mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
277 lines
12 KiB
C
277 lines
12 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <sys/cdefs.h>
|
|
#include <sys/time.h>
|
|
#include <sys/param.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_log.h"
|
|
#include "esp_cpu.h"
|
|
#include "esp_clk_internal.h"
|
|
#include "esp32h2/rom/ets_sys.h"
|
|
#include "esp32h2/rom/uart.h"
|
|
#include "soc/soc.h"
|
|
#include "soc/pcr_reg.h"
|
|
#include "soc/rtc.h"
|
|
#include "soc/rtc_periph.h"
|
|
#include "soc/i2s_reg.h"
|
|
#include "soc/lpperi_reg.h"
|
|
#include "soc/lp_clkrst_reg.h"
|
|
#include "soc/pcr_reg.h"
|
|
#include "hal/wdt_hal.h"
|
|
#include "hal/uart_ll.h"
|
|
#include "hal/i2c_ll.h"
|
|
#include "hal/rmt_ll.h"
|
|
#include "hal/ledc_ll.h"
|
|
#include "hal/timer_ll.h"
|
|
#include "hal/twai_ll.h"
|
|
#include "hal/i2s_ll.h"
|
|
#include "hal/pcnt_ll.h"
|
|
#include "hal/etm_ll.h"
|
|
#include "hal/mcpwm_ll.h"
|
|
#include "hal/parlio_ll.h"
|
|
#include "hal/gdma_ll.h"
|
|
#include "hal/spi_ll.h"
|
|
#include "hal/clk_gate_ll.h"
|
|
#include "hal/temperature_sensor_ll.h"
|
|
#include "esp_private/periph_ctrl.h"
|
|
#include "esp_private/esp_clk.h"
|
|
#include "esp_private/esp_pmu.h"
|
|
#include "esp_rom_uart.h"
|
|
#include "esp_rom_sys.h"
|
|
#include "esp_sleep.h"
|
|
|
|
/* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
|
|
* Larger values increase startup delay. Smaller values may cause false positive
|
|
* detection (i.e. oscillator runs for a few cycles and then stops).
|
|
*/
|
|
#define SLOW_CLK_CAL_CYCLES CONFIG_RTC_CLK_CAL_CYCLES
|
|
|
|
#define MHZ (1000000)
|
|
|
|
static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src);
|
|
|
|
static const char *TAG = "clk";
|
|
|
|
__attribute__((weak)) void esp_clk_init(void)
|
|
{
|
|
#if !CONFIG_IDF_ENV_FPGA
|
|
pmu_init();
|
|
|
|
assert(rtc_clk_xtal_freq_get() == SOC_XTAL_FREQ_32M);
|
|
|
|
rtc_clk_8m_enable(true);
|
|
rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_RC_FAST);
|
|
#endif
|
|
|
|
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
|
|
// WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed.
|
|
// If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times.
|
|
// Therefore, for the time of frequency change, set a new lower timeout value (2 sec).
|
|
// This prevents excessive delay before resetting in case the supply voltage is drawdown.
|
|
// (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 2 sec * 150/32 = 9.375 sec).
|
|
|
|
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &LP_WDT};
|
|
|
|
uint32_t stage_timeout_ticks = (uint32_t)(2000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
|
|
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
|
|
wdt_hal_feed(&rtc_wdt_ctx);
|
|
//Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same
|
|
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
|
|
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
|
|
#endif
|
|
|
|
#if defined(CONFIG_RTC_CLK_SRC_EXT_CRYS)
|
|
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K);
|
|
#elif defined(CONFIG_RTC_CLK_SRC_EXT_OSC)
|
|
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_OSC_SLOW);
|
|
#elif defined(CONFIG_RTC_CLK_SRC_INT_RC32K)
|
|
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC32K);
|
|
#else
|
|
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC_SLOW);
|
|
#endif
|
|
|
|
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
|
|
// After changing a frequency WDT timeout needs to be set for new frequency.
|
|
stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000);
|
|
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
|
|
wdt_hal_feed(&rtc_wdt_ctx);
|
|
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
|
|
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
|
|
#endif
|
|
|
|
rtc_cpu_freq_config_t old_config, new_config;
|
|
rtc_clk_cpu_freq_get_config(&old_config);
|
|
const uint32_t old_freq_mhz = old_config.freq_mhz;
|
|
const uint32_t new_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ;
|
|
|
|
bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config);
|
|
assert(res);
|
|
|
|
// Wait for UART TX to finish, otherwise some UART output will be lost
|
|
// when switching APB frequency
|
|
esp_rom_output_tx_wait_idle(CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM);
|
|
|
|
if (res) {
|
|
rtc_clk_cpu_freq_set_config(&new_config);
|
|
}
|
|
|
|
// Re calculate the ccount to make time calculation correct.
