#include #include #include "unity.h" #include "test_utils.h" // unity_send_signal #include "driver/uart.h" // for the uart driver access #include "esp_log.h" #include "esp_system.h" // for uint32_t esp_random() #include "esp_rom_gpio.h" #include "soc/uart_periph.h" #define UART_TAG "Uart" #define UART_NUM1 (UART_NUM_1) #define BUF_SIZE (100) #define UART1_RX_PIN (22) #define UART1_TX_PIN (23) #define UART_BAUD_11520 (11520) #define UART_BAUD_115200 (115200) #define TOLERANCE (0.02) //baud rate error tolerance 2%. #define UART1_CTS_PIN (13) // RTS for RS485 Half-Duplex Mode manages DE/~RE #define UART1_RTS_PIN (18) // Number of packets to be send during test #define PACKETS_NUMBER (10) // Wait timeout for uart driver #define PACKET_READ_TICS (1000 / portTICK_RATE_MS) #define TEST_DEFAULT_CLK UART_SCLK_APB static void uart_config(uint32_t baud_rate, uart_sclk_t source_clk) { uart_config_t uart_config = { .baud_rate = baud_rate, .source_clk = source_clk, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, }; uart_driver_install(UART_NUM1, BUF_SIZE * 2, BUF_SIZE * 2, 20, NULL, 0); uart_param_config(UART_NUM1, &uart_config); TEST_ESP_OK(uart_set_loop_back(UART_NUM1, true)); } static volatile bool exit_flag; static void test_task(void *pvParameters) { xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters; char* data = (char *) malloc(256); while (exit_flag == false) { uart_tx_chars(UART_NUM1, data, 256); // The uart_wait_tx_done() function does not block anything if ticks_to_wait = 0. uart_wait_tx_done(UART_NUM1, 0); } free(data); xSemaphoreGive(*sema); vTaskDelete(NULL); } static void test_task2(void *pvParameters) { while (exit_flag == false) { // This task obstruct a setting tx_done_sem semaphore in the UART interrupt. // It leads to waiting the ticks_to_wait time in uart_wait_tx_done() function. uart_disable_tx_intr(UART_NUM1); } vTaskDelete(NULL); } TEST_CASE("test uart_wait_tx_done is not blocked when ticks_to_wait=0", "[uart]") { uart_config(UART_BAUD_11520, TEST_DEFAULT_CLK); xSemaphoreHandle exit_sema = xSemaphoreCreateBinary(); exit_flag = false; xTaskCreate(test_task, "tsk1", 2048, &exit_sema, 5, NULL); xTaskCreate(test_task2, "tsk2", 2048, NULL, 5, NULL); printf("Waiting for 5 sec\n"); vTaskDelay(5000 / portTICK_PERIOD_MS); exit_flag = true; if (xSemaphoreTake(exit_sema, 1000 / portTICK_PERIOD_MS) == pdTRUE) { vSemaphoreDelete(exit_sema); } else { TEST_FAIL_MESSAGE("uart_wait_tx_done is blocked"); } TEST_ESP_OK(uart_driver_delete(UART_NUM1)); } TEST_CASE("test uart get baud-rate", "[uart]") { #if SOC_UART_SUPPORT_REF_TICK uint32_t baud_rate1 = 0; printf("init uart%d, use reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_11520); uart_config(UART_BAUD_11520, UART_SCLK_REF_TICK); uart_get_baudrate(UART_NUM1, &baud_rate1); printf("get baud rate when use reftick: %d\n", (int)baud_rate1); TEST_ASSERT_UINT32_WITHIN(UART_BAUD_11520 * TOLERANCE, UART_BAUD_11520, baud_rate1); #endif uint32_t baud_rate2 = 0; printf("init uart%d, unuse reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_115200); uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK); uart_get_baudrate(UART_NUM1, &baud_rate2); printf("get baud rate when don't use reftick: %d\n", (int)baud_rate2); TEST_ASSERT_UINT32_WITHIN(UART_BAUD_115200 * TOLERANCE, UART_BAUD_115200, baud_rate2); uart_driver_delete(UART_NUM1); ESP_LOGI(UART_TAG, "get baud-rate test passed ....