mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
a5a4718600
Added a unit test to make sure the expected behavior happens
430 lines
16 KiB
C
430 lines
16 KiB
C
#include <string.h>
|
|
#include <sys/param.h>
|
|
#include "unity.h"
|
|
#include "test_utils.h" // unity_send_signal
|
|
#include "driver/uart.h" // for the uart driver access
|
|
#include "esp_log.h"
|
|
#include "esp_system.h" // for uint32_t esp_random()
|
|
#include "esp_rom_gpio.h"
|
|
#include "soc/uart_periph.h"
|
|
|
|
#define UART_TAG "Uart"
|
|
#define UART_NUM1 (UART_NUM_1)
|
|
#define BUF_SIZE (100)
|
|
#define UART1_RX_PIN (22)
|
|
#define UART1_TX_PIN (23)
|
|
#define UART_BAUD_11520 (11520)
|
|
#define UART_BAUD_115200 (115200)
|
|
#define TOLERANCE (0.02) //baud rate error tolerance 2%.
|
|
|
|
#define UART1_CTS_PIN (13)
|
|
// RTS for RS485 Half-Duplex Mode manages DE/~RE
|
|
#define UART1_RTS_PIN (18)
|
|
|
|
// Number of packets to be send during test
|
|
#define PACKETS_NUMBER (10)
|
|
|
|
// Wait timeout for uart driver
|
|
#define PACKET_READ_TICS (1000 / portTICK_RATE_MS)
|
|
|
|
#define TEST_DEFAULT_CLK UART_SCLK_APB
|
|
|
|
static void uart_config(uint32_t baud_rate, uart_sclk_t source_clk)
|
|
{
|
|
uart_config_t uart_config = {
|
|
.baud_rate = baud_rate,
|
|
.source_clk = source_clk,
|
|
.data_bits = UART_DATA_8_BITS,
|
|
.parity = UART_PARITY_DISABLE,
|
|
.stop_bits = UART_STOP_BITS_1,
|
|
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
|
|
};
|
|
|
|
uart_driver_install(UART_NUM1, BUF_SIZE * 2, BUF_SIZE * 2, 20, NULL, 0);
|
|
uart_param_config(UART_NUM1, &uart_config);
|
|
TEST_ESP_OK(uart_set_loop_back(UART_NUM1, true));
|
|
}
|
|
|
|
static volatile bool exit_flag;
|
|
|
|
static void test_task(void *pvParameters)
|
|
{
|
|
xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
|
|
char* data = (char *) malloc(256);
|
|
|
|
while (exit_flag == false) {
|
|
uart_tx_chars(UART_NUM1, data, 256);
|
|
// The uart_wait_tx_done() function does not block anything if ticks_to_wait = 0.
|
|
uart_wait_tx_done(UART_NUM1, 0);
|
|
}
|
|
|
|
free(data);
|
|
xSemaphoreGive(*sema);
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
static void test_task2(void *pvParameters)
|
|
{
|
|
while (exit_flag == false) {
|
|
// This task obstruct a setting tx_done_sem semaphore in the UART interrupt.
|
|
// It leads to waiting the ticks_to_wait time in uart_wait_tx_done() function.