|
|
esp_cpu_set_cycle_count((uint64_t)esp_cpu_get_cycle_count() * new_freq_mhz / old_freq_mhz);
|
|
|
|
// Set crypto clock (`clk_sec`) to use 96M PLL clock
|
|
REG_SET_FIELD(PCR_SEC_CONF_REG, PCR_SEC_CLK_SEL, 0x3);
|
|
}
|
|
|
|
static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src)
|
|
{
|
|
uint32_t cal_val = 0;
|
|
/* number of times to repeat 32k XTAL calibration
|
|
* before giving up and switching to the internal RC
|
|
*/
|
|
int retry_32k_xtal = 3;
|
|
|
|
do {
|
|
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K || rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) {
|
|
/* 32k XTAL oscillator needs to be enabled and running before it can
|
|
* be used. Hardware doesn't have a direct way of checking if the
|
|
* oscillator is running. Here we use rtc_clk_cal function to count
|
|
* the number of main XTAL cycles in the given number of 32k XTAL
|
|
* oscillator cycles. If the 32k XTAL has not started up, calibration
|
|
* will time out, returning 0.
|
|
*/
|
|
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
|
|
rtc_cal_sel_t cal_sel = 0;
|
|
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
|
|
rtc_clk_32k_enable(true);
|
|
cal_sel = RTC_CAL_32K_XTAL;
|
|
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) {
|
|
rtc_clk_32k_enable_external();
|
|
cal_sel = RTC_CAL_32K_OSC_SLOW;
|
|
}
|
|
// When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
|
|
if (SLOW_CLK_CAL_CYCLES > 0) {
|
|
cal_val = rtc_clk_cal(cal_sel, SLOW_CLK_CAL_CYCLES);
|
|
if (cal_val == 0) {
|
|
if (retry_32k_xtal-- > 0) {
|
|
continue;
|
|
}
|
|
ESP_EARLY_LOGW(TAG, "32 kHz clock not found, switching to internal 150 kHz oscillator");
|
|
rtc_slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
|
|
}
|
|
}
|
|
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) {
|
|
rtc_clk_rc32k_enable(true);
|
|
}
|
|
rtc_clk_slow_src_set(rtc_slow_clk_src);
|
|
|
|
if (SLOW_CLK_CAL_CYCLES > 0) {
|
|
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
|
|
* Improve calibration routine to wait until the frequency is stable.
|
|
*/
|
|
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
|
|
} else {
|
|
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
|
|
cal_val = (uint32_t)(cal_dividend / rtc_clk_slow_freq_get_hz());
|
|
}
|
|
} while (cal_val == 0);
|
|
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val);
|
|
esp_clk_slowclk_cal_set(cal_val);
|
|
}
|
|
|
|
void rtc_clk_select_rtc_slow_clk(void)
|
|
{
|
|
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K);
|
|
}
|
|
|
|
/* This function is not exposed as an API at this point.
|
|
* All peripheral clocks are default enabled after chip is powered on.
|
|
* This function disables some peripheral clocks when cpu starts.
|
|
* These peripheral clocks are enabled when the peripherals are initialized
|
|
* and disabled when they are de-initialized.
