esp-idf/components/driver/uart/uart.c
Song Ruo Jing c55a07bf57 refactor(uart): add support to be able to test LP_UART port
Increase LP_UART_EMPTY_THRESH_DEFAULT value to 4. The original value
could cause the FIFO become empty before filling next data into the FIFO
when the buadrate is high. TX_DONE interrupt would raise before actual
transmission complete in such case.
2024-04-15 19:39:30 +08:00

1838 lines
84 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <sys/param.h>
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_err.h"
#include "esp_check.h"
#include "malloc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/ringbuf.h"
#include "freertos/idf_additions.h"
#include "esp_private/critical_section.h"
#include "hal/uart_hal.h"
#include "hal/gpio_hal.h"
#include "hal/clk_tree_ll.h"
#include "soc/uart_periph.h"
#include "driver/uart.h"
#include "driver/gpio.h"
#include "driver/rtc_io.h"
#include "driver/uart_select.h"
#include "driver/lp_io.h"
#include "esp_private/uart_private.h"
#include "esp_private/periph_ctrl.h"
#include "esp_clk_tree.h"
#include "sdkconfig.h"
#include "esp_rom_gpio.h"
#include "clk_ctrl_os.h"
#ifdef CONFIG_UART_ISR_IN_IRAM
#define UART_ISR_ATTR IRAM_ATTR
#define UART_MALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
#else
#define UART_ISR_ATTR
#define UART_MALLOC_CAPS MALLOC_CAP_DEFAULT
#endif
#define XOFF (0x13)
#define XON (0x11)
static const char *UART_TAG = "uart";
#define UART_EMPTY_THRESH_DEFAULT (10)
#define LP_UART_EMPTY_THRESH_DEFAULT (4)
#define UART_FULL_THRESH_DEFAULT (120)
#define LP_UART_FULL_THRESH_DEFAULT (10)
#define UART_TOUT_THRESH_DEFAULT (10)
#define UART_CLKDIV_FRAG_BIT_WIDTH (3)
#define UART_TX_IDLE_NUM_DEFAULT (0)
#define UART_PATTERN_DET_QLEN_DEFAULT (10)
#define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
#if (SOC_UART_LP_NUM >= 1)
#define UART_THRESHOLD_NUM(uart_num, field_name) ((uart_num < SOC_UART_HP_NUM) ? field_name : LP_##field_name)
#else
#define UART_THRESHOLD_NUM(uart_num, field_name) (field_name)
#endif
#if SOC_UART_SUPPORT_WAKEUP_INT
#define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
| (UART_INTR_RXFIFO_TOUT) \
| (UART_INTR_RXFIFO_OVF) \
| (UART_INTR_BRK_DET) \
| (UART_INTR_PARITY_ERR)) \
| (UART_INTR_WAKEUP)
#else
#define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
| (UART_INTR_RXFIFO_TOUT) \
| (UART_INTR_RXFIFO_OVF) \
| (UART_INTR_BRK_DET) \
| (UART_INTR_PARITY_ERR))
#endif
#define UART_ENTER_CRITICAL_SAFE(spinlock) esp_os_enter_critical_safe(spinlock)
#define UART_EXIT_CRITICAL_SAFE(spinlock) esp_os_exit_critical_safe(spinlock)
#define UART_ENTER_CRITICAL_ISR(spinlock) esp_os_enter_critical_isr(spinlock)
#define UART_EXIT_CRITICAL_ISR(spinlock) esp_os_exit_critical_isr(spinlock)
#define UART_ENTER_CRITICAL(spinlock) esp_os_enter_critical(spinlock)
#define UART_EXIT_CRITICAL(spinlock) esp_os_exit_critical(spinlock)
// Check actual UART mode set
#define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
#define UART_CONTEX_INIT_DEF(uart_num) {\
.hal.dev = UART_LL_GET_HW(uart_num),\
INIT_CRIT_SECTION_LOCK_IN_STRUCT(spinlock)\
.hw_enabled = false,\
}
typedef struct {
uart_event_type_t type; /*!< UART TX data type */
struct {
int brk_len;
size_t size;
uint8_t data[0];
} tx_data;
} uart_tx_data_t;
typedef struct {
int wr;
int rd;
int len;
int *data;
} uart_pat_rb_t;
typedef struct {
uart_port_t uart_num; /*!< UART port number*/
int event_queue_size; /*!< UART event queue size*/
intr_handle_t intr_handle; /*!< UART interrupt handle*/
uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
bool coll_det_flg; /*!< UART collision detection flag */
bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
int rx_buffered_len; /*!< UART cached data length */
int rx_buf_size; /*!< RX ring buffer size */
bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
uint8_t *rx_data_buf; /*!< Data buffer to stash FIFO data*/
uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
uint32_t rx_int_usr_mask; /*!< RX interrupt status. Valid at any time, regardless of RX buffer status. */
uart_pat_rb_t rx_pattern_pos;
int tx_buf_size; /*!< TX ring buffer size */
bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
uint32_t tx_len_cur;
uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
QueueHandle_t event_queue; /*!< UART event queue handler*/
RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
} uart_obj_t;
typedef struct {
uart_hal_context_t hal; /*!< UART hal context*/
DECLARE_CRIT_SECTION_LOCK_IN_STRUCT(spinlock)
bool hw_enabled;
} uart_context_t;
static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
static uart_context_t uart_context[UART_NUM_MAX] = {
UART_CONTEX_INIT_DEF(UART_NUM_0),
UART_CONTEX_INIT_DEF(UART_NUM_1),
#if SOC_UART_HP_NUM > 2
UART_CONTEX_INIT_DEF(UART_NUM_2),
#endif
#if SOC_UART_HP_NUM > 3
UART_CONTEX_INIT_DEF(UART_NUM_3),
#endif
#if SOC_UART_HP_NUM > 4
UART_CONTEX_INIT_DEF(UART_NUM_4),
#endif
#if (SOC_UART_LP_NUM >= 1)
UART_CONTEX_INIT_DEF(LP_UART_NUM_0),
#endif
};
static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
static void uart_module_enable(uart_port_t uart_num)
{
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if (uart_context[uart_num].hw_enabled != true) {
if (uart_num < SOC_UART_HP_NUM) {
HP_UART_BUS_CLK_ATOMIC() {
uart_ll_enable_bus_clock(uart_num, true);
}
if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
HP_UART_BUS_CLK_ATOMIC() {
uart_ll_reset_register(uart_num);
}
}
}
#if (SOC_UART_LP_NUM >= 1)
else {
LP_UART_BUS_CLK_ATOMIC() {
lp_uart_ll_enable_bus_clock(uart_num - SOC_UART_HP_NUM, true);
lp_uart_ll_reset_register(uart_num - SOC_UART_HP_NUM);
}
}
#endif
uart_context[uart_num].hw_enabled = true;
}
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
