esp-idf/components/driver/deprecated/adc_legacy.c

956 lines
30 KiB
C

/*
* SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <esp_types.h>
#include <stdlib.h>
#include <ctype.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_pm.h"
#include "soc/rtc.h"
#include "driver/rtc_io.h"
#include "sys/lock.h"
#include "driver/gpio.h"
#include "esp_private/adc_share_hw_ctrl.h"
#include "esp_private/sar_periph_ctrl.h"
#include "adc1_private.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#include "hal/adc_ll.h"
#include "hal/adc_hal_common.h"
#include "esp_private/periph_ctrl.h"
#include "driver/adc_types_legacy.h"
#include "esp_clk_tree.h"
#if SOC_DAC_SUPPORTED
#include "hal/dac_types.h"
#include "hal/dac_ll.h"
#endif
#if CONFIG_IDF_TARGET_ESP32S3
#include "esp_efuse_rtc_calib.h"
#endif
static const char *ADC_TAG = "ADC";
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
//////////////////////// Locks ///////////////////////////////////////////
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define RTC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define RTC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
#define DIGI_ENTER_CRITICAL()
#define DIGI_EXIT_CRITICAL()
#define ADC_POWER_ENTER() RTC_ENTER_CRITICAL()
#define ADC_POWER_EXIT() RTC_EXIT_CRITICAL()
#define DIGI_CONTROLLER_ENTER() DIGI_ENTER_CRITICAL()
#define DIGI_CONTROLLER_EXIT() DIGI_EXIT_CRITICAL()
#define SARADC1_ENTER() RTC_ENTER_CRITICAL()
#define SARADC1_EXIT() RTC_EXIT_CRITICAL()
#define SARADC2_ENTER() RTC_ENTER_CRITICAL()
#define SARADC2_EXIT() RTC_EXIT_CRITICAL()
//n stands for ADC unit: 1 for ADC1 and 2 for ADC2. Currently both unit touches the same registers
#define VREF_ENTER(n) RTC_ENTER_CRITICAL()
#define VREF_EXIT(n) RTC_EXIT_CRITICAL()
#define FSM_ENTER() RTC_ENTER_CRITICAL()
#define FSM_EXIT() RTC_EXIT_CRITICAL()
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
//prevent ADC1 being used by I2S dma and other tasks at the same time.
static _lock_t adc1_dma_lock;
#define SARADC1_ACQUIRE() _lock_acquire( &adc1_dma_lock )
#define SARADC1_RELEASE() _lock_release( &adc1_dma_lock )
#endif
/*
In ADC2, there're two locks used for different cases:
1. lock shared with app and Wi-Fi:
ESP32:
When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed.
ESP32S2:
The controller's control over the ADC is determined by the arbiter. There is no need to control by lock.
2. lock shared between tasks:
when several tasks sharing the ADC2, we want to guarantee
all the requests will be handled.
Since conversions are short (about 31us), app returns the lock very soon,
we use a spinlock to stand there waiting to do conversions one by one.
adc2_spinlock should be acquired first, then call `adc_lock_release(ADC_UNIT_2)` or rtc_spinlock.
*/
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_adc2_arbiter_lock;
#endif //CONFIG_PM_ENABLE
#endif // !CONFIG_IDF_TARGET_ESP32
static uint32_t clk_src_freq_hz;
static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, uint32_t clk_src_freq_hz, int *out_raw);
/*---------------------------------------------------------------
ADC Common
---------------------------------------------------------------*/
esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
int io = ADC_GET_IO_NUM(ADC_UNIT_1, channel);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
} else {
*gpio_num = (gpio_num_t)io;
}
return ESP_OK;
}
#if (SOC_ADC_PERIPH_NUM >= 2)
esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
int io = ADC_GET_IO_NUM(ADC_UNIT_2, channel);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
} else {
*gpio_num = (gpio_num_t)io;
}
return ESP_OK;
}
#endif
//------------------------------------------------------------RTC Single Read----------------------------------------------//
#if SOC_ADC_RTC_CTRL_SUPPORTED
esp_err_t adc_set_clk_div(uint8_t clk_div)
{
DIGI_CONTROLLER_ENTER();
adc_ll_digi_set_clk_div(clk_div);
DIGI_CONTROLLER_EXIT();
return ESP_OK;
}
static void adc_rtc_chan_init(adc_unit_t adc_unit)
{
if (adc_unit == ADC_UNIT_1) {
/* Workaround: Disable the synchronization operation function of ADC1 and DAC.