|
|
uart_disable_tx_intr(UART_NUM1);
|
|
}
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
TEST_CASE("test uart_wait_tx_done is not blocked when ticks_to_wait=0", "[uart]")
|
|
{
|
|
uart_config(UART_BAUD_11520, TEST_DEFAULT_CLK);
|
|
|
|
xSemaphoreHandle exit_sema = xSemaphoreCreateBinary();
|
|
exit_flag = false;
|
|
|
|
xTaskCreate(test_task, "tsk1", 2048, &exit_sema, 5, NULL);
|
|
xTaskCreate(test_task2, "tsk2", 2048, NULL, 5, NULL);
|
|
|
|
printf("Waiting for 5 sec\n");
|
|
vTaskDelay(5000 / portTICK_PERIOD_MS);
|
|
exit_flag = true;
|
|
|
|
if (xSemaphoreTake(exit_sema, 1000 / portTICK_PERIOD_MS) == pdTRUE) {
|
|
vSemaphoreDelete(exit_sema);
|
|
} else {
|
|
TEST_FAIL_MESSAGE("uart_wait_tx_done is blocked");
|
|
}
|
|
TEST_ESP_OK(uart_driver_delete(UART_NUM1));
|
|
}
|
|
|
|
TEST_CASE("test uart get baud-rate", "[uart]")
|
|
{
|
|
#if SOC_UART_SUPPORT_REF_TICK
|
|
uint32_t baud_rate1 = 0;
|
|
printf("init uart%d, use reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_11520);
|
|
uart_config(UART_BAUD_11520, UART_SCLK_REF_TICK);
|
|
uart_get_baudrate(UART_NUM1, &baud_rate1);
|
|
printf("get baud rate when use reftick: %d\n", (int)baud_rate1);
|
|
TEST_ASSERT_UINT32_WITHIN(UART_BAUD_11520 * TOLERANCE, UART_BAUD_11520, baud_rate1);
|
|
#endif
|
|
uint32_t baud_rate2 = 0;
|
|
printf("init uart%d, unuse reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_115200);
|
|
uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK);
|
|
uart_get_baudrate(UART_NUM1, &baud_rate2);
|
|
printf("get baud rate when don't use reftick: %d\n", (int)baud_rate2);
|
|
TEST_ASSERT_UINT32_WITHIN(UART_BAUD_115200 * TOLERANCE, UART_BAUD_115200, baud_rate2);
|
|
|
|
uart_driver_delete(UART_NUM1);
|
|
ESP_LOGI(UART_TAG, "get baud-rate test passed ....\n");
|
|
}
|
|
|
|
TEST_CASE("test uart tx data with break", "[uart]")
|
|
{
|
|
const int buf_len = 200;
|
|
const int send_len = 128;
|
|
const int brk_len = 10;
|
|
char *psend = (char *)malloc(buf_len);
|
|
TEST_ASSERT_NOT_NULL(psend);
|
|
memset(psend, '0', buf_len);
|
|
uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK);
|
|
printf("Uart%d send %d bytes with break\n", UART_NUM1, send_len);
|
|
uart_write_bytes_with_break(UART_NUM1, (const char *)psend, send_len, brk_len);
|
|
uart_wait_tx_done(UART_NUM1, (portTickType)portMAX_DELAY);
|
|
//If the code is running here, it means the test passed, otherwise it will crash due to the interrupt wdt timeout.
|
|
printf("Send data with break test passed\n");
|
|
free(psend);
|
|
uart_driver_delete(UART_NUM1);
|
|
}
|
|
|
|
static void uart_word_len_set_get_test(int uart_num)
|
|
{
|
|
printf("uart word len set and get test\n");
|
|
uart_word_length_t word_length_set = 0;
|
|
uart_word_length_t word_length_get = 0;
|
|
for (int i = 0; i < UART_DATA_BITS_MAX; i++) {
|
|
word_length_set = UART_DATA_5_BITS + i;
|
|
TEST_ESP_OK(uart_set_word_length(uart_num, word_length_set));
|
|
TEST_ESP_OK(uart_get_word_length(uart_num, &word_length_get));
|
|
TEST_ASSERT_EQUAL(word_length_set, word_length_get);
|
|
}
|
|
}
|
|
|
|
static void uart_stop_bit_set_get_test(int uart_num)
|
|
{
|
|
printf("uart stop bit set and get test\n");
|
|
uart_stop_bits_t stop_bit_set = 0;
|
|
uart_stop_bits_t stop_bit_get = 0;
|
|
for (int i = UART_STOP_BITS_1; i < UART_STOP_BITS_MAX; i++) {