}
static void uart_module_disable(uart_port_t uart_num)
{
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if (uart_context[uart_num].hw_enabled != false) {
if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM && uart_num < SOC_UART_HP_NUM) {
HP_UART_BUS_CLK_ATOMIC() {
uart_ll_enable_bus_clock(uart_num, false);
}
}
#if (SOC_UART_LP_NUM >= 1)
else if (uart_num >= SOC_UART_HP_NUM) {
LP_UART_BUS_CLK_ATOMIC() {
lp_uart_ll_enable_bus_clock(uart_num - SOC_UART_HP_NUM, false);
}
}
#endif
uart_context[uart_num].hw_enabled = false;
}
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
}
esp_err_t uart_get_sclk_freq(uart_sclk_t sclk, uint32_t *out_freq_hz)
{
return esp_clk_tree_src_get_freq_hz((soc_module_clk_t)sclk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, out_freq_hz);
}
esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
return ESP_OK;
}
esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
soc_module_clk_t src_clk;
uint32_t sclk_freq;
uart_hal_get_sclk(&(uart_context[uart_num].hal), &src_clk);
ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq), UART_TAG, "Invalid src_clk");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if (uart_num < SOC_UART_HP_NUM) {
HP_UART_SRC_CLK_ATOMIC() {
uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate, sclk_freq);
}
}
#if (SOC_UART_LP_NUM >= 1)
else {
lp_uart_ll_set_baudrate(uart_context[uart_num].hal.dev, baud_rate, sclk_freq);
}
#endif
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
soc_module_clk_t src_clk;
uint32_t sclk_freq;
uart_hal_get_sclk(&(uart_context[uart_num].hal), &src_clk);
ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq), UART_TAG, "Invalid src_clk");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate, sclk_freq);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((rx_thresh_xon < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
ESP_RETURN_ON_FALSE((rx_thresh_xoff < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow xoff thresh error");
uart_sw_flowctrl_t sw_flow_ctl = {
.xon_char = XON,
.xoff_char = XOFF,
.xon_thrd = rx_thresh_xon,
.xoff_thrd = rx_thresh_xoff,
};
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((rx_thresh < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow thresh error");
ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
{
ESP_RETURN_ON_FALSE_ISR((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
return ESP_OK;
}
esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
/* Keep track of the interrupt toggling. In fact, without such variable,
* once the RX buffer is full and the RX interrupts disabled, it is
* impossible what was the previous state (enabled/disabled) of these
* interrupt masks. Thus, this will be very particularly handy when
* emptying a filled RX buffer. */
p_uart_obj[uart_num]->rx_int_usr_mask |= enable_mask;
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
/**
* @brief Function re-enabling the given interrupts (mask) if and only if
* they have not been disabled by the user.
*
* @param uart_num UART number to perform the operation on
* @param enable_mask Interrupts (flags) to be re-enabled
*
* @return ESP_OK in success, ESP_FAIL if uart_num is incorrect
*/
static esp_err_t uart_reenable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
/* Mask will only contain the interrupt flags that needs to be re-enabled
* AND which have NOT been explicitly disabled by the user. */
uint32_t mask = p_uart_obj[uart_num]->rx_int_usr_mask & enable_mask;
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), mask);
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), mask);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
p_uart_obj[uart_num]->rx_int_usr_mask &= ~disable_mask;
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
{
int *pdata = NULL;
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
}
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
free(pdata);
return ESP_OK;
}
static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
{
esp_err_t ret = ESP_OK;
uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int next = p_pos->wr + 1;
if (next >= p_pos->len) {
next = 0;
}
if (next == p_pos->rd) {
#ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
#endif
ret = ESP_FAIL;
} else {
p_pos->data[p_pos->wr] = pos;
p_pos->wr = next;
ret = ESP_OK;
}
return ret;
}
static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
{
if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
return ESP_ERR_INVALID_STATE;
} else {
esp_err_t ret = ESP_OK;
uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
if (p_pos->rd == p_pos->wr) {
ret = ESP_FAIL;
} else {
p_pos->rd++;
}
if (p_pos->rd >= p_pos->len) {
p_pos->rd = 0;
}
return ret;
}
}
static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
{
uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int rd = p_pos->rd;
while (rd != p_pos->wr) {
p_pos->data[rd] -= diff_len;
int rd_rec = rd;
rd ++;
if (rd >= p_pos->len) {
rd = 0;
}
if (p_pos->data[rd_rec] < 0) {
p_pos->rd = rd;
}
}
return ESP_OK;
}
int uart_pattern_pop_pos(uart_port_t uart_num)
{
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int pos = -1;
if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
pos = pat_pos->data[pat_pos->rd];
uart_pattern_dequeue(uart_num);
}
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return pos;
}
int uart_pattern_get_pos(uart_port_t uart_num)
{
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int pos = -1;
if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
pos = pat_pos->data[pat_pos->rd];
}
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return pos;
}
esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
int *pdata = (int *) malloc(queue_length * sizeof(int));
