace fix(app_trace): Fix SystemView build 2023-06-28 18:28:36 +04:00
app_update fix(app_update): Fix CI test_switch_ota by increasing deepsleep 2023-07-21 13:58:20 +08:00
bootloader feat(bootloader): add the possibility to ignore extra components 2023-07-28 15:04:21 +08:00
bootloader_support Merge branch 'bugfix/esp32s3_lack_boot_resume' into 'master' 2023-08-04 11:24:56 +08:00
bt Merge branch 'bugfix/fix_bleqabr23_178' into 'master' 2023-08-07 20:38:32 +08:00
cmock
console Merge branch 'contrib/github_pr_11562' into 'master' 2023-08-08 09:34:47 +08:00
cxx Merge branch 'feature/cleanup_wrong_log_use' into 'master' 2023-06-15 21:49:49 +08:00
driver Merge branch 'feature/twai_linker_file' into 'master' 2023-08-07 15:21:37 +08:00
efuse Merge branch 'feature/add_new_pkg_and_flash_efuses_esp32c3' into 'master' 2023-07-13 00:57:58 +08:00
esp_adc change(header): modify p4 headers issues from check_header_py 2023-08-04 14:13:59 +02:00
esp_app_format esp_app_format: IRAM space optimization 2023-05-17 23:40:59 +08:00
esp_bootloader_format esp_bootloader_format: Adds bootloader description structure to read bootloader version from app 2023-05-10 21:39:52 +08:00
esp_coex feat(external coex): add set tx line flag api 2023-07-12 19:24:29 +08:00
esp_common feat(tcm): added tcm basic support on esp32p4 2023-07-25 05:59:10 +00:00
esp_eth esp_eth: add loopback test, change chip drivers to reflect chip specific behaviour 2023-08-03 13:18:44 +02:00
esp_event refactor(esp_event): improved tests to fail less frequently on QEMU 2023-07-19 11:50:44 +08:00
esp_gdbstub feature(gdbstub): Move runtime gdbstub out of panic config 2023-08-01 14:28:07 +04:00
esp_hid esp_hid: fixed ble hid battery level setting 2023-05-17 12:18:56 +08:00
esp_http_client fix: nitpick in esp_http_client 2023-08-02 13:48:14 +05:30
esp_http_server feat(httpd): add support for asynchronous request handling 2023-05-19 10:05:42 +05:30
esp_https_ota esp_https_ota: Set user configurable ota authorization retries 2023-03-29 17:29:31 +05:30
esp_https_server
esp_hw_support Merge branch 'feature/support_pd_hp_aon_domain_in_deepsleep' into 'master' 2023-08-07 17:28:40 +08:00
esp_lcd fix(i80_lcd): reset cs gpio on exit 2023-08-07 03:15:21 +00:00
esp_local_ctrl
esp_mm refactor(cache): improved cache test with set cache dirty first 2023-08-01 11:00:49 +00:00
esp_netif Merge branch 'bugfix/netif_default_sta_init' into 'master' 2023-07-21 21:56:37 +08:00
esp_netif_stack
esp_partition feat(example/storage/littlefs): add LittleFS demo example 2023-07-21 11:08:01 +02:00
esp_phy fix(esp_hw_support): manage i2c_ana_mst clock witch modem clock driver 2023-08-04 10:39:43 +08:00
esp_pm Merge branch 'bugfix/esp_timer_prevents_delay_for_isr_dispatch_callbacks' into 'master' 2023-07-17 15:20:19 +08:00
esp_psram Merge branch 'feat/psram_support_d2wd_single_clk_u4wdh' into 'master' 2023-08-03 10:37:46 +08:00
esp_ringbuf ci(qemu): temporarily allow qemu tests to fail 2023-07-13 11:16:38 +08:00
esp_rom fix(esp_wifi): fix no mac retention at wifi start 2023-08-02 21:33:41 +08:00
esp_system Merge branch 'contrib/github_pr_11569' into 'master' 2023-08-02 07:50:47 +08:00
esp_timer feat(esp_timer): added esp_timer p4 base support 2023-07-25 05:59:10 +00:00
esp_wifi fix(wifi): Fix error propagation while initiating FTM 2023-08-03 16:59:28 +05:30
esp-tls fix(esp-tls): Add explicit inclusion of header mbedtls/x509_crt.h 2023-07-03 14:24:38 +05:30