|
|
stop_bit_set = i;
|
|
TEST_ESP_OK(uart_set_stop_bits(uart_num, stop_bit_set));
|
|
TEST_ESP_OK(uart_get_stop_bits(uart_num, &stop_bit_get));
|
|
TEST_ASSERT_EQUAL(stop_bit_set, stop_bit_get);
|
|
}
|
|
}
|
|
|
|
static void uart_parity_set_get_test(int uart_num)
|
|
{
|
|
printf("uart parity set and get test\n");
|
|
uart_parity_t parity_set[3] = {
|
|
UART_PARITY_DISABLE,
|
|
UART_PARITY_EVEN,
|
|
UART_PARITY_ODD,
|
|
};
|
|
uart_parity_t parity_get = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
TEST_ESP_OK(uart_set_parity(uart_num, parity_set[i]));
|
|
TEST_ESP_OK(uart_get_parity(uart_num, &parity_get));
|
|
TEST_ASSERT_EQUAL(parity_set[i], parity_get);
|
|
}
|
|
}
|
|
|
|
static void uart_hw_flow_set_get_test(int uart_num)
|
|
{
|
|
printf("uart hw flow control set and get test\n");
|
|
uart_hw_flowcontrol_t flowcontrol_set = 0;
|
|
uart_hw_flowcontrol_t flowcontrol_get = 0;
|
|
for (int i = 0; i < UART_HW_FLOWCTRL_DISABLE; i++) {
|
|
TEST_ESP_OK(uart_set_hw_flow_ctrl(uart_num, flowcontrol_set, 20));
|
|
TEST_ESP_OK(uart_get_hw_flow_ctrl(uart_num, &flowcontrol_get));
|
|
TEST_ASSERT_EQUAL(flowcontrol_set, flowcontrol_get);
|
|
}
|
|
}
|
|
|
|
static void uart_wakeup_set_get_test(int uart_num)
|
|
{
|
|
printf("uart wake up set and get test\n");
|
|
int wake_up_set = 0;
|
|
int wake_up_get = 0;
|
|
for (int i = 3; i < 0x3ff; i++) {
|
|
wake_up_set = i;
|
|
TEST_ESP_OK(uart_set_wakeup_threshold(uart_num, wake_up_set));
|
|
TEST_ESP_OK(uart_get_wakeup_threshold(uart_num, &wake_up_get));
|
|
TEST_ASSERT_EQUAL(wake_up_set, wake_up_get);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("uart general API test", "[uart]")
|
|
{
|
|
const int uart_num = UART_NUM1;
|
|
uart_config_t uart_config = {
|
|
.baud_rate = 115200,
|
|
.data_bits = UART_DATA_8_BITS,
|
|
.parity = UART_PARITY_DISABLE,
|
|
.stop_bits = UART_STOP_BITS_1,
|
|
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
|
|
.source_clk = TEST_DEFAULT_CLK,
|
|
};
|
|
uart_param_config(uart_num, &uart_config);
|
|
uart_word_len_set_get_test(uart_num);
|
|
uart_stop_bit_set_get_test(uart_num);
|
|
uart_parity_set_get_test(uart_num);
|
|
uart_hw_flow_set_get_test(uart_num);
|
|
uart_wakeup_set_get_test(uart_num);
|
|
}
|
|
|
|
static void uart_write_task(void *param)
|
|
{
|
|
int uart_num = (int)param;
|
|
uint8_t *tx_buf = (uint8_t *)malloc(1024);
|
|
if(tx_buf == NULL) {
|
|
TEST_FAIL_MESSAGE("tx buffer malloc fail");
|
|
}
|
|
for(int i = 1; i < 1023; i++) {
|
|
tx_buf[i] = (i & 0xff);
|
|
}
|
|
for(int i = 0; i < 1024; i++) {
|
|
//d[0] and d[1023] are header
|
|
tx_buf[0] = (i & 0xff);
|
|
tx_buf[1023] = ((~i) & 0xff);
|
|
uart_write_bytes(uart_num, (const char*)tx_buf, 1024);
|
|
uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
|
|
}
|
|
free(tx_buf);
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
/**
|
|
* The following tests use loop back
|
|
*
|
|
* NOTE: In the following tests, because the internal loopback is enabled, the CTS signal is connected to
|
|
* the RTS signal internally. However, On ESP32S3, they are not, and the CTS keeps the default level (which
|
|
* is a high level). So the workaround is to map the CTS in_signal to a GPIO pin (here IO13 is used) and connect
|
|
* the RTS output_signal to this IO.