If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. */
#if SOC_DAC_SUPPORTED
dac_ll_rtc_sync_by_adc(false);
#endif
adc_oneshot_ll_output_invert(ADC_UNIT_1, ADC_LL_DATA_INVERT_DEFAULT(ADC_UNIT_1));
adc_ll_set_sar_clk_div(ADC_UNIT_1, ADC_LL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_1));
#ifdef CONFIG_IDF_TARGET_ESP32
adc_ll_hall_disable(); //Disable other peripherals.
adc_ll_amp_disable(); //Currently the LNA is not open, close it by default.
#endif
}
if (adc_unit == ADC_UNIT_2) {
adc_ll_pwdet_set_cct(ADC_LL_PWDET_CCT_DEFAULT);
adc_oneshot_ll_output_invert(ADC_UNIT_2, ADC_LL_DATA_INVERT_DEFAULT(ADC_UNIT_2));
adc_ll_set_sar_clk_div(ADC_UNIT_2, ADC_LL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_2));
}
}
esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(adc_unit), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
gpio_num_t gpio_num = 0;
//If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run
if (adc_unit == ADC_UNIT_1) {
gpio_num = ADC_GET_IO_NUM(ADC_UNIT_1, channel);
} else if (adc_unit == ADC_UNIT_2) {
gpio_num = ADC_GET_IO_NUM(ADC_UNIT_2, channel);
} else {
return ESP_ERR_INVALID_ARG;
}
ESP_RETURN_ON_ERROR(rtc_gpio_init(gpio_num), ADC_TAG, "rtc_gpio_init fail");
ESP_RETURN_ON_ERROR(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED), ADC_TAG, "rtc_gpio_set_direction fail");
ESP_RETURN_ON_ERROR(rtc_gpio_pulldown_dis(gpio_num), ADC_TAG, "rtc_gpio_pulldown_dis fail");
ESP_RETURN_ON_ERROR(rtc_gpio_pullup_dis(gpio_num), ADC_TAG, "rtc_gpio_pullup_dis fail");
return ESP_OK;
}
esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
{
if (adc_unit == ADC_UNIT_1) {
SARADC1_ENTER();
adc_oneshot_ll_output_invert(ADC_UNIT_1, inv_en);
SARADC1_EXIT();
}
if (adc_unit == ADC_UNIT_2) {
SARADC2_ENTER();
adc_oneshot_ll_output_invert(ADC_UNIT_2, inv_en);
SARADC2_EXIT();
}
return ESP_OK;
}
esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t width_bit)
{
ESP_RETURN_ON_FALSE(width_bit < ADC_WIDTH_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "unsupported bit width");
adc_bitwidth_t bitwidth = 0;
#if CONFIG_IDF_TARGET_ESP32
if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) {
bitwidth = SOC_ADC_RTC_MAX_BITWIDTH;
} else {
switch (width_bit) {
case ADC_WIDTH_BIT_9:
bitwidth = ADC_BITWIDTH_9;
break;
case ADC_WIDTH_BIT_10:
bitwidth = ADC_BITWIDTH_10;
break;
case ADC_WIDTH_BIT_11:
bitwidth = ADC_BITWIDTH_11;
break;
case ADC_WIDTH_BIT_12:
bitwidth = ADC_BITWIDTH_12;
break;
default:
return ESP_ERR_INVALID_ARG;
}
}
#elif CONFIG_IDF_TARGET_ESP32S2
bitwidth = ADC_BITWIDTH_13;
#else //esp32s3
bitwidth = ADC_BITWIDTH_12;
#endif
if (adc_unit == ADC_UNIT_1) {
SARADC1_ENTER();
adc_oneshot_ll_set_output_bits(ADC_UNIT_1, bitwidth);
SARADC1_EXIT();
}
if (adc_unit == ADC_UNIT_2) {
SARADC2_ENTER();
adc_oneshot_ll_set_output_bits(ADC_UNIT_2, bitwidth);
SARADC2_EXIT();
}
return ESP_OK;
}
/**
* @brief Reset RTC controller FSM.