\n"); } TEST_CASE("test uart tx data with break", "[uart]") { const int buf_len = 200; const int send_len = 128; const int brk_len = 10; char *psend = (char *)malloc(buf_len); TEST_ASSERT_NOT_NULL(psend); memset(psend, '0', buf_len); uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK); printf("Uart%d send %d bytes with break\n", UART_NUM1, send_len); uart_write_bytes_with_break(UART_NUM1, (const char *)psend, send_len, brk_len); uart_wait_tx_done(UART_NUM1, (portTickType)portMAX_DELAY); //If the code is running here, it means the test passed, otherwise it will crash due to the interrupt wdt timeout. printf("Send data with break test passed\n"); free(psend); uart_driver_delete(UART_NUM1); } static void uart_word_len_set_get_test(int uart_num) { printf("uart word len set and get test\n"); uart_word_length_t word_length_set = 0; uart_word_length_t word_length_get = 0; for (int i = 0; i < UART_DATA_BITS_MAX; i++) { word_length_set = UART_DATA_5_BITS + i; TEST_ESP_OK(uart_set_word_length(uart_num, word_length_set)); TEST_ESP_OK(uart_get_word_length(uart_num, &word_length_get)); TEST_ASSERT_EQUAL(word_length_set, word_length_get); } } static void uart_stop_bit_set_get_test(int uart_num) { printf("uart stop bit set and get test\n"); uart_stop_bits_t stop_bit_set = 0; uart_stop_bits_t stop_bit_get = 0; for (int i = UART_STOP_BITS_1; i < UART_STOP_BITS_MAX; i++) { stop_bit_set = i; TEST_ESP_OK(uart_set_stop_bits(uart_num, stop_bit_set)); TEST_ESP_OK(uart_get_stop_bits(uart_num, &stop_bit_get)); TEST_ASSERT_EQUAL(stop_bit_set, stop_bit_get); } } static void uart_parity_set_get_test(int uart_num) { printf("uart parity set and get test\n"); uart_parity_t parity_set[3] = { UART_PARITY_DISABLE, UART_PARITY_EVEN, UART_PARITY_ODD, }; uart_parity_t parity_get = 0; for (int i = 0; i < 3; i++) { TEST_ESP_OK(uart_set_parity(uart_num, parity_set[i])); TEST_ESP_OK(uart_get_parity(uart_num, &parity_get)); TEST_ASSERT_EQUAL(parity_set[i], parity_get); } } static void uart_hw_flow_set_get_test(int uart_num) { printf("uart hw flow control set and get test\n"); uart_hw_flowcontrol_t flowcontrol_set = 0; uart_hw_flowcontrol_t flowcontrol_get = 0; for (int i = 0; i < UART_HW_FLOWCTRL_DISABLE; i++) { TEST_ESP_OK(uart_set_hw_flow_ctrl(uart_num, flowcontrol_set, 20)); TEST_ESP_OK(uart_get_hw_flow_ctrl(uart_num, &flowcontrol_get)); TEST_ASSERT_EQUAL(flowcontrol_set, flowcontrol_get); } } static void uart_wakeup_set_get_test(int uart_num) { printf("uart wake up set and get test\n"); int wake_up_set = 0; int wake_up_get = 0; for (int i = 3; i < 0x3ff; i++) { wake_up_set = i; TEST_ESP_OK(uart_set_wakeup_threshold(uart_num, wake_up_set)); TEST_ESP_OK(uart_get_wakeup_threshold(uart_num, &wake_up_get)); TEST_ASSERT_EQUAL(wake_up_set, wake_up_get); } } TEST_CASE("uart general API test", "[uart]") { const int uart_num = UART_NUM1; uart_config_t uart_config = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .source_clk = TEST_DEFAULT_CLK, }; uart_param_config(uart_num, &uart_config); uart_word_len_set_get_test(uart_num); uart_stop_bit_set_get_test(uart_num); uart_parity_set_get_test(uart_num); uart_hw_flow_set_get_test(uart_num); uart_wakeup_set_get_test(uart_num); } static void uart_write_task(void *param) { int uart_num = (int)param; uint8_t *tx_buf = (uint8_t *)malloc(1024); if(tx_buf == NULL) { TEST_FAIL_MESSAGE("tx buffer malloc fail"); } for(int