if (pdata == NULL) {
return ESP_ERR_NO_MEM;
}
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
free(ptmp);
return ESP_OK;
}
esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
{
ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_THRESHOLD_NUM(uart_num, UART_RX_GAP_TOUT_V), ESP_FAIL, UART_TAG, "uart pattern set error\n");
ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_THRESHOLD_NUM(uart_num, UART_POST_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart pattern set error\n");
ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_THRESHOLD_NUM(uart_num, UART_PRE_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart pattern set error\n");
uart_at_cmd_t at_cmd = {0};
at_cmd.cmd_char = pattern_chr;
at_cmd.char_num = chr_num;
#if CONFIG_IDF_TARGET_ESP32
uint32_t apb_clk_freq = 0;
uint32_t uart_baud = 0;
uint32_t uart_div = 0;
uart_get_baudrate(uart_num, &uart_baud);
esp_clk_tree_src_get_freq_hz((soc_module_clk_t)UART_SCLK_APB, ESP_CLK_TREE_SRC_FREQ_PRECISION_EXACT, &apb_clk_freq);
uart_div = apb_clk_freq / uart_baud;
at_cmd.gap_tout = chr_tout * uart_div;
at_cmd.pre_idle = pre_idle * uart_div;
at_cmd.post_idle = post_idle * uart_div;
#else
at_cmd.gap_tout = chr_tout;
at_cmd.pre_idle = pre_idle;
at_cmd.post_idle = post_idle;
#endif
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
{
return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
}
esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
{
return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
}
esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
{
return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
}
esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
{
return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
}
esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((thresh < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "empty intr threshold error");
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
static bool uart_try_set_iomux_pin(uart_port_t uart_num, int io_num, uint32_t idx)
{
/* Store a pointer to the default pin, to optimize access to its fields. */
const uart_periph_sig_t *upin = &uart_periph_signal[uart_num].pins[idx];
/* In theory, if default_gpio is -1, iomux_func should also be -1, but
* let's be safe and test both. */
if (upin->iomux_func == -1 || upin->default_gpio == -1 || upin->default_gpio != io_num) {
return false;
}
/* Assign the correct funct to the GPIO. */
assert (upin->iomux_func != -1);
if (uart_num < SOC_UART_HP_NUM) {
gpio_iomux_out(io_num, upin->iomux_func, false);
/* If the pin is input, we also have to redirect the signal,
* in order to bypasse the GPIO matrix. */
if (upin->input) {
gpio_iomux_in(io_num, upin->signal);
}
}
#if (SOC_UART_LP_NUM >= 1)
else {
if (upin->input) {
rtc_gpio_set_direction(io_num, RTC_GPIO_MODE_INPUT_ONLY);
} else {
rtc_gpio_set_direction(io_num, RTC_GPIO_MODE_OUTPUT_ONLY);
}
rtc_gpio_init(io_num);
rtc_gpio_iomux_func_sel(io_num, upin->iomux_func);
}
#endif
return true;
}
//internal signal can be output to multiple GPIO pads
//only one GPIO pad can connect with input signal
esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
{
ESP_RETURN_ON_FALSE((uart_num >= 0), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
if (uart_num < SOC_UART_HP_NUM) {
ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error");
ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error");
ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error");
ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error");
}
#if (SOC_UART_LP_NUM >= 1)
else { // LP_UART IO check
#if !SOC_LP_GPIO_MATRIX_SUPPORTED
const uart_periph_sig_t *pins = uart_periph_signal[uart_num].pins;
// LP_UART has its fixed IOs
ESP_RETURN_ON_FALSE((tx_io_num < 0 || (tx_io_num == pins[SOC_UART_TX_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "tx_io_num error");
ESP_RETURN_ON_FALSE((rx_io_num < 0 || (rx_io_num == pins[SOC_UART_RX_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "rx_io_num error");
ESP_RETURN_ON_FALSE((rts_io_num < 0 || (rts_io_num == pins[SOC_UART_RTS_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "rts_io_num error");
ESP_RETURN_ON_FALSE((cts_io_num < 0 || (cts_io_num == pins[SOC_UART_CTS_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "cts_io_num error");
#else
// LP_UART signals can be routed to any LP_IOs
ESP_RETURN_ON_FALSE((tx_io_num < 0 || rtc_gpio_is_valid_gpio(tx_io_num)), ESP_FAIL, UART_TAG, "tx_io_num error");
ESP_RETURN_ON_FALSE((rx_io_num < 0 || rtc_gpio_is_valid_gpio(rx_io_num)), ESP_FAIL, UART_TAG, "rx_io_num error");
ESP_RETURN_ON_FALSE((rts_io_num < 0 || rtc_gpio_is_valid_gpio(rts_io_num)), ESP_FAIL, UART_TAG, "rts_io_num error");
ESP_RETURN_ON_FALSE((cts_io_num < 0 || rtc_gpio_is_valid_gpio(cts_io_num)), ESP_FAIL, UART_TAG, "cts_io_num error");
#endif // SOC_LP_GPIO_MATRIX_SUPPORTED
}
#endif
/* In the following statements, if the io_num is negative, no need to configure anything. */
if (tx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, tx_io_num, SOC_UART_TX_PIN_IDX)) {
if (uart_num < SOC_UART_HP_NUM) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
gpio_set_level(tx_io_num, 1);
esp_rom_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0);
}
#if SOC_LP_GPIO_MATRIX_SUPPORTED
else {
rtc_gpio_set_direction(tx_io_num, RTC_GPIO_MODE_OUTPUT_ONLY);
rtc_gpio_init(tx_io_num);
rtc_gpio_iomux_func_sel(tx_io_num, 1);
lp_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0);
}
#endif
}
if (rx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rx_io_num, SOC_UART_RX_PIN_IDX)) {
if (uart_num < SOC_UART_HP_NUM) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