*
* @return
* - ESP_OK Success
*/
#if !CONFIG_IDF_TARGET_ESP32
esp_err_t adc_rtc_reset(void)
{
FSM_ENTER();
adc_ll_rtc_reset();
FSM_EXIT();
return ESP_OK;
}
#endif
/*-------------------------------------------------------------------------------------
* ADC1
*------------------------------------------------------------------------------------*/
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
ESP_RETURN_ON_FALSE(atten < SOC_ADC_ATTEN_NUM, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err");
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
if (!clk_src_freq_hz) {
//should never fail
esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
}
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
adc_common_gpio_init(ADC_UNIT_1, channel);
SARADC1_ENTER();
adc_rtc_chan_init(ADC_UNIT_1);
adc_oneshot_ll_set_atten(ADC_UNIT_1, channel, atten);
SARADC1_EXIT();
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_UNIT_1);
#endif
return ESP_OK;
}
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
ESP_RETURN_ON_FALSE(width_bit < ADC_WIDTH_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "unsupported bit width");
adc_bitwidth_t bitwidth = 0;
#if CONFIG_IDF_TARGET_ESP32
if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) {
bitwidth = SOC_ADC_RTC_MAX_BITWIDTH;
} else {
switch (width_bit) {
case ADC_WIDTH_BIT_9:
bitwidth = ADC_BITWIDTH_9;
break;
case ADC_WIDTH_BIT_10:
bitwidth = ADC_BITWIDTH_10;
break;
case ADC_WIDTH_BIT_11:
bitwidth = ADC_BITWIDTH_11;
break;
case ADC_WIDTH_BIT_12:
bitwidth = ADC_BITWIDTH_12;
break;
default:
return ESP_ERR_INVALID_ARG;
}
}
#elif CONFIG_IDF_TARGET_ESP32S2
bitwidth = ADC_BITWIDTH_13;
#else //esp32s3
bitwidth = ADC_BITWIDTH_12;
#endif
SARADC1_ENTER();
adc_oneshot_ll_set_output_bits(ADC_UNIT_1, bitwidth);
SARADC1_EXIT();
return ESP_OK;
}
esp_err_t adc1_dma_mode_acquire(void)
{
/* Use locks to avoid digtal and RTC controller conflicts.
for adc1, block until acquire the lock. */
SARADC1_ACQUIRE();
ESP_LOGD(ADC_TAG, "dma mode takes adc1 lock.");
sar_periph_ctrl_adc_continuous_power_acquire();
SARADC1_ENTER();
/* switch SARADC into DIG channel */
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_DIG);
SARADC1_EXIT();
return ESP_OK;
}
esp_err_t adc1_rtc_mode_acquire(void)
{
/* Use locks to avoid digtal and RTC controller conflicts.
for adc1, block until acquire the lock. */
SARADC1_ACQUIRE();
sar_periph_ctrl_adc_oneshot_power_acquire();
SARADC1_ENTER();
/* switch SARADC into RTC channel. */
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC);
SARADC1_EXIT();
return ESP_OK;
}
esp_err_t adc1_lock_release(void)
{
ESP_RETURN_ON_FALSE((uint32_t *)adc1_dma_lock != NULL, ESP_ERR_INVALID_STATE, ADC_TAG, "adc1 lock release called before acquire");
/* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */
sar_periph_ctrl_adc_oneshot_power_release();
SARADC1_RELEASE();
return ESP_OK;
}
int adc1_get_raw(adc1_channel_t channel)
{
int adc_value;
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
adc1_rtc_mode_acquire();
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_atten_t atten = adc_ll_get_atten(ADC_UNIT_1, channel);
adc_set_hw_calibration_code(ADC_UNIT_1, atten);
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
SARADC1_ENTER();
#ifdef CONFIG_IDF_TARGET_ESP32
adc_ll_hall_disable(); //Disable other peripherals.
adc_ll_amp_disable(); //Currently the LNA is not open, close it by default.