i = 1; i < 1023; i++) { tx_buf[i] = (i & 0xff); } for(int i = 0; i < 1024; i++) { //d[0] and d[1023] are header tx_buf[0] = (i & 0xff); tx_buf[1023] = ((~i) & 0xff); uart_write_bytes(uart_num, (const char*)tx_buf, 1024); uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY); } free(tx_buf); vTaskDelete(NULL); } /** * The following tests use loop back * * NOTE: In the following tests, because the internal loopback is enabled, the CTS signal is connected to * the RTS signal internally. However, On ESP32S3, they are not, and the CTS keeps the default level (which * is a high level). So the workaround is to map the CTS in_signal to a GPIO pin (here IO13 is used) and connect * the RTS output_signal to this IO. */ TEST_CASE("uart read write test", "[uart]") { const int uart_num = UART_NUM1; uint8_t *rd_data = (uint8_t *)malloc(1024); if(rd_data == NULL) { TEST_FAIL_MESSAGE("rx buffer malloc fail"); } uart_config_t uart_config = { .baud_rate = 2000000, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS, .source_clk = TEST_DEFAULT_CLK, .rx_flow_ctrl_thresh = 120 }; TEST_ESP_OK(uart_driver_install(uart_num, BUF_SIZE * 2, 0, 20, NULL, 0)); TEST_ESP_OK(uart_param_config(uart_num, &uart_config)); TEST_ESP_OK(uart_set_loop_back(uart_num, true)); TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN)); //Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal) esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, uart_periph_signal[uart_num].rts_sig, 0, 0); TEST_ESP_OK(uart_wait_tx_done(uart_num, portMAX_DELAY)); vTaskDelay(1 / portTICK_PERIOD_MS); // make sure last byte has flushed from TX FIFO TEST_ESP_OK(uart_flush_input(uart_num)); xTaskCreate(uart_write_task, "uart_write_task", 2048 * 4, (void *)uart_num, UNITY_FREERTOS_PRIORITY - 1, NULL); for (int i = 0; i < 1024; i++) { int bytes_remaining = 1024; memset(rd_data, 0, 1024); while (bytes_remaining) { int bytes_received = uart_read_bytes(uart_num, rd_data + 1024 - bytes_remaining, bytes_remaining, (TickType_t)1000); if (bytes_received < 0) { TEST_FAIL_MESSAGE("read timeout, uart read write test fail"); } bytes_remaining -= bytes_received; } int check_fail_cnt = 0; if (rd_data[0] != (i & 0xff)) { printf("packet %d index check error at offset 0, expected 0x%02x\n", i, i); ++check_fail_cnt; } if (rd_data[1023] != ((~i) & 0xff)) { printf("packet %d index check error at offset 1023, expected 0x%02x\n", i, ((~i) & 0xff)); ++check_fail_cnt; } for (int j = 1; j < 1023; j++) { if (rd_data[j] != (j & 0xff)) { printf("data mismatch in packet %d offset %d, expected 0x%02x got 0x%02x\n", i, j, (j & 0xff), rd_data[j]); ++check_fail_cnt; } if (check_fail_cnt > 10) { printf("(further checks skipped)\n"); break; } } if (check_fail_cnt > 0) { ESP_LOG_BUFFER_HEX("rd_data", rd_data, 1024); TEST_FAIL(); } } uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY); uart_driver_delete(uart_num); free(rd_data); } TEST_CASE("uart tx with ringbuffer test", "[uart]") { const int uart_num = UART_NUM1; uint8_t *rd_data = (uint8_t *)malloc(1024); uint8_t *wr_data = (uint8_t *)malloc(1024); if(rd_data == NULL || wr_data == NULL) { TEST_FAIL_MESSAGE("buffer malloc fail"); } uart_config_t uart_config = { .baud_rate = 2000000, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS, .rx_flow_ctrl_thresh = 120, .source_clk = TEST_DEFAULT_CLK, }; uart_wait_tx_idle_polling(uart_num); TEST_ESP_OK(uart_param_config(uart_num, &uart_config)); TEST_ESP_OK(uart_driver_install(uart_num, 