|
|
*/
|
|
|
|
TEST_CASE("uart read write test", "[uart]")
|
|
{
|
|
const int uart_num = UART_NUM1;
|
|
uint8_t *rd_data = (uint8_t *)malloc(1024);
|
|
if(rd_data == NULL) {
|
|
TEST_FAIL_MESSAGE("rx buffer malloc fail");
|
|
}
|
|
uart_config_t uart_config = {
|
|
.baud_rate = 2000000,
|
|
.data_bits = UART_DATA_8_BITS,
|
|
.parity = UART_PARITY_DISABLE,
|
|
.stop_bits = UART_STOP_BITS_1,
|
|
.flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
|
|
.source_clk = TEST_DEFAULT_CLK,
|
|
.rx_flow_ctrl_thresh = 120
|
|
};
|
|
TEST_ESP_OK(uart_driver_install(uart_num, BUF_SIZE * 2, 0, 20, NULL, 0));
|
|
TEST_ESP_OK(uart_param_config(uart_num, &uart_config));
|
|
TEST_ESP_OK(uart_set_loop_back(uart_num, true));
|
|
TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN));
|
|
//Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal)
|
|
esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, uart_periph_signal[uart_num].rts_sig, 0, 0);
|
|
|
|
TEST_ESP_OK(uart_wait_tx_done(uart_num, portMAX_DELAY));
|
|
vTaskDelay(1 / portTICK_PERIOD_MS); // make sure last byte has flushed from TX FIFO
|
|
TEST_ESP_OK(uart_flush_input(uart_num));
|
|
|
|
xTaskCreate(uart_write_task, "uart_write_task", 2048 * 4, (void *)uart_num, UNITY_FREERTOS_PRIORITY - 1, NULL);
|
|
for (int i = 0; i < 1024; i++) {
|
|
int bytes_remaining = 1024;
|
|
memset(rd_data, 0, 1024);
|
|
while (bytes_remaining) {
|
|
int bytes_received = uart_read_bytes(uart_num, rd_data + 1024 - bytes_remaining, bytes_remaining, (TickType_t)1000);
|
|
if (bytes_received < 0) {
|
|
TEST_FAIL_MESSAGE("read timeout, uart read write test fail");
|
|
}
|
|
bytes_remaining -= bytes_received;
|
|
}
|
|
int check_fail_cnt = 0;
|
|
if (rd_data[0] != (i & 0xff)) {
|
|
printf("packet %d index check error at offset 0, expected 0x%02x\n", i, i);
|
|
++check_fail_cnt;
|
|
}
|
|
if (rd_data[1023] != ((~i) & 0xff)) {
|
|
printf("packet %d index check error at offset 1023, expected 0x%02x\n", i, ((~i) & 0xff));
|
|
++check_fail_cnt;
|
|
}
|
|
for (int j = 1; j < 1023; j++) {
|
|
if (rd_data[j] != (j & 0xff)) {
|
|
printf("data mismatch in packet %d offset %d, expected 0x%02x got 0x%02x\n", i, j, (j & 0xff), rd_data[j]);
|
|
++check_fail_cnt;
|
|
}
|
|
if (check_fail_cnt > 10) {
|
|
printf("(further checks skipped)\n");
|
|
break;
|
|
}
|
|
}
|
|
if (check_fail_cnt > 0) {
|
|
ESP_LOG_BUFFER_HEX("rd_data", rd_data, 1024);
|
|
TEST_FAIL();
|
|
}
|
|
}
|
|
uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
|
|
uart_driver_delete(uart_num);
|
|
free(rd_data);
|
|
}
|
|
|
|
TEST_CASE("uart tx with ringbuffer test", "[uart]")
|
|
{
|
|
const int uart_num = UART_NUM1;
|
|
uint8_t *rd_data = (uint8_t *)malloc(1024);
|
|
uint8_t *wr_data = (uint8_t *)malloc(1024);
|
|
if(rd_data == NULL || wr_data == NULL) {
|
|
TEST_FAIL_MESSAGE("buffer malloc fail");
|
|
}
|
|
uart_config_t uart_config = {
|
|
.baud_rate = 2000000,
|
|
.data_bits = UART_DATA_8_BITS,
|
|
.parity = UART_PARITY_DISABLE,
|
|
.stop_bits = UART_STOP_BITS_1,
|
|
.flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
|
|
.rx_flow_ctrl_thresh = 120,
|
|
.source_clk = TEST_DEFAULT_CLK,
|
|
};
|
|
uart_wait_tx_idle_polling(uart_num);
|
|
TEST_ESP_OK(uart_param_config(uart_num, &uart_config));
|
|
TEST_ESP_OK(uart_driver_install(uart_num, 1024 * 2, 1024 *2, 20, NULL, 0));
|
|
TEST_ESP_OK(uart_set_loop_back(uart_num, true));
|
|
TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN));
|
|
//Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal)
|
|
esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, uart_periph_signal[uart_num].rts_sig, 0, 0);
|
|
|
|
for (int i = 0; i < 1024; i++) {
|
|
wr_data[i] = i;
|
|
rd_data[i] = 0;
|
|
}
|
|
uart_write_bytes(uart_num, (const char*)wr_data, 1024);
|
|
uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
|
|
uart_read_bytes(uart_num, rd_data, 1024, (TickType_t)1000);
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(wr_data, rd_data, 1024);
|
|
TEST_ESP_OK(uart_driver_delete(uart_num));
|
|
free(rd_data);
|
|
free(wr_data);
|
|
}
|
|
|
|
TEST_CASE("uart int state restored after flush", "[uart]")
|
|
{
|
|
/**
|
|
* The first goal of this test is to make sure that when our RX FIFO is full,
|
|
* we can continue receiving back data after flushing
|
|
* For more details, check IDF-4374
|
|
*/
|
|
uart_config_t uart_config = {
|
|
.baud_rate = 115200,
|
|
.data_bits = UART_DATA_8_BITS,
|
|
.parity = UART_PARITY_DISABLE,
|
|
.stop_bits = UART_STOP_BITS_1,
|
|
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
|
|
.source_clk = UART_SCLK_APB,
|
|
};
|
|
|
|
const uart_port_t uart_echo = UART_NUM_1;
|
|
const int uart_tx_signal = U1TXD_OUT_IDX;
|
|
const int uart_tx = 4;
|
|
const int uart_rx = 5;
|
|
const int buf_size = 256;
|
|
const int intr_alloc_flags = 0;
|
|
|
|
TEST_ESP_OK(uart_driver_install(uart_echo, buf_size * 2, 0, 0, NULL, intr_alloc_flags));
|
|
TEST_ESP_OK(uart_param_config(uart_echo, &uart_config));
|
|
TEST_ESP_OK(uart_set_pin(uart_echo, uart_tx, uart_rx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
|
|
|
|
/* Make sure UART1's RX signal is connected to TX pin
|
|
* This creates a loop that lets us receive anything we send on the UART */
|
|
esp_rom_gpio_connect_out_signal(uart_rx, uart_tx_signal, false, false);
|
|
|
|
uint8_t *data = (uint8_t *) malloc(buf_size);
|
|
TEST_ASSERT_NOT_NULL(data);
|
|
uart_write_bytes(uart_echo, (const char *) data, buf_size);
|
|
|
|
/* As we set up a loopback, we can read them back on RX */
|
|
int len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS);
|
|
TEST_ASSERT_EQUAL(len, buf_size);
|
|
|
|
/* Fill the RX buffer, this should disable the RX interrupts */
|
|
int written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
|
|
TEST_ASSERT_NOT_EQUAL(-1, written);
|
|
written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
|
|
TEST_ASSERT_NOT_EQUAL(-1, written);
|
|
written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
|
|
TEST_ASSERT_NOT_EQUAL(-1, written);
|
|
|
|
/* Flush the input buffer, RX interrupts should be re-enabled */
|
|
uart_flush_input(uart_echo);
|
|
written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
|
|
TEST_ASSERT_NOT_EQUAL(-1, written);
|
|
len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS);
|
|
/* len equals buf_size bytes if interrupts were indeed re-enabled */
|
|
TEST_ASSERT_EQUAL(len, buf_size);
|
|
|
|
/**
|
|
* Second test, make sure that if we explicitly disable the RX interrupts,
|
|
* they are NOT re-enabled after flushing
|
|
* To do so, start by cleaning the RX FIFO, disable the RX interrupts,
|
|
* flush again, send data to the UART and check that we haven't received
|
|
* any of the bytes */
|
|
uart_flush_input(uart_echo);
|
|
uart_disable_rx_intr(uart_echo);
|
|
uart_flush_input(uart_echo);
|
|
written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
|
|
TEST_ASSERT_NOT_EQUAL(-1, written);
|
|
len = uart_read_bytes(uart_echo, data, buf_size, 250 / portTICK_RATE_MS);
|
|
TEST_ASSERT_EQUAL(len, 0);
|
|
|
|
TEST_ESP_OK(uart_driver_delete(uart_echo));
|
|
free(data);
|
|
}
|