#endif
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC); //Set controller
adc_oneshot_ll_set_channel(ADC_UNIT_1, channel);
adc_hal_convert(ADC_UNIT_1, channel, clk_src_freq_hz, &adc_value); //Start conversion, For ADC1, the data always valid.
#if !CONFIG_IDF_TARGET_ESP32
adc_ll_rtc_reset(); //Reset FSM of rtc controller
#endif
SARADC1_EXIT();
adc1_lock_release();
return adc_value;
}
int adc1_get_voltage(adc1_channel_t channel) //Deprecated. Use adc1_get_raw() instead
{
return adc1_get_raw(channel);
}
#if SOC_ULP_SUPPORTED
void adc1_ulp_enable(void)
{
sar_periph_ctrl_adc_oneshot_power_acquire();
SARADC1_ENTER();
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_ULP);
/* since most users do not need LNA and HALL with uLP, we disable them here
open them in the uLP if needed. */
#ifdef CONFIG_IDF_TARGET_ESP32
/* disable other peripherals. */
adc_ll_hall_disable();
adc_ll_amp_disable();
#endif
SARADC1_EXIT();
}
#endif
#if (SOC_ADC_PERIPH_NUM >= 2)
/*---------------------------------------------------------------
ADC2
---------------------------------------------------------------*/
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
ESP_RETURN_ON_FALSE(atten <= SOC_ADC_ATTEN_NUM, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err");
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
if (!clk_src_freq_hz) {
//should never fail
esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
}
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
adc_common_gpio_init(ADC_UNIT_2, channel);
#if CONFIG_IDF_TARGET_ESP32
/** For ESP32S2 and S3, the right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/
if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) {
//try the lock, return if failed (wifi using).
return ESP_ERR_TIMEOUT;
}
#endif
//avoid collision with other tasks
SARADC2_ENTER();
adc_rtc_chan_init(ADC_UNIT_2);
adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten);
SARADC2_EXIT();
#if CONFIG_IDF_TARGET_ESP32
adc_lock_release(ADC_UNIT_2);
#endif
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_UNIT_2);
#endif
return ESP_OK;
}
static inline void adc2_init(void)
{
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
/* Lock APB clock. */
if (s_adc2_arbiter_lock == NULL) {
esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc2", &s_adc2_arbiter_lock);
}
#endif //CONFIG_PM_ENABLE
#endif //CONFIG_IDF_TARGET_ESP32S2
}
static inline void adc2_dac_disable(adc2_channel_t channel)
{
#if SOC_DAC_SUPPORTED
#ifdef CONFIG_IDF_TARGET_ESP32
if (channel == ADC2_CHANNEL_8) { // the same as DAC channel 0
dac_ll_power_down(DAC_CHAN_0);
} else if (channel == ADC2_CHANNEL_9) {
dac_ll_power_down(DAC_CHAN_1);
}
#else
if (channel == ADC2_CHANNEL_6) { // the same as DAC channel 0
dac_ll_power_down(DAC_CHAN_0);
} else if (channel == ADC2_CHANNEL_7) {
dac_ll_power_down(DAC_CHAN_1);
}
#endif
#endif // SOC_DAC_SUPPORTED
}
/**
* @note For ESP32S2:
* The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* Or, the RTC controller will fail when get raw data.
* This issue does not occur on digital controllers (DMA mode), and the hardware guarantees that there will be no errors.