espcoredump coredump: added the chip_rev field into the coredump header 2023-07-26 10:53:28 +08:00
esptool_py kconfig: introduced CONFIG_IDF_ENV_BRINGUP for new chip bringup usage 2023-06-26 03:30:23 +00:00
fatfs docs(fatfs): Move mentioned APIs to a separate API reference section 2023-08-04 23:47:44 +00:00
freertos refactor(freertos): Refactor usage of portBASE_TYPE to BaseType_t 2023-07-31 17:10:34 +02:00
hal fix(mpi): fixed missing include in mpi_ll.h for P4 2023-08-08 09:29:28 +08:00
heap fix(heap): use _SAFE version of critical section 2023-08-03 12:02:09 +08:00
http_parser
idf_test esp32p4: introduce the target 2023-06-13 15:16:11 +08:00
ieee802154 fix(ieee802154): fix ieee802154 sleep state 2023-07-17 15:42:18 +08:00
json feat: Update cJSON version to v1.7.16 2023-07-28 16:45:00 +05:30
linux lwip/linux: Add lwip support for networking component under linux 2023-05-05 05:03:39 +00:00
log log: Add master log option 2023-05-18 18:35:19 +08:00
lwip fix(dhcp server): Fix dhcp server address pool issue 2023-07-25 20:48:19 +08:00
mbedtls Merge branch 'bugfix/sha_dma_mode_incorrect_result' into 'master' 2023-08-01 16:44:47 +08:00
mqtt fix(test/mqtt): Removes no-format from test_apps build 2023-06-30 11:31:38 +02:00
newlib refactor(freertos): Refactor usage of portSTACK_TYPE to StackType_t 2023-07-31 16:59:41 +02:00
nvs_flash docs: Update CN for nvs_flash.rst and flash-encryption.rst 2023-07-14 04:05:53 +00:00
nvs_sec_provider fix(nvs_sec_provider): Fix memory leakage reported by coverity 2023-07-03 14:26:49 +05:30
openthread feat(thread): update openthread lib 2023-08-01 14:56:43 +08:00
partition_table feat(example/storage/littlefs): add LittleFS demo example 2023-07-21 11:08:01 +02:00
perfmon
protobuf-c
protocomm all: Removes unnecessary newline character in logs 2023-06-09 03:31:21 +08:00
pthread bugfix(pthread): fixed log related warning 2023-07-19 15:51:56 +08:00
riscv change(vector.S): port hw stack guard change to p4 2023-07-25 05:59:10 +00:00
sdmmc test(sdmmc): support power down card on S3 emmc board 2023-07-26 15:44:45 +08:00
soc Merge branch 'esp32p4/add_mpi_support' into 'master' 2023-08-07 13:37:14 +08:00
spi_flash docs: provided translation for storage.rst and system.rst and updated a typo for memory-types.rst 2023-07-27 16:24:29 +08:00
spiffs build-system: replace ADDITIONAL_MAKE_CLEAN_FILES with ADDITIONAL_CLEAN_FILES 2023-05-08 15:51:48 +08:00
tcp_transport all: Removes unnecessary newline character in logs 2023-06-09 03:31:21 +08:00
touch_element touch_element: fix unintended integer division 2023-06-19 11:04:53 +08:00
ulp ci(lp_core): added multi-device test for lp core i2c 2023-08-14 12:11:13 +08:00
unity
usb Merge branch 'bugfix/usb/host/urb_compliance_verification_add' into 'master' 2023-08-03 16:20:49 +08:00
vfs UART: UART_SELECT_WRITE_NOTIF event added in UART driver 2023-07-12 09:19:41 +02:00
wear_levelling fix(Storage/Wear Levelling): Fixed too few arguments in ESP_LOGV macro (WL_Flash::config) 2023-06-26 17:40:44 +02:00
wifi_provisioning fix (wifi_prov): Retry provisioning on WIFI_AUTH_EXPIRE event 2023-07-03 11:28:04 +05:30
wpa_supplicant change(esp_wifi): Update copyright info for wpa_supplicant 2023-08-02 18:51:37 +05:30
xtensa Xtensa: fix a bug that altered CPU registers in FPU exception handlers 2023-07-04 02:45:56 +00:00
README.md added esp_mm, esp_psram component description 2023-06-14 06:04:14 +00:00