1024 * 2, 1024 *2, 20, NULL, 0)); TEST_ESP_OK(uart_set_loop_back(uart_num, true)); TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN)); //Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal) esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, uart_periph_signal[uart_num].rts_sig, 0, 0); for (int i = 0; i < 1024; i++) { wr_data[i] = i; rd_data[i] = 0; } uart_write_bytes(uart_num, (const char*)wr_data, 1024); uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY); uart_read_bytes(uart_num, rd_data, 1024, (TickType_t)1000); TEST_ASSERT_EQUAL_HEX8_ARRAY(wr_data, rd_data, 1024); TEST_ESP_OK(uart_driver_delete(uart_num)); free(rd_data); free(wr_data); } TEST_CASE("uart int state restored after flush", "[uart]") { /** * The first goal of this test is to make sure that when our RX FIFO is full, * we can continue receiving back data after flushing * For more details, check IDF-4374 */ uart_config_t uart_config = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .source_clk = UART_SCLK_APB, }; const uart_port_t uart_echo = UART_NUM_1; const int uart_tx_signal = U1TXD_OUT_IDX; const int uart_tx = 4; const int uart_rx = 5; const int buf_size = 256; const int intr_alloc_flags = 0; TEST_ESP_OK(uart_driver_install(uart_echo, buf_size * 2, 0, 0, NULL, intr_alloc_flags)); TEST_ESP_OK(uart_param_config(uart_echo, &uart_config)); TEST_ESP_OK(uart_set_pin(uart_echo, uart_tx, uart_rx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE)); /* Make sure UART1's RX signal is connected to TX pin * This creates a loop that lets us receive anything we send on the UART */ esp_rom_gpio_connect_out_signal(uart_rx, uart_tx_signal, false, false); uint8_t *data = (uint8_t *) malloc(buf_size); TEST_ASSERT_NOT_NULL(data); uart_write_bytes(uart_echo, (const char *) data, buf_size); /* As we set up a loopback, we can read them back on RX */ int len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS); TEST_ASSERT_EQUAL(len, buf_size); /* Fill the RX buffer, this should disable the RX interrupts */ int written = uart_write_bytes(uart_echo, (const char *) data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); written = uart_write_bytes(uart_echo, (const char *) data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); written = uart_write_bytes(uart_echo, (const char *) data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); /* Flush the input buffer, RX interrupts should be re-enabled */ uart_flush_input(uart_echo); written = uart_write_bytes(uart_echo, (const char *) data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS); /* len equals buf_size bytes if interrupts were indeed re-enabled */ TEST_ASSERT_EQUAL(len, buf_size); /** * Second test, make sure that if we explicitly disable the RX interrupts, * they are NOT re-enabled after flushing * To do so, start by cleaning the RX FIFO, disable the RX interrupts, * flush again, send data to the UART and check that we haven't received * any of the bytes */ uart_flush_input(uart_echo); uart_disable_rx_intr(uart_echo); uart_flush_input(uart_echo); written = uart_write_bytes(uart_echo, (const char *) data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); len = uart_read_bytes(uart_echo, data, buf_size, 250 / portTICK_RATE_MS); TEST_ASSERT_EQUAL(len, 0); TEST_ESP_OK(uart_driver_delete(uart_echo)); free(data); }