*/
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
{
esp_err_t ret = ESP_OK;
int adc_value = 0;
adc_bitwidth_t bitwidth = 0;
ESP_RETURN_ON_FALSE(raw_out != NULL, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC out value err");
ESP_RETURN_ON_FALSE(channel < ADC2_CHANNEL_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Channel Err");
ESP_RETURN_ON_FALSE(width_bit < ADC_WIDTH_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "unsupported bit width");
#if CONFIG_IDF_TARGET_ESP32
if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) {
bitwidth = SOC_ADC_RTC_MAX_BITWIDTH;
} else {
switch (width_bit) {
case ADC_WIDTH_BIT_9:
bitwidth = ADC_BITWIDTH_9;
break;
case ADC_WIDTH_BIT_10:
bitwidth = ADC_BITWIDTH_10;
break;
case ADC_WIDTH_BIT_11:
bitwidth = ADC_BITWIDTH_11;
break;
case ADC_WIDTH_BIT_12:
bitwidth = ADC_BITWIDTH_12;
break;
default:
return ESP_ERR_INVALID_ARG;
}
}
#elif CONFIG_IDF_TARGET_ESP32S2
bitwidth = ADC_BITWIDTH_13;
#else //esp32s3
bitwidth = ADC_BITWIDTH_12;
#endif
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_atten_t atten = adc_ll_get_atten(ADC_UNIT_2, channel);
adc_set_hw_calibration_code(ADC_UNIT_2, atten);
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
#if CONFIG_IDF_TARGET_ESP32
/** For ESP32S2 and S3, the right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/
if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) {
//try the lock, return if failed (wifi using).
return ESP_ERR_TIMEOUT;
}
#endif
sar_periph_ctrl_adc_oneshot_power_acquire(); //in critical section with whole rtc module
//avoid collision with other tasks
adc2_init(); // in critical section with whole rtc module. because the PWDET use the same registers, place it here.
SARADC2_ENTER();
#if SOC_ADC_ARBITER_SUPPORTED
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
#endif
#ifdef CONFIG_ADC_DISABLE_DAC
adc2_dac_disable(channel); //disable other peripherals
#endif
adc_oneshot_ll_set_output_bits(ADC_UNIT_2, bitwidth);
#if CONFIG_IDF_TARGET_ESP32
adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_RTC);// set controller
#else
adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_ARB);// set controller
#endif
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
if (s_adc2_arbiter_lock) {
esp_pm_lock_acquire(s_adc2_arbiter_lock);
}
#endif //CONFIG_PM_ENABLE
#endif //CONFIG_IDF_TARGET_ESP32
adc_oneshot_ll_set_channel(ADC_UNIT_2, channel);
ret = adc_hal_convert(ADC_UNIT_2, channel, clk_src_freq_hz, &adc_value);
if (ret != ESP_OK) {
adc_value = -1;
}
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
/* Release APB clock. */
if (s_adc2_arbiter_lock) {
esp_pm_lock_release(s_adc2_arbiter_lock);
}
#endif //CONFIG_PM_ENABLE
#endif //CONFIG_IDF_TARGET_ESP32
SARADC2_EXIT();
sar_periph_ctrl_adc_oneshot_power_release();
#if CONFIG_IDF_TARGET_ESP32
adc_lock_release(ADC_UNIT_2);
#endif
*raw_out = adc_value;
return ret;
}
esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
{
#ifdef CONFIG_IDF_TARGET_ESP32
if (adc_unit == ADC_UNIT_1) {
return ESP_ERR_INVALID_ARG;
}
#endif
adc2_channel_t ch = ADC2_CHANNEL_MAX;
/* Check if the GPIO supported. */
for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) {
ch = i;
break;
}
}
if (ch == ADC2_CHANNEL_MAX) {
return ESP_ERR_INVALID_ARG;
}
sar_periph_ctrl_adc_oneshot_power_acquire();
if (adc_unit == ADC_UNIT_1) {
VREF_ENTER(1);
adc_ll_vref_output(ADC_UNIT_1, ch, true);
VREF_EXIT(1);
} else if (adc_unit == ADC_UNIT_2) {
VREF_ENTER(2);
adc_ll_vref_output(ADC_UNIT_2, ch, true);
VREF_EXIT(2);
}
//Configure RTC gpio, Only ADC2's channels IO are supported to output reference voltage.