esp_rom_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0);
}
#if SOC_LP_GPIO_MATRIX_SUPPORTED
else {
rtc_gpio_set_direction(rx_io_num, RTC_GPIO_MODE_INPUT_ONLY);
rtc_gpio_init(rx_io_num);
rtc_gpio_iomux_func_sel(rx_io_num, 1);
lp_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0);
}
#endif
}
if (rts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rts_io_num, SOC_UART_RTS_PIN_IDX)) {
if (uart_num < SOC_UART_HP_NUM) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
}
#if SOC_LP_GPIO_MATRIX_SUPPORTED
else {
rtc_gpio_set_direction(rts_io_num, RTC_GPIO_MODE_OUTPUT_ONLY);
rtc_gpio_init(rts_io_num);
rtc_gpio_iomux_func_sel(rts_io_num, 1);
lp_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
}
#endif
}
if (cts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, cts_io_num, SOC_UART_CTS_PIN_IDX)) {
if (uart_num < SOC_UART_HP_NUM) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
esp_rom_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0);
}
#if SOC_LP_GPIO_MATRIX_SUPPORTED
else {
rtc_gpio_set_direction(cts_io_num, RTC_GPIO_MODE_INPUT_ONLY);
rtc_gpio_init(cts_io_num);
rtc_gpio_iomux_func_sel(cts_io_num, 1);
lp_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0);
}
#endif
}
return ESP_OK;
}
esp_err_t uart_set_rts(uart_port_t uart_num, int level)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_rts(&(uart_context[uart_num].hal), level);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((idle_num <= UART_THRESHOLD_NUM(uart_num, UART_TX_IDLE_NUM_V)), ESP_FAIL, UART_TAG, "uart idle num error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null");
ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow thresh error");
ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
uart_module_enable(uart_num);
soc_module_clk_t uart_sclk_sel = 0; // initialize to an invalid module clock ID
if (uart_num < SOC_UART_HP_NUM) {
uart_sclk_sel = (soc_module_clk_t)((uart_config->source_clk) ? uart_config->source_clk : UART_SCLK_DEFAULT); // if no specifying the clock source (soc_module_clk_t starts from 1), then just use the default clock
}
#if (SOC_UART_LP_NUM >= 1)
else {
uart_sclk_sel = (soc_module_clk_t)((uart_config->lp_source_clk) ? uart_config->lp_source_clk : LP_UART_SCLK_DEFAULT);
}
#endif
#if SOC_UART_SUPPORT_RTC_CLK
if (uart_sclk_sel == (soc_module_clk_t)UART_SCLK_RTC) {
periph_rtc_dig_clk8m_enable();
}
#endif
uint32_t sclk_freq;
ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(uart_sclk_sel, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq), UART_TAG, "Invalid src_clk");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_init(&(uart_context[uart_num].hal), uart_num);
if (uart_num < SOC_UART_HP_NUM) {
HP_UART_SRC_CLK_ATOMIC() {
uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_sclk_sel);
uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate, sclk_freq);
}
}
#if (SOC_UART_LP_NUM >= 1)
else {
LP_UART_SRC_CLK_ATOMIC() {
lp_uart_ll_set_source_clk(uart_context[uart_num].hal.dev, (soc_periph_lp_uart_clk_src_t)uart_sclk_sel);
}
lp_uart_ll_set_baudrate(uart_context[uart_num].hal.dev, uart_config->baud_rate, sclk_freq);
}
#endif
uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
return ESP_OK;
}
esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null");
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
} else {
//Disable rx_tout intr
uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
}
if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
}
if (intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
}
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, uint8_t pat_num)
{
int cnt = 0;
int len = length;
while (len >= 0) {
if (buf[len] == pat_chr) {
cnt++;
} else {
cnt = 0;
}
if (cnt >= pat_num) {
break;
}
len --;
}
return len;
}
static uint32_t UART_ISR_ATTR uart_enable_tx_write_fifo(uart_port_t uart_num, const uint8_t *pbuf, uint32_t len)
{
uint32_t sent_len = 0;
UART_ENTER_CRITICAL_SAFE(&(uart_context[uart_num].spinlock));
if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
// If any new things are written to fifo, then we can always clear the previous TX_DONE interrupt bit (if it was set)
// Old TX_DONE bit might reset the RTS, leading new tx transmission failure for rs485 mode
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
}
uart_hal_write_txfifo(&(uart_context[uart_num].hal), pbuf, len, &sent_len);
UART_EXIT_CRITICAL_SAFE(&(uart_context[uart_num].spinlock));
return sent_len;
}
//internal isr handler for default driver code.
static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
{
uart_obj_t *p_uart = (uart_obj_t *) param;
uint8_t uart_num = p_uart->uart_num;
int rx_fifo_len = 0;
uint32_t uart_intr_status = 0;
uart_event_t uart_event;
BaseType_t HPTaskAwoken = 0;
bool need_yield = false;
static uint8_t pat_flg = 0;
BaseType_t sent = pdFALSE;
while (1) {
// The `continue statement` may cause the interrupt to loop infinitely
// we exit the interrupt here
uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
//Exit form while loop
if (uart_intr_status == 0) {
break;
}
uart_event.type = UART_EVENT_MAX;
if (uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
if (p_uart->tx_waiting_brk) {
continue;
}
//TX semaphore will only be used when tx_buf_size is zero.
if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
p_uart->tx_waiting_fifo = false;
xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
} else {
//We don't use TX ring buffer, because the size is zero.
if (p_uart->tx_buf_size == 0) {
continue;
}
bool en_tx_flg = false;
uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
//We need to put a loop here, in case all the buffer items are very short.
//That would cause a watch_dog reset because empty interrupt happens so often.