|
|
*/
|
|
__attribute__((weak)) void esp_perip_clk_init(void)
|
|
{
|
|
soc_rtc_slow_clk_src_t rtc_slow_clk_src = rtc_clk_slow_src_get();
|
|
esp_sleep_pd_domain_t pu_domain = (esp_sleep_pd_domain_t)(\
|
|
(rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) ? ESP_PD_DOMAIN_XTAL32K \
|
|
: (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) ? ESP_PD_DOMAIN_RC32K \
|
|
: ESP_PD_DOMAIN_MAX);
|
|
esp_sleep_pd_config(pu_domain, ESP_PD_OPTION_ON);
|
|
|
|
soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0);
|
|
if (rst_reason != RESET_REASON_CPU0_MWDT0 && rst_reason != RESET_REASON_CPU0_MWDT1 \
|
|
&& rst_reason != RESET_REASON_CPU0_SW && rst_reason != RESET_REASON_CPU0_RTC_WDT) {
|
|
#if CONFIG_ESP_CONSOLE_UART_NUM != 0
|
|
uart_ll_enable_bus_clock(UART_NUM_0, false);
|
|
#elif CONFIG_ESP_CONSOLE_UART_NUM != 1
|
|
uart_ll_enable_bus_clock(UART_NUM_1, false);
|
|
#endif
|
|
i2c_ll_enable_bus_clock(0, false);
|
|
i2c_ll_enable_bus_clock(1, false);
|
|
i2c_ll_enable_controller_clock(&I2C0, false);
|
|
i2c_ll_enable_controller_clock(&I2C1, false);
|
|
rmt_ll_enable_bus_clock(0, false);
|
|
rmt_ll_enable_group_clock(0, false);
|
|
ledc_ll_enable_clock(&LEDC, false);
|
|
ledc_ll_enable_bus_clock(false);
|
|
timer_ll_enable_clock(&TIMERG0, 0, false);
|
|
timer_ll_enable_clock(&TIMERG1, 0, false);
|
|
_timer_ll_enable_bus_clock(0, false);
|
|
_timer_ll_enable_bus_clock(1, false);
|
|
twai_ll_enable_clock(0, false);
|
|
twai_ll_enable_bus_clock(0, false);
|
|
i2s_ll_enable_bus_clock(0, false);
|
|
i2s_ll_tx_disable_clock(&I2S0);
|
|
i2s_ll_rx_disable_clock(&I2S0);
|
|
pcnt_ll_enable_bus_clock(0, false);
|
|
etm_ll_enable_bus_clock(0, false);
|
|
mcpwm_ll_enable_bus_clock(0, false);
|
|
mcpwm_ll_group_enable_clock(0, false);
|
|
parlio_ll_rx_enable_clock(&PARL_IO, false);
|
|
parlio_ll_tx_enable_clock(&PARL_IO, false);
|
|
parlio_ll_enable_bus_clock(0, false);
|
|
gdma_ll_force_enable_reg_clock(&GDMA, false);
|
|
gdma_ll_enable_bus_clock(0, false);
|
|
#if CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
|
|
spi_ll_enable_bus_clock(SPI1_HOST, false);
|
|
#endif
|
|
spi_ll_enable_bus_clock(SPI2_HOST, false);
|
|
temperature_sensor_ll_bus_clk_enable(false);
|
|
|
|
periph_ll_disable_clk_set_rst(PERIPH_UHCI0_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_SARADC_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_REGDMA_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_ASSIST_DEBUG_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_RSA_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_AES_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_SHA_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_ECC_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_HMAC_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_DS_MODULE);
|
|
periph_ll_disable_clk_set_rst(PERIPH_ECDSA_MODULE);
|
|
|
|
// TODO: Replace with hal implementation
|
|
REG_CLR_BIT(PCR_CTRL_TICK_CONF_REG, PCR_TICK_ENABLE);
|
|
REG_CLR_BIT(PCR_TRACE_CONF_REG, PCR_TRACE_CLK_EN);
|
|
REG_CLR_BIT(PCR_MEM_MONITOR_CONF_REG, PCR_MEM_MONITOR_CLK_EN);
|
|
REG_CLR_BIT(PCR_PVT_MONITOR_CONF_REG, PCR_PVT_MONITOR_CLK_EN);
|
|
REG_CLR_BIT(PCR_PVT_MONITOR_FUNC_CLK_CONF_REG, PCR_PVT_MONITOR_FUNC_CLK_EN);
|
|
WRITE_PERI_REG(PCR_CTRL_CLK_OUT_EN_REG, 0);
|
|
}
|
|
|
|
if (rst_reason == RESET_REASON_CHIP_POWER_ON || rst_reason == RESET_REASON_CHIP_BROWN_OUT \
|
|
|| rst_reason == RESET_REASON_SYS_RTC_WDT || rst_reason == RESET_REASON_SYS_SUPER_WDT) {
|
|
CLEAR_PERI_REG_MASK(LPPERI_CLK_EN_REG, LPPERI_OTP_DBG_CK_EN);
|
|
CLEAR_PERI_REG_MASK(LPPERI_CLK_EN_REG, LPPERI_RNG_CK_EN);
|
|
CLEAR_PERI_REG_MASK(LPPERI_CLK_EN_REG, LPPERI_LP_ANA_I2C_CK_EN);
|
|
CLEAR_PERI_REG_MASK(LPPERI_CLK_EN_REG, LPPERI_LP_IO_CK_EN);
|
|
WRITE_PERI_REG(LP_CLKRST_LP_CLK_PO_EN_REG, 0);
|
|
}
|
|
}
|