adc_common_gpio_init(ADC_UNIT_2, ch);
return ESP_OK;
}
#endif //SOC_ADC_RTC_CTRL_SUPPORTED
#endif //#if (SOC_ADC_PERIPH_NUM >= 2)
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
/*---------------------------------------------------------------
Legacy ADC Single Read Mode
when RTC controller isn't supported
---------------------------------------------------------------*/
#include "esp_check.h"
portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED;
#define ADC_REG_LOCK_ENTER() portENTER_CRITICAL(&adc_reg_lock)
#define ADC_REG_LOCK_EXIT() portEXIT_CRITICAL(&adc_reg_lock)
static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC1, used by single read API
#if (SOC_ADC_PERIPH_NUM >= 2)
static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC2, used by single read API
#endif
static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel)
{
assert(adc_unit < SOC_ADC_PERIPH_NUM);
uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1;
return adc_channel_io_map[adc_n][adc_channel];
}
static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
{
esp_err_t ret = ESP_OK;
uint64_t gpio_mask = 0;
uint32_t n = 0;
int8_t io = 0;
while (channel_mask) {
if (channel_mask & 0x1) {
io = adc_digi_get_io_num(adc_unit, n);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
}
gpio_mask |= BIT64(io);
}
channel_mask = channel_mask >> 1;
n++;
}
gpio_config_t cfg = {
.pin_bit_mask = gpio_mask,
.mode = GPIO_MODE_DISABLE,
};
ret = gpio_config(&cfg);
return ret;
}
#if CONFIG_IDF_TARGET_ESP32C3
esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
{
esp_err_t ret;
uint32_t channel = ADC2_CHANNEL_MAX;
if (adc_unit == ADC_UNIT_2) {
for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) {
channel = i;
break;
}
}
if (channel == ADC2_CHANNEL_MAX) {
return ESP_ERR_INVALID_ARG;
}
}
sar_periph_ctrl_adc_oneshot_power_acquire();
if (adc_unit == ADC_UNIT_1) {
RTC_ENTER_CRITICAL();
adc_ll_vref_output(ADC_UNIT_1, channel, true);
RTC_EXIT_CRITICAL();
} else { //ADC_UNIT_2
RTC_ENTER_CRITICAL();
adc_ll_vref_output(ADC_UNIT_2, channel, true);
RTC_EXIT_CRITICAL();
}
ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel));
return ret;
}
#endif
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC1 channel error");
ESP_RETURN_ON_FALSE((atten < SOC_ADC_ATTEN_NUM), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err");
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
if (!clk_src_freq_hz) {
//should never fail
esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
}
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
esp_err_t ret = ESP_OK;
s_atten1_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_UNIT_1, BIT(channel));
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_UNIT_1);
#endif
return ret;
}
int adc1_get_raw(adc1_channel_t channel)
{
int raw_out = 0;
if (adc_lock_try_acquire(ADC_UNIT_1) != ESP_OK) {
return ESP_ERR_TIMEOUT;
}
adc_apb_periph_claim();
sar_periph_ctrl_adc_oneshot_power_acquire();
adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT);
adc_atten_t atten = s_atten1_single[channel];
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_set_hw_calibration_code(ADC_UNIT_1, atten);
#endif
ADC_REG_LOCK_ENTER();
adc_oneshot_ll_set_atten(ADC_UNIT_1, channel, atten);
adc_hal_convert(ADC_UNIT_1, channel, clk_src_freq_hz, &raw_out);
ADC_REG_LOCK_EXIT();
sar_periph_ctrl_adc_oneshot_power_release();
adc_apb_periph_free();
adc_lock_release(ADC_UNIT_1);
return raw_out;
}
#if (SOC_ADC_PERIPH_NUM >= 2)
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 channel error");
ESP_RETURN_ON_FALSE((atten <= ADC_ATTEN_DB_12), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err");
esp_err_t ret = ESP_OK;
s_atten2_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel));
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_UNIT_2);
#endif
return ret;
}
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
{
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
if (!clk_src_freq_hz) {
//should never fail
esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
}
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
esp_err_t ret = ESP_OK;
if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) {
return ESP_ERR_TIMEOUT;
}
adc_apb_periph_claim();
sar_periph_ctrl_adc_oneshot_power_acquire();
adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT);
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
adc_atten_t atten = s_atten2_single[channel];
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_set_hw_calibration_code(ADC_UNIT_2, atten);
#endif
ADC_REG_LOCK_ENTER();
adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten);
ret = adc_hal_convert(ADC_UNIT_2, channel, clk_src_freq_hz, raw_out);
ADC_REG_LOCK_EXIT();
sar_periph_ctrl_adc_oneshot_power_release();
adc_apb_periph_free();
adc_lock_release(ADC_UNIT_2);
return ret;
}
#endif //#if (SOC_ADC_PERIPH_NUM >= 2)
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
static void adc_hal_onetime_start(adc_unit_t adc_n, uint32_t clk_src_freq_hz)
{
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
(void)adc_n;
/**
* There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
* ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
* clock cycle.