Core Components

Overview

This document contains details about what the core components are, what they contain, and how they are organized.

Organization

The core components are organized into two groups.

The first group (referred to as G0 from now on) contains hal, xtensa and riscv (referred to as arch components from now on), esp_rom, esp_common, and soc. This group contain information about and low-level access to underlying hardware; or in the case of esp_common, hardware-agnostic code and utilities. These components can depend on each other, but as much as possible have no dependencies outside the group. The reason for this is that, due to the nature of what these components contain, the likelihood is high that a lot of other components will require these. Ideally, then, the dependency relationship only goes one way. This makes it easier for these components, as a group, to be usable in another project. One can conceivably implement a competing SDK to ESP-IDF on top of these components.

The second group (referred to as G1 from now on) sits at a higher level than the first group. This group contains the components esp_hw_support, esp_system, newlib, spi_flash, freertos, log, and heap. Like the first group, circular dependencies within the group are allowed; and being at a higher level, dependency on the first group is allowed. These components represent software mechanisms essential to building other components.

Descriptions

The following is a short description of the components mentioned above.

G0 Components

hal

Contains the hardware abstraction layer and low-level operation implementations for the various peripherals. The low-level functions assign meaningful names to register-level manipulations; the hardware abstraction provide operations one level above this, grouping these low-level functions into routines that achieve a meaningful action or state of the peripheral.

Example:

  • spi_flash_ll_set_address is a low-level function part of the hardware abstraction spi_flash_hal_read_block

arch

Contains low-level architecture operations and definitions, including those for customizations (can be thought of on the same level as the low-level functions of hal). This can also contain files provided by the architecture vendor.

Example:

  • xt_set_exception_handler
  • rv_utils_intr_enable
  • ERI_PERFMON_MAX

esp_common

Contains hardware-agnostic definitions, constants, macros, utilities, 'pure' and/or algorithmic functions that is useable by all other components (that is, barring there being a more appropriate component to put them in).

Example:

  • BIT(nr) and other bit manipulation utilities in the future
  • IDF_DEPRECATED(REASON)
  • ESP_IDF_VERSION_MAJOR

soc

Contains description of the underlying hardware: register structure, addresses, pins, capabilities, etc.

Example:

  • DR_REG_DPORT_BASE
  • SOC_MCPWM_SUPPORTED
  • uart_dev_s

esp_rom

Contains headers, linker scripts, abstraction layer, patches, and other related files to ROM functions.

Example:

  • esp32.rom.eco3.ld
  • rom/aes.h

G1 Components

spi_flash

SPI flash device access implementation.

freertos

FreeRTOS port to targets supported by ESP-IDF.

log

Logging library.

heap

Heap implementation.

newlib

Some functions n the standard library are implemented here, especially those needing other G1 components.

Example:

  • malloc is implemented in terms of the component heap's functions
  • gettimeofday is implemented in terms of system time in esp_system

esp_mm

Memory management. Currently, this encompasses:

  • Memory mapping for MMU supported memories
  • Memory synchronisation via Cache
  • Utils such as APIs to convert between virtual address and physical address

esp_psram

Contains implementation of PSRAM services

esp_system

Contains implementation of system services and controls system behavior. The implementations here may take hardware resources and/or decide on a hardware state needed for support of a system service/feature/mechanism. Currently, this encompasses the following, but not limited to:

  • Startup and initialization
  • Panic and debug
  • Reset and reset reason
  • Task and interrupt watchdogs

esp_hw_support

Contains implementations that provide hardware operations, arbitration, or resource sharing, especially those that is used in the system. Unlike esp_system, implementations here do not decide on a hardware state or takes hardware resource, acting merely as facilitator to hardware access. Currently, this encompasses the following, but not limited to:

  • Interrupt allocation
  • Sleep functions
  • Memory functions (external SPIRAM, async memory, etc.)
  • Clock and clock control
  • Random generation
  • CPU utilities
  • MAC settings

esp_hw_support vs esp_system

This section details list some implementations and the reason for placing it in either esp_hw_support or esp_system.

task_wdt.c (esp_system) vs intr_alloc.c (esp_hw_support)

The task watchdog fits the definition of taking and configuring hardware resources (wdt, interrupt) for implementation of a system service/mechanism.

This is in contrast with interrupt allocation that merely facilitates access to the underlying hardware for other implementations - drivers, user code, and even the task watchdog mentioned previously!

crosscore_int.c (esp_system)

The current implementation of crosscore interrupts is tightly coupled with a number of interrupt reasons associated with system services/mechanisms: REASON_YIELD (scheduler), REASON_FREQ_SWITCH (power management) REASON_PRINT_BACKTRACE (panic and debug).

However, if an implementation exists that makes it possible to register an arbitrary interrupt reason - a lower level inter-processor call if you will, then this implementation is a good candidate for esp_hw_support. The current implementation in esp_system can then just register the interrupt reasons mentioned above.

esp_mac.h, esp_chip_info.h, esp_random.h (esp_hw_support)

The functions in these headers used to be in esp_system.h, but have been split-off.

The remaining functions in esp_system.h are those that deal with system behavior, such as esp_register_shutdown_handler, or are proxy for other system components's APIs such as esp_get_free_heap_size.

The functions split-off from esp_system.h are much more hardware manipulation oriented such as: esp_read_mac, esp_random and esp_chip_info.