//Although this is a loop in ISR, this loop will execute at most 128 turns.
while (tx_fifo_rem) {
if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
size_t size;
p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
if (p_uart->tx_head) {
//The first item is the data description
//Get the first item to get the data information
if (p_uart->tx_len_tot == 0) {
p_uart->tx_ptr = NULL;
p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
if (p_uart->tx_head->type == UART_DATA_BREAK) {
p_uart->tx_brk_flg = 1;
p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
}
//We have saved the data description from the 1st item, return buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
} else if (p_uart->tx_ptr == NULL) {
//Update the TX item pointer, we will need this to return item to buffer.
p_uart->tx_ptr = (uint8_t *)p_uart->tx_head;
en_tx_flg = true;
p_uart->tx_len_cur = size;
}
} else {
//Can not get data from ring buffer, return;
break;
}
}
if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
// To fill the TX FIFO.
uint32_t send_len = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) p_uart->tx_ptr,
MIN(p_uart->tx_len_cur, tx_fifo_rem));
p_uart->tx_ptr += send_len;
p_uart->tx_len_tot -= send_len;
p_uart->tx_len_cur -= send_len;
tx_fifo_rem -= send_len;
if (p_uart->tx_len_cur == 0) {
//Return item to ring buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
p_uart->tx_head = NULL;
p_uart->tx_ptr = NULL;
//Sending item done, now we need to send break if there is a record.
//Set TX break signal after FIFO is empty
if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
p_uart->tx_waiting_brk = 1;
//do not enable TX empty interrupt
en_tx_flg = false;
} else {
//enable TX empty interrupt
en_tx_flg = true;
}
UART_ENTER_CRITICAL_ISR(&uart_selectlock);
if (p_uart->uart_select_notif_callback) {
p_uart->uart_select_notif_callback(uart_num, UART_SELECT_WRITE_NOTIF, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
}
UART_EXIT_CRITICAL_ISR(&uart_selectlock);
} else {
//enable TX empty interrupt
en_tx_flg = true;
}
}
}
if (en_tx_flg) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
}
}
} else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
|| (uart_intr_status & UART_INTR_RXFIFO_FULL)
|| (uart_intr_status & UART_INTR_CMD_CHAR_DET)
) {
if (pat_flg == 1) {
uart_intr_status |= UART_INTR_CMD_CHAR_DET;
pat_flg = 0;
}
if (p_uart->rx_buffer_full_flg == false) {
rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
}
uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
uint8_t pat_chr = 0;
uint8_t pat_num = 0;
int pat_idx = -1;
uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
//Get the buffer from the FIFO
if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
uart_event.type = UART_PATTERN_DET;
uart_event.size = rx_fifo_len;
pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
} else {
//After Copying the Data From FIFO ,Clear intr_status
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
uart_event.type = UART_DATA;
uart_event.size = rx_fifo_len;
uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
UART_ENTER_CRITICAL_ISR(&uart_selectlock);
if (p_uart->uart_select_notif_callback) {
p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
}
UART_EXIT_CRITICAL_ISR(&uart_selectlock);
}
p_uart->rx_stash_len = rx_fifo_len;
//If we fail to push data to ring buffer, we will have to stash the data, and send next time.
//Mainly for applications that uses flow control or small ring buffer.
sent = xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
if (sent == pdFALSE) {
p_uart->rx_buffer_full_flg = true;
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
if (uart_event.type == UART_PATTERN_DET) {
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
if (rx_fifo_len < pat_num) {
//some of the characters are read out in last interrupt
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
} else {
uart_pattern_enqueue(uart_num,
pat_idx <= -1 ?
//can not find the pattern in buffer,
p_uart->rx_buffered_len + p_uart->rx_stash_len :
// find the pattern in buffer
p_uart->rx_buffered_len + pat_idx);
}
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
sent = xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
if ((p_uart->event_queue != NULL) && (sent == pdFALSE)) {
#ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
#endif
}
}
uart_event.type = UART_BUFFER_FULL;
} else {
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
if (rx_fifo_len < pat_num) {
//some of the characters are read out in last interrupt
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
} else if (pat_idx >= 0) {
// find the pattern in stash buffer.
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
}
}
p_uart->rx_buffered_len += p_uart->rx_stash_len;
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
}
} else {
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
uart_event.type = UART_PATTERN_DET;
uart_event.size = rx_fifo_len;
pat_flg = 1;
}
}
} else if (uart_intr_status & UART_INTR_RXFIFO_OVF) {
// When fifo overflows, we reset the fifo.
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
UART_ENTER_CRITICAL_ISR(&uart_selectlock);
if (p_uart->uart_select_notif_callback) {
p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
}
UART_EXIT_CRITICAL_ISR(&uart_selectlock);
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
uart_event.type = UART_FIFO_OVF;
} else if (uart_intr_status & UART_INTR_BRK_DET) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
uart_event.type = UART_BREAK;
} else if (uart_intr_status & UART_INTR_FRAM_ERR) {
UART_ENTER_CRITICAL_ISR(&uart_selectlock);
if (p_uart->uart_select_notif_callback) {
p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
}
UART_EXIT_CRITICAL_ISR(&uart_selectlock);
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
uart_event.type = UART_FRAME_ERR;
} else if (uart_intr_status & UART_INTR_PARITY_ERR) {
UART_ENTER_CRITICAL_ISR(&uart_selectlock);
if (p_uart->uart_select_notif_callback) {
p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
}
UART_EXIT_CRITICAL_ISR(&uart_selectlock);
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
uart_event.type = UART_PARITY_ERR;
} else if (uart_intr_status & UART_INTR_TX_BRK_DONE) {
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
if (p_uart->tx_brk_flg == 1) {
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
}
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
if (p_uart->tx_brk_flg == 1) {
p_uart->tx_brk_flg = 0;
p_uart->tx_waiting_brk = 0;
} else {
xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
}
} else if (uart_intr_status & UART_INTR_TX_BRK_IDLE) {
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
} else if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
uart_event.type = UART_PATTERN_DET;
} else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
|| (uart_intr_status & UART_INTR_RS485_FRM_ERR)
|| (uart_intr_status & UART_INTR_RS485_CLASH)) {
// RS485 collision or frame error interrupt triggered
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
// Set collision detection flag
p_uart_obj[uart_num]->coll_det_flg = true;
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
uart_event.type = UART_EVENT_MAX;
} else if (uart_intr_status & UART_INTR_TX_DONE) {
if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
// The TX_DONE interrupt is triggered but transmit is active
// then postpone interrupt processing for next interrupt
uart_event.type = UART_EVENT_MAX;
} else {
// Workaround for RS485: If the RS485 half duplex mode is active
// and transmitter is in idle state then reset received buffer and reset RTS pin
// skip this behavior for other UART modes
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
}
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
}
}
#if SOC_UART_SUPPORT_WAKEUP_INT
else if (uart_intr_status & UART_INTR_WAKEUP) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_WAKEUP);
uart_event.type = UART_WAKEUP;
}
#endif
else {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
uart_event.type = UART_EVENT_MAX;
}
if (uart_event.type != UART_EVENT_MAX && p_uart->event_queue) {
sent = xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken);
need_yield |= (HPTaskAwoken == pdTRUE);
if (sent == pdFALSE) {
#ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
#endif
}
}
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}
/**************************************************************/
esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
BaseType_t res;
TickType_t ticks_start = xTaskGetTickCount();
//Take tx_mux
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)ticks_to_wait);
if (res == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
// Check the enable status of TX_DONE: If already enabled, then let the isr handle the status bit;
// If not enabled, then make sure to clear the status bit before enabling the TX_DONE interrupt bit
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
bool is_rs485_mode = UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX);
bool disabled = !(uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TX_DONE);
// For RS485 mode, TX_DONE interrupt is enabled for every tx transmission, so there shouldn't be a case of
// interrupt not enabled but raw bit is set.
assert(!(is_rs485_mode &&
disabled &&
uart_hal_get_intraw_mask(&(uart_context[uart_num].hal)) & UART_INTR_TX_DONE));
// If decided to register for the TX_DONE event, then we should clear any possible old tx transmission status.
// The clear operation of RS485 mode should only be handled in isr or when writing to tx fifo.
if (disabled && !is_rs485_mode) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
}
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
// FSM status register update comes later than TX_DONE interrupt raw bit raise
// The maximum time takes for FSM status register to update is (6 APB clock cycles + 3 UART core clock cycles)
// Therefore, to avoid the situation of TX_DONE bit being cleared but FSM didn't be recognized as IDLE (which
// would lead to timeout), a delay of 2us is added in between.
esp_rom_delay_us(2);
if (uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_OK;
}
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
TickType_t ticks_end = xTaskGetTickCount();
if (ticks_end - ticks_start > ticks_to_wait) {
ticks_to_wait = 0;
} else {
ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
}
//take 2nd tx_done_sem, wait given from ISR
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (TickType_t)ticks_to_wait);
if (res == pdFALSE) {
// The TX_DONE interrupt will be disabled in ISR
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_ERR_TIMEOUT;
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_OK;
}
int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null");
if (len == 0) {
return 0;
}
int tx_len = 0;
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)portMAX_DELAY);
tx_len = (int)uart_enable_tx_write_fifo(uart_num, (const uint8_t *) buffer, len);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return tx_len;
}
static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
{
if (size == 0) {
return 0;
}
size_t original_size = size;
//lock for uart_tx
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)portMAX_DELAY);
p_uart_obj[uart_num]->coll_det_flg = false;
if (p_uart_obj[uart_num]->tx_buf_size > 0) {
size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
int offset = 0;
uart_tx_data_t evt;
evt.tx_data.size = size;
evt.tx_data.brk_len = brk_len;
if (brk_en) {
evt.type = UART_DATA_BREAK;
} else {
evt.type = UART_DATA;
}
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
while (size > 0) {
size_t send_size = size > max_size / 2 ? max_size / 2 : size;
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
size -= send_size;
offset += send_size;
uart_enable_tx_intr(uart_num, 1, UART_THRESHOLD_NUM(uart_num, UART_EMPTY_THRESH_DEFAULT));
}
} else {
while (size) {
//semaphore for tx_fifo available
if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (TickType_t)portMAX_DELAY)) {
uint32_t sent = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) src, size);
if (sent < size) {
p_uart_obj[uart_num]->tx_waiting_fifo = true;
uart_enable_tx_intr(uart_num, 1, UART_THRESHOLD_NUM(uart_num, UART_EMPTY_THRESH_DEFAULT));
}
size -= sent;
src += sent;
}
}
if (brk_en) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (TickType_t)portMAX_DELAY);
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return original_size;
}
int uart_write_bytes(uart_port_t uart_num, const void *src, size_t size)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error");
ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null");
return uart_tx_all(uart_num, src, size, 0, 0);
}
int uart_write_bytes_with_break(uart_port_t uart_num, const void *src, size_t size, int brk_len)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error");
ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null");
ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error");
return uart_tx_all(uart_num, src, size, 1, brk_len);
}
static bool uart_check_buf_full(uart_port_t uart_num)
{
if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if (res == pdTRUE) {
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
/* Only re-activate UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL
* interrupts if they were NOT explicitly disabled by the user. */
uart_reenable_intr_mask(p_uart_obj[uart_num]->uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
return true;
}
}
return false;
}
int uart_read_bytes(uart_port_t uart_num, void *buf, uint32_t length, TickType_t ticks_to_wait)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
uint8_t *data = NULL;
size_t size = 0;
size_t copy_len = 0;
if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (TickType_t)ticks_to_wait) != pdTRUE) {
return -1;
}
while (length) {
data = (uint8_t *) xRingbufferReceiveUpTo(p_uart_obj[uart_num]->rx_ring_buf, &size, (TickType_t) ticks_to_wait, length);
if (!data) {
// When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
// which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
// to solve the possible asynchronous issues.
if (uart_check_buf_full(uart_num)) {
// This condition will never be true if `uart_read_bytes`
// and `uart_rx_intr_handler_default` are scheduled on the same core.
continue;
} else {
// Timeout while not fetched all requested length
break;
}
}
memcpy((uint8_t *)buf + copy_len, data, size);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
p_uart_obj[uart_num]->rx_buffered_len -= size;
uart_pattern_queue_update(uart_num, size);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
copy_len += size;
length -= size;
vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, data);
uart_check_buf_full(uart_num);
}
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return copy_len;
}
esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
*size = p_uart_obj[uart_num]->rx_buffered_len;
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_get_tx_buffer_free_size(uart_port_t uart_num, size_t *size)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error");
ESP_RETURN_ON_FALSE((size != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "arg pointer is NULL");
*size = p_uart_obj[uart_num]->tx_buf_size - p_uart_obj[uart_num]->tx_len_tot;
return ESP_OK;
}
esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
esp_err_t uart_flush_input(uart_port_t uart_num)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
uart_obj_t *p_uart = p_uart_obj[uart_num];
uint8_t *data;
size_t size;
//rx sem protect the ring buffer read related functions
xSemaphoreTake(p_uart->rx_mux, (TickType_t)portMAX_DELAY);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
while (true) {
data = (uint8_t *) xRingbufferReceive(p_uart->rx_ring_buf, &size, (TickType_t) 0);
if (data == NULL) {
bool error = false;
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if (p_uart_obj[uart_num]->rx_buffered_len != 0) {
p_uart_obj[uart_num]->rx_buffered_len = 0;
error = true;
}
// We also need to clear the `rx_buffer_full_flg` here.
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
if (error) {
// this must be called outside the critical section
ESP_LOGE(UART_TAG, "rx_buffered_len error");
}
break;
}
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
p_uart_obj[uart_num]->rx_buffered_len -= size;
uart_pattern_queue_update(uart_num, size);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
vRingbufferReturnItem(p_uart->rx_ring_buf, data);
if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if (res == pdTRUE) {
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
}
}
}
uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
/* Only re-enable UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL if they
* were explicitly enabled by the user. */
uart_reenable_intr_mask(uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
xSemaphoreGive(p_uart->rx_mux);
return ESP_OK;
}
static void uart_free_driver_obj(uart_obj_t *uart_obj)
{
if (uart_obj->tx_fifo_sem) {
vSemaphoreDeleteWithCaps(uart_obj->tx_fifo_sem);
}
if (uart_obj->tx_done_sem) {
vSemaphoreDeleteWithCaps(uart_obj->tx_done_sem);
}
if (uart_obj->tx_brk_sem) {
vSemaphoreDeleteWithCaps(uart_obj->tx_brk_sem);
}
if (uart_obj->tx_mux) {
vSemaphoreDeleteWithCaps(uart_obj->tx_mux);
}
if (uart_obj->rx_mux) {
vSemaphoreDeleteWithCaps(uart_obj->rx_mux);
}
if (uart_obj->event_queue) {
vQueueDeleteWithCaps(uart_obj->event_queue);
}
if (uart_obj->rx_ring_buf) {
vRingbufferDeleteWithCaps(uart_obj->rx_ring_buf);
}
if (uart_obj->tx_ring_buf) {
vRingbufferDeleteWithCaps(uart_obj->tx_ring_buf);
}
heap_caps_free(uart_obj->rx_data_buf);
heap_caps_free(uart_obj);
}
static uart_obj_t *uart_alloc_driver_obj(uart_port_t uart_num, int event_queue_size, int tx_buffer_size, int rx_buffer_size)
{
uart_obj_t *uart_obj = heap_caps_calloc(1, sizeof(uart_obj_t), UART_MALLOC_CAPS);
if (!uart_obj) {
return NULL;
}
uart_obj->rx_data_buf = heap_caps_calloc(UART_HW_FIFO_LEN(uart_num), sizeof(uint32_t), UART_MALLOC_CAPS);
if (!uart_obj->rx_data_buf) {
goto err;
}
if (event_queue_size > 0) {
uart_obj->event_queue = xQueueCreateWithCaps(event_queue_size, sizeof(uart_event_t), UART_MALLOC_CAPS);
if (!uart_obj->event_queue) {
goto err;
}
}
if (tx_buffer_size > 0) {
uart_obj->tx_ring_buf = xRingbufferCreateWithCaps(tx_buffer_size, RINGBUF_TYPE_NOSPLIT, UART_MALLOC_CAPS);
if (!uart_obj->tx_ring_buf) {
goto err;
}
}
uart_obj->rx_ring_buf = xRingbufferCreateWithCaps(rx_buffer_size, RINGBUF_TYPE_BYTEBUF, UART_MALLOC_CAPS);
uart_obj->tx_mux = xSemaphoreCreateMutexWithCaps(UART_MALLOC_CAPS);
uart_obj->rx_mux = xSemaphoreCreateMutexWithCaps(UART_MALLOC_CAPS);
uart_obj->tx_brk_sem = xSemaphoreCreateBinaryWithCaps(UART_MALLOC_CAPS);
uart_obj->tx_done_sem = xSemaphoreCreateBinaryWithCaps(UART_MALLOC_CAPS);
uart_obj->tx_fifo_sem = xSemaphoreCreateBinaryWithCaps(UART_MALLOC_CAPS);
if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
!uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
goto err;
}
return uart_obj;
err:
uart_free_driver_obj(uart_obj);
return NULL;
}
esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int event_queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
{
esp_err_t ret;
#ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig.");
#endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((rx_buffer_size > UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "uart rx buffer length error");
ESP_RETURN_ON_FALSE((tx_buffer_size > UART_HW_FIFO_LEN(uart_num)) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error");
#if CONFIG_UART_ISR_IN_IRAM
if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
}
#else
if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
}
#endif
if (p_uart_obj[uart_num] == NULL) {
p_uart_obj[uart_num] = uart_alloc_driver_obj(uart_num, event_queue_size, tx_buffer_size, rx_buffer_size);
if (p_uart_obj[uart_num] == NULL) {
ESP_LOGE(UART_TAG, "UART driver malloc error");
return ESP_FAIL;
}
p_uart_obj[uart_num]->uart_num = uart_num;
p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
p_uart_obj[uart_num]->coll_det_flg = false;
p_uart_obj[uart_num]->rx_always_timeout_flg = false;
p_uart_obj[uart_num]->event_queue_size = event_queue_size;
p_uart_obj[uart_num]->tx_ptr = NULL;
p_uart_obj[uart_num]->tx_head = NULL;
p_uart_obj[uart_num]->tx_len_tot = 0;
p_uart_obj[uart_num]->tx_brk_flg = 0;
p_uart_obj[uart_num]->tx_brk_len = 0;
p_uart_obj[uart_num]->tx_waiting_brk = 0;
p_uart_obj[uart_num]->rx_buffered_len = 0;
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
p_uart_obj[uart_num]->tx_waiting_fifo = false;
p_uart_obj[uart_num]->rx_int_usr_mask = UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT;
p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
if (uart_queue) {
*uart_queue = p_uart_obj[uart_num]->event_queue;
ESP_LOGI(UART_TAG, "queue free spaces: %" PRIu32, (uint32_t)uxQueueSpacesAvailable(p_uart_obj[uart_num]->event_queue));
}
} else {
ESP_LOGE(UART_TAG, "UART driver already installed");
return ESP_FAIL;
}
uart_intr_config_t uart_intr = {
.intr_enable_mask = UART_INTR_CONFIG_FLAG,
.rxfifo_full_thresh = UART_THRESHOLD_NUM(uart_num, UART_FULL_THRESH_DEFAULT),
.rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
.txfifo_empty_intr_thresh = UART_THRESHOLD_NUM(uart_num, UART_EMPTY_THRESH_DEFAULT),
};
uart_module_enable(uart_num);
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
ret = esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags,
uart_rx_intr_handler_default, p_uart_obj[uart_num],
&p_uart_obj[uart_num]->intr_handle);
ESP_GOTO_ON_ERROR(ret, err, UART_TAG, "Could not allocate an interrupt for UART");
ret = uart_intr_config(uart_num, &uart_intr);
ESP_GOTO_ON_ERROR(ret, err, UART_TAG, "Could not configure the interrupt for UART");
return ret;
err:
uart_driver_delete(uart_num);
return ret;
}
//Make sure no other tasks are still using UART before you call this function
esp_err_t uart_driver_delete(uart_port_t uart_num)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
if (p_uart_obj[uart_num] == NULL) {
ESP_LOGI(UART_TAG, "ALREADY NULL");
return ESP_OK;
}
esp_intr_free(p_uart_obj[uart_num]->intr_handle);
uart_disable_rx_intr(uart_num);
uart_disable_tx_intr(uart_num);
uart_pattern_link_free(uart_num);
uart_free_driver_obj(p_uart_obj[uart_num]);
p_uart_obj[uart_num] = NULL;
#if SOC_UART_SUPPORT_RTC_CLK
soc_module_clk_t sclk = 0;
uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
if (sclk == (soc_module_clk_t)UART_SCLK_RTC) {
periph_rtc_dig_clk8m_disable();
}
#endif
uart_module_disable(uart_num);
return ESP_OK;
}
bool uart_is_driver_installed(uart_port_t uart_num)
{
return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
}
void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
{
if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
}
}
portMUX_TYPE *uart_get_selectlock(void)
{
return &uart_selectlock;
}
// Set UART mode
esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
|| (mode == UART_MODE_RS485_HALF_DUPLEX)) {
ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG,
"disable hw flowctrl before using RS485 mode");
}
if (uart_num >= SOC_UART_HP_NUM) {
ESP_RETURN_ON_FALSE((mode == UART_MODE_UART), ESP_ERR_INVALID_ARG, UART_TAG, "LP_UART can only be in normal UART mode");
}
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
if (mode == UART_MODE_RS485_COLLISION_DETECT) {
// This mode allows read while transmitting that allows collision detection
p_uart_obj[uart_num]->coll_det_flg = false;
// Enable collision detection interrupts
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
| UART_INTR_RXFIFO_FULL
| UART_INTR_RS485_CLASH
| UART_INTR_RS485_FRM_ERR
| UART_INTR_RS485_PARITY_ERR);
}
p_uart_obj[uart_num]->uart_mode = mode;
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((threshold < UART_THRESHOLD_NUM(uart_num, UART_RXFIFO_FULL_THRHD_V)) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
"rx fifo full threshold value error");
if (p_uart_obj[uart_num] == NULL) {
ESP_LOGE(UART_TAG, "call uart_driver_install API first");
return ESP_ERR_INVALID_STATE;
}
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
}
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((threshold < UART_THRESHOLD_NUM(uart_num, UART_TXFIFO_EMPTY_THRHD_V)) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
"tx fifo empty threshold value error");
if (p_uart_obj[uart_num] == NULL) {
ESP_LOGE(UART_TAG, "call uart_driver_install API first");
return ESP_ERR_INVALID_STATE;
}
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
}
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
// get maximum timeout threshold
uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
if (tout_thresh > tout_max_thresh) {
ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
return ESP_ERR_INVALID_ARG;
}
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer");
ESP_RETURN_ON_FALSE((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode");
*collision_flag = p_uart_obj[uart_num]->coll_det_flg;
return ESP_OK;
}
esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_THRESHOLD_NUM(uart_num, UART_ACTIVE_THRESHOLD_V) && wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG,
"wakeup_threshold out of bounds");
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ESP_OK;
}
esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL");
uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
return ESP_OK;
}
esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
if (uart_ll_is_enabled(uart_num)) {
while (!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
}
return ESP_OK;
}
esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
{
ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
return ESP_OK;
}
void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
{
uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
if (rx_tout) {
p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
} else {
p_uart_obj[uart_num]->rx_always_timeout_flg = false;
}
}