*/
uint32_t digi_clk = clk_src_freq_hz / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
uint32_t delay = (1000 * 1000) / digi_clk + 1;
//3 ADC digital controller clock cycle
delay = delay * 3;
//This coefficient (8) is got from test, and verified from DT. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
if (digi_clk >= APB_CLK_FREQ / 8) {
delay = 0;
}
adc_oneshot_ll_start(false);
esp_rom_delay_us(delay);
adc_oneshot_ll_start(true);
//No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
#else
(void)clk_src_freq_hz;
adc_oneshot_ll_start(adc_n);
#endif
}
static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, uint32_t clk_src_freq_hz, int *out_raw)
{
uint32_t event = (adc_n == ADC_UNIT_1) ? ADC_LL_EVENT_ADC1_ONESHOT_DONE : ADC_LL_EVENT_ADC2_ONESHOT_DONE;
adc_oneshot_ll_clear_event(event);
adc_oneshot_ll_disable_all_unit();
adc_oneshot_ll_enable(adc_n);
adc_oneshot_ll_set_channel(adc_n, channel);
adc_hal_onetime_start(adc_n, clk_src_freq_hz);
while (adc_oneshot_ll_get_event(event) != true) {
;
}
*out_raw = adc_oneshot_ll_get_raw_result(adc_n);
if (adc_oneshot_ll_raw_check_valid(adc_n, *out_raw) == false) {
return ESP_ERR_INVALID_STATE;
}
//HW workaround: when enabling periph clock, this should be false
adc_oneshot_ll_disable_all_unit();
return ESP_OK;
}
/**
* @brief This function will be called during start up, to check that adc_oneshot driver is not running along with the legacy adc oneshot driver
*/
__attribute__((constructor))
static void check_adc_oneshot_driver_conflict(void)
{
// This function was declared as weak here. adc_oneshot driver has one implementation.
// So if adc_oneshot driver is not linked in, then `adc_oneshot_new_unit` should be NULL at runtime.
extern __attribute__((weak)) esp_err_t adc_oneshot_new_unit(const void *init_config, void **ret_unit);
if ((void *)adc_oneshot_new_unit != NULL) {
ESP_EARLY_LOGE(ADC_TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver");
abort();
}
ESP_EARLY_LOGW(ADC_TAG, "legacy driver is deprecated, please migrate to `esp_adc/adc_oneshot.h`");
}
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
/*---------------------------------------------------------------
ADC Hardware Calibration
---------------------------------------------------------------*/
static __attribute__((constructor)) void adc_hw_calibration(void)
{
//Calculate all ICode
for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) {
adc_hal_calibration_init(i);
for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) {
/**
* This may get wrong when attenuations are NOT consecutive on some chips,
* update this when bringing up the calibration on that chip
*/
adc_calc_hw_calibration_code(i, j);
#if SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED
/* Load the channel compensation from efuse */
for (int k = 0; k < SOC_ADC_CHANNEL_NUM(i); k++) {
adc_load_hw_calibration_chan_compens(i, k, j);
}
#endif
}
}
}
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED