mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
711 lines
25 KiB
C
711 lines
25 KiB
C
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
|
|
#include <string.h>
|
|
#include "sdkconfig.h"
|
|
#include "driver/spi_master.h"
|
|
#include "soc/spi_periph.h"
|
|
#include "esp_types.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_log.h"
|
|
#include "esp_err.h"
|
|
#include "soc/soc.h"
|
|
#include "soc/soc_caps.h"
|
|
#include "soc/lldesc.h"
|
|
#include "driver/gpio.h"
|
|
#include "driver/periph_ctrl.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "driver/spi_common_internal.h"
|
|
#include "stdatomic.h"
|
|
#include "hal/spi_hal.h"
|
|
#include "esp_rom_gpio.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "soc/dport_reg.h"
|
|
#endif
|
|
|
|
//This GDMA related part will be introduced by GDMA dedicated APIs in the future. Here we temporarily use macros.
|
|
#if SOC_GDMA_SUPPORTED
|
|
#include "hal/gdma_ll.h"
|
|
#include "soc/gdma_channel.h"
|
|
#include "soc/spi_caps.h"
|
|
|
|
#define spi_dma_set_rx_channel_priority(gdma_chan, priority) gdma_ll_rx_set_priority(&GDMA, gdma_chan, priority);
|
|
#define spi_dma_set_tx_channel_priority(gdma_chan, priority) gdma_ll_tx_set_priority(&GDMA, gdma_chan, priority);
|
|
#define spi_dma_connect_rx_channel_to_periph(gdma_chan, periph_id) gdma_ll_rx_connect_to_periph(&GDMA, gdma_chan, periph_id);
|
|
#define spi_dma_connect_tx_channel_to_periph(gdma_chan, periph_id) gdma_ll_tx_connect_to_periph(&GDMA, gdma_chan, periph_id);
|
|
#endif
|
|
|
|
static const char *SPI_TAG = "spi";
|
|
|
|
#define SPI_CHECK(a, str, ret_val) do { \
|
|
if (!(a)) { \
|
|
ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
|
|
return (ret_val); \
|
|
} \
|
|
} while(0)
|
|
|
|
#define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \
|
|
SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
|
|
} else { \
|
|
SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
|
|
}
|
|
|
|
|
|
typedef struct spi_device_t spi_device_t;
|
|
|
|
#define FUNC_GPIO PIN_FUNC_GPIO
|
|
|
|
#define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1))
|
|
|
|
|
|
typedef struct {
|
|
int host_id;
|
|
spi_destroy_func_t destroy_func;
|
|
void* destroy_arg;
|
|
spi_bus_attr_t bus_attr;
|
|
} spicommon_bus_context_t;
|
|
|
|
#define MAIN_BUS_DEFAULT() { \
|
|
.host_id = 0, \
|
|
.bus_attr = { \
|
|
.dma_chan = 0, \
|
|
.max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE, \
|
|
.dma_desc_num= 0, \
|
|
}, \
|
|
}
|
|
|
|
//Periph 1 is 'claimed' by SPI flash code.
|
|
static atomic_bool spi_periph_claimed[SOC_SPI_PERIPH_NUM] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false), ATOMIC_VAR_INIT(false),
|
|
#if SOC_SPI_PERIPH_NUM >= 4
|
|
ATOMIC_VAR_INIT(false),
|
|
#endif
|
|
};
|
|
static const char* spi_claiming_func[3] = {NULL, NULL, NULL};
|
|
static uint8_t spi_dma_chan_enabled = 0;
|
|
static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
static spicommon_bus_context_t s_mainbus = MAIN_BUS_DEFAULT();
|
|
static spicommon_bus_context_t* bus_ctx[SOC_SPI_PERIPH_NUM] = {&s_mainbus};
|
|
|
|
|
|
//Returns true if this peripheral is successfully claimed, false if otherwise.
|
|
bool spicommon_periph_claim(spi_host_device_t host, const char* source)
|
|
{
|
|
bool false_var = false;
|
|
bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true);
|
|
if (ret) {
|
|
spi_claiming_func[host] = source;
|
|
periph_module_enable(spi_periph_signal[host].module);
|
|
} else {
|
|
ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool spicommon_periph_in_use(spi_host_device_t host)
|
|
{
|
|
return atomic_load(&spi_periph_claimed[host]);
|
|
}
|
|
|
|
//Returns true if this peripheral is successfully freed, false if otherwise.
|
|
bool spicommon_periph_free(spi_host_device_t host)
|
|
{
|
|
bool true_var = true;
|
|
bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false);
|
|
if (ret) periph_module_disable(spi_periph_signal[host].module);
|
|
return ret;
|
|
}
|
|
|
|
int spicommon_irqsource_for_host(spi_host_device_t host)
|
|
{
|
|
return spi_periph_signal[host].irq;
|
|
}
|
|
|
|
int spicommon_irqdma_source_for_host(spi_host_device_t host)
|
|
{
|
|
return spi_periph_signal[host].irq_dma;
|
|
}
|
|
|
|
static inline periph_module_t get_dma_periph(int dma_chan)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
if (dma_chan == 1) {
|
|
return PERIPH_SPI2_DMA_MODULE;
|
|
} else if (dma_chan==2) {
|
|
return PERIPH_SPI3_DMA_MODULE;
|
|
} else {
|
|
abort();
|
|
return -1;
|
|
}
|
|
#elif CONFIG_IDF_TARGET_ESP32
|
|
return PERIPH_SPI_DMA_MODULE;
|
|
#elif SOC_GDMA_SUPPORTED
|
|
return PERIPH_GDMA_MODULE;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
bool spicommon_dma_chan_claim(int dma_chan)
|
|
{
|
|
bool ret = false;
|
|
assert(dma_chan >= 1 && dma_chan <= SOC_SPI_DMA_CHAN_NUM);
|
|
|
|
portENTER_CRITICAL(&spi_dma_spinlock);
|
|
if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) {
|
|
// get the channel only when it's not claimed yet.
|
|
spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan);
|
|
ret = true;
|
|
}
|
|
|
|
periph_module_enable(get_dma_periph(dma_chan));
|
|
portEXIT_CRITICAL(&spi_dma_spinlock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool spicommon_dma_chan_in_use(int dma_chan)
|
|
{
|
|
assert(dma_chan ==1 || dma_chan == 2);
|
|
return spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan);
|
|
}
|
|
|
|
bool spicommon_dma_chan_free(int dma_chan)
|
|
{
|
|
assert( dma_chan == 1 || dma_chan == 2 );
|
|
assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) );
|
|
|
|
portENTER_CRITICAL(&spi_dma_spinlock);
|
|
spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan);
|
|
periph_module_disable(get_dma_periph(dma_chan));
|
|
portEXIT_CRITICAL(&spi_dma_spinlock);
|
|
|
|
return true;
|
|
}
|
|
|
|
void spicommon_connect_spi_and_dma(spi_host_device_t host, int dma_chan)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
//On ESP32S2, each SPI controller has its own DMA channel. So there is no need to connect them.
|
|
#elif SOC_GDMA_SUPPORTED
|
|
int gdma_chan, periph_id;
|
|
if (dma_chan == 1) {
|
|
gdma_chan = SOC_GDMA_SPI2_DMA_CHANNEL;
|
|
periph_id = SOC_GDMA_TRIG_PERIPH_SPI2;
|
|
#ifdef SOC_GDMA_TRIG_PERIPH_SPI3
|
|
} else if (dma_chan == 2) {
|
|
gdma_chan = SOC_GDMA_SPI3_DMA_CHANNEL;
|
|
periph_id = SOC_GDMA_TRIG_PERIPH_SPI3;
|
|
#endif
|
|
} else {
|
|
abort();
|
|
}
|
|
|
|
spi_dma_connect_rx_channel_to_periph(gdma_chan, periph_id);
|
|
spi_dma_connect_tx_channel_to_periph(gdma_chan, periph_id);
|
|
spi_dma_set_rx_channel_priority(gdma_chan, 1);
|
|
spi_dma_set_tx_channel_priority(gdma_chan, 1);
|
|
#endif //#elif SOC_GDMA_SUPPORTED
|
|
}
|
|
|
|
static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
|
|
{
|
|
if (bus_config->sclk_io_num>=0 &&
|
|
bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) {
|
|
return false;
|
|
}
|
|
if (bus_config->quadwp_io_num>=0 &&
|
|
bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) {
|
|
return false;
|
|
}
|
|
if (bus_config->quadhd_io_num>=0 &&
|
|
bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) {
|
|
return false;
|
|
}
|
|
if (bus_config->mosi_io_num >= 0 &&
|
|
bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) {
|
|
return false;
|
|
}
|
|
if (bus_config->miso_io_num>=0 &&
|
|
bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
|
|
bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
|
|
it should be able to be initialized.
|
|
*/
|
|
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t* flags_o)
|
|
{
|
|
uint32_t temp_flag = 0;
|
|
|
|
bool miso_need_output;
|
|
bool mosi_need_output;
|
|
bool sclk_need_output;
|
|
if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) {
|
|
//initial for master
|
|
miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
|
|
mosi_need_output = true;
|
|
sclk_need_output = true;
|
|
} else {
|
|
//initial for slave
|
|
miso_need_output = true;
|
|
mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
|
|
sclk_need_output = false;
|
|
}
|
|
|
|
const bool wp_need_output = true;
|
|
const bool hd_need_output = true;
|
|
|
|
//check pin capabilities
|
|
if (bus_config->sclk_io_num>=0) {
|
|
temp_flag |= SPICOMMON_BUSFLAG_SCLK;
|
|
SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output);
|
|
}
|
|
if (bus_config->quadwp_io_num>=0) {
|
|
SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output);
|
|
}
|
|
if (bus_config->quadhd_io_num>=0) {
|
|
SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output);
|
|
}
|
|
//set flags for QUAD mode according to the existence of wp and hd
|
|
if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD;
|
|
if (bus_config->mosi_io_num >= 0) {
|
|
temp_flag |= SPICOMMON_BUSFLAG_MOSI;
|
|
SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output);
|
|
}
|
|
if (bus_config->miso_io_num>=0) {
|
|
temp_flag |= SPICOMMON_BUSFLAG_MISO;
|
|
SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output);
|
|
}
|
|
//set flags for DUAL mode according to output-capability of MOSI and MISO pins.
|
|
if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) &&
|
|
(bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) {
|
|
temp_flag |= SPICOMMON_BUSFLAG_DUAL;
|
|
}
|
|
|
|
//check if the selected pins correspond to the iomux pins of the peripheral
|
|
bool use_iomux = !(flags & SPICOMMON_BUSFLAG_GPIO_PINS) && bus_uses_iomux_pins(host, bus_config);
|
|
if (use_iomux) {
|
|
temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
|
|
} else {
|
|
temp_flag |= SPICOMMON_BUSFLAG_GPIO_PINS;
|
|
}
|
|
|
|
uint32_t missing_flag = flags & ~temp_flag;
|
|
missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag
|
|
|
|
if (missing_flag != 0) {
|
|
//check pins existence
|
|
if (missing_flag & SPICOMMON_BUSFLAG_SCLK) ESP_LOGE(SPI_TAG, "sclk pin required.");
|
|
if (missing_flag & SPICOMMON_BUSFLAG_MOSI) ESP_LOGE(SPI_TAG, "mosi pin required.");
|
|
if (missing_flag & SPICOMMON_BUSFLAG_MISO) ESP_LOGE(SPI_TAG, "miso pin required.");
|
|
if (missing_flag & SPICOMMON_BUSFLAG_DUAL) ESP_LOGE(SPI_TAG, "not both mosi and miso output capable");
|
|
if (missing_flag & SPICOMMON_BUSFLAG_WPHD) ESP_LOGE(SPI_TAG, "both wp and hd required.");
|
|
if (missing_flag & SPICOMMON_BUSFLAG_IOMUX_PINS) ESP_LOGE(SPI_TAG, "not using iomux pins");
|
|
SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG);
|
|
}
|
|
|
|
if (use_iomux) {
|
|
//All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure
|
|
//out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
|
|
ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1);
|
|
if (bus_config->mosi_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in);
|
|
gpio_iomux_out(bus_config->mosi_io_num, spi_periph_signal[host].func, false);
|
|
}
|
|
if (bus_config->miso_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in);
|
|
gpio_iomux_out(bus_config->miso_io_num, spi_periph_signal[host].func, false);
|
|
}
|
|
if (bus_config->quadwp_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in);
|
|
gpio_iomux_out(bus_config->quadwp_io_num, spi_periph_signal[host].func, false);
|
|
}
|
|
if (bus_config->quadhd_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in);
|
|
gpio_iomux_out(bus_config->quadhd_io_num, spi_periph_signal[host].func, false);
|
|
}
|
|
if (bus_config->sclk_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in);
|
|
gpio_iomux_out(bus_config->sclk_io_num, spi_periph_signal[host].func, false);
|
|
}
|
|
temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
|
|
} else {
|
|
//Use GPIO matrix
|
|
ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1);
|
|
if (bus_config->mosi_io_num >= 0) {
|
|
if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
|
|
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false);
|
|
} else {
|
|
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT);
|
|
}
|
|
esp_rom_gpio_connect_in_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false);
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->mosi_io_num]);
|
|
#endif
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO);
|
|
}
|
|
if (bus_config->miso_io_num >= 0) {
|
|
if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
|
|
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false);
|
|
} else {
|
|
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
|
|
}
|
|
esp_rom_gpio_connect_in_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false);
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->miso_io_num]);
|
|
#endif
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO);
|
|
}
|
|
if (bus_config->quadwp_io_num >= 0) {
|
|
gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false);
|
|
esp_rom_gpio_connect_in_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false);
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num]);
|
|
#endif
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO);
|
|
}
|
|
if (bus_config->quadhd_io_num >= 0) {
|
|
gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false);
|
|
esp_rom_gpio_connect_in_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false);
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num]);
|
|
#endif
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO);
|
|
}
|
|
if (bus_config->sclk_io_num >= 0) {
|
|
if (sclk_need_output) {
|
|
gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false);
|
|
} else {
|
|
gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT);
|
|
}
|
|
esp_rom_gpio_connect_in_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false);
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->sclk_io_num]);
|
|
#endif
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO);
|
|
}
|
|
}
|
|
|
|
if (flags_o) *flags_o = temp_flag;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg)
|
|
{
|
|
int pin_array[] = {
|
|
bus_cfg->mosi_io_num,
|
|
bus_cfg->miso_io_num,
|
|
bus_cfg->sclk_io_num,
|
|
bus_cfg->quadwp_io_num,
|
|
bus_cfg->quadhd_io_num,
|
|
};
|
|
for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) {
|
|
const int io = pin_array[i];
|
|
if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
|
|
{
|
|
if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) {
|
|
//The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
|
|
gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in);
|
|
gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false);
|
|
} else {
|
|
//Use GPIO matrix
|
|
if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) {
|
|
gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false);
|
|
} else {
|
|
gpio_set_direction(cs_io_num, GPIO_MODE_INPUT);
|
|
}
|
|
if (cs_num == 0) esp_rom_gpio_connect_in_signal(cs_io_num, spi_periph_signal[host].spics_in, false);
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[cs_io_num]);
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO);
|
|
}
|
|
}
|
|
|
|
void spicommon_cs_free_io(int cs_gpio_num)
|
|
{
|
|
assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num));
|
|
gpio_reset_pin(cs_gpio_num);
|
|
}
|
|
|
|
bool spicommon_bus_using_iomux(spi_host_device_t host)
|
|
{
|
|
#define CHECK_IOMUX_PIN(HOST, PIN_NAME) if (GPIO.func_in_sel_cfg[spi_periph_signal[(HOST)].PIN_NAME##_in].sig_in_sel) return false
|
|
|
|
CHECK_IOMUX_PIN(host, spid);
|
|
CHECK_IOMUX_PIN(host, spiq);
|
|
CHECK_IOMUX_PIN(host, spiwp);
|
|
CHECK_IOMUX_PIN(host, spihd);
|
|
return true;
|
|
}
|
|
|
|
|
|
void spi_bus_main_set_lock(spi_bus_lock_handle_t lock)
|
|
{
|
|
bus_ctx[0]->bus_attr.lock = lock;
|
|
}
|
|
|
|
spi_bus_lock_handle_t spi_bus_lock_get_by_id(spi_host_device_t host_id)
|
|
{
|
|
return bus_ctx[host_id]->bus_attr.lock;
|
|
}
|
|
|
|
static inline bool is_valid_host(spi_host_device_t host)
|
|
{
|
|
return host >= SPI1_HOST && host <= SPI3_HOST;
|
|
}
|
|
|
|
esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *bus_config, int dma_chan)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
spicommon_bus_context_t *ctx = NULL;
|
|
spi_bus_attr_t *bus_attr = NULL;
|
|
SPI_CHECK(is_valid_host(host_id), "invalid host_id", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK(bus_ctx[host_id] == NULL, "SPI bus already initialized.", ESP_ERR_INVALID_STATE);
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
SPI_CHECK( dma_chan >= 0 && dma_chan <= 2, "invalid dma channel", ESP_ERR_INVALID_ARG );
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
SPI_CHECK( dma_chan == 0 || dma_chan == host_id, "invalid dma channel", ESP_ERR_INVALID_ARG );
|
|
#endif
|
|
SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG);
|
|
#ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM
|
|
SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM)==0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_MASTER_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG);
|
|
#endif
|
|
|
|
bool spi_chan_claimed = spicommon_periph_claim(host_id, "spi master");
|
|
SPI_CHECK(spi_chan_claimed, "host_id already in use", ESP_ERR_INVALID_STATE);
|
|
|
|
if (dma_chan != 0) {
|
|
bool dma_chan_claimed = spicommon_dma_chan_claim(dma_chan);
|
|
if (!dma_chan_claimed) {
|
|
spicommon_periph_free(host_id);
|
|
SPI_CHECK(false, "dma channel already in use", ESP_ERR_INVALID_STATE);
|
|
}
|
|
|
|
spicommon_connect_spi_and_dma(host_id, dma_chan);
|
|
}
|
|
|
|
//clean and initialize the context
|
|
ctx = (spicommon_bus_context_t*)malloc(sizeof(spicommon_bus_context_t));
|
|
if (!ctx) {
|
|
err = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
*ctx = (spicommon_bus_context_t) {
|
|
.host_id = host_id,
|
|
.bus_attr = {
|
|
.bus_cfg = *bus_config,
|
|
.dma_chan = dma_chan,
|
|
},
|
|
};
|
|
|
|
bus_attr = &ctx->bus_attr;
|
|
if (dma_chan == 0) {
|
|
bus_attr->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE;
|
|
bus_attr->dma_desc_num = 0;
|
|
} else {
|
|
//See how many dma descriptors we need and allocate them
|
|
int dma_desc_ct = lldesc_get_required_num(bus_config->max_transfer_sz);
|
|
if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given
|
|
|
|
bus_attr->max_transfer_sz = dma_desc_ct * LLDESC_MAX_NUM_PER_DESC;
|
|
bus_attr->dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
|
|
bus_attr->dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
|
|
if (bus_attr->dmadesc_tx == NULL || bus_attr->dmadesc_rx == NULL) {
|
|
err = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
bus_attr->dma_desc_num = dma_desc_ct;
|
|
}
|
|
|
|
spi_bus_lock_config_t lock_config = {
|
|
.host_id = host_id,
|
|
.cs_num = SOC_SPI_PERIPH_CS_NUM(host_id),
|
|
};
|
|
err = spi_bus_init_lock(&bus_attr->lock, &lock_config);
|
|
if (err != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_ENABLE
|
|
err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master",
|
|
&bus_attr->pm_lock);
|
|
if (err != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
#endif //CONFIG_PM_ENABLE
|
|
|
|
err = spicommon_bus_initialize_io(host_id, bus_config, dma_chan, SPICOMMON_BUSFLAG_MASTER | bus_config->flags, &bus_attr->flags);
|
|
if (err != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
|
|
bus_ctx[host_id] = ctx;
|
|
return ESP_OK;
|
|
|
|
cleanup:
|
|
if (bus_attr) {
|
|
#ifdef CONFIG_PM_ENABLE
|
|
esp_pm_lock_delete(bus_attr->pm_lock);
|
|
#endif
|
|
if (bus_attr->lock) {
|
|
spi_bus_deinit_lock(bus_attr->lock);
|
|
}
|
|
free(bus_attr->dmadesc_tx);
|
|
free(bus_attr->dmadesc_rx);
|
|
}
|
|
free(ctx);
|
|
if (dma_chan) {
|
|
spicommon_dma_chan_free(dma_chan);
|
|
}
|
|
spicommon_periph_free(host_id);
|
|
return err;
|
|
}
|
|
|
|
const spi_bus_attr_t* spi_bus_get_attr(spi_host_device_t host_id)
|
|
{
|
|
if (bus_ctx[host_id] == NULL) return NULL;
|
|
|
|
return &bus_ctx[host_id]->bus_attr;
|
|
}
|
|
|
|
esp_err_t spi_bus_free(spi_host_device_t host_id)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
spicommon_bus_context_t* ctx = bus_ctx[host_id];
|
|
spi_bus_attr_t* bus_attr = &ctx->bus_attr;
|
|
|
|
if (ctx->destroy_func) {
|
|
err = ctx->destroy_func(ctx->destroy_arg);
|
|
}
|
|
|
|
spicommon_bus_free_io_cfg(&bus_attr->bus_cfg);
|
|
|
|
#ifdef CONFIG_PM_ENABLE
|
|
esp_pm_lock_delete(bus_attr->pm_lock);
|
|
#endif
|
|
spi_bus_deinit_lock(bus_attr->lock);
|
|
|
|
free(bus_attr->dmadesc_rx);
|
|
free(bus_attr->dmadesc_tx);
|
|
|
|
if (bus_attr->dma_chan > 0) {
|
|
spicommon_dma_chan_free (bus_attr->dma_chan);
|
|
}
|
|
spicommon_periph_free(host_id);
|
|
|
|
free(ctx);
|
|
bus_ctx[host_id] = NULL;
|
|
return err;
|
|
}
|
|
|
|
esp_err_t spi_bus_register_destroy_func(spi_host_device_t host_id,
|
|
spi_destroy_func_t f, void *arg)
|
|
{
|
|
bus_ctx[host_id]->destroy_func = f;
|
|
bus_ctx[host_id]->destroy_arg = arg;
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
Code for workaround for DMA issue in ESP32 v0/v1 silicon
|
|
*/
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
static volatile int dmaworkaround_channels_busy[2] = {0, 0};
|
|
static dmaworkaround_cb_t dmaworkaround_cb;
|
|
static void *dmaworkaround_cb_arg;
|
|
static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
|
|
static int dmaworkaround_waiting_for_chan = 0;
|
|
#endif
|
|
|
|
bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
int otherchan = (dmachan == 1) ? 2 : 1;
|
|
bool ret;
|
|
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
|
|
if (dmaworkaround_channels_busy[otherchan-1]) {
|
|
//Other channel is busy. Call back when it's done.
|
|
dmaworkaround_cb = cb;
|
|
dmaworkaround_cb_arg = arg;
|
|
dmaworkaround_waiting_for_chan = otherchan;
|
|
ret = false;
|
|
} else {
|
|
//Reset DMA
|
|
periph_module_reset( PERIPH_SPI_DMA_MODULE );
|
|
ret = true;
|
|
}
|
|
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
|
|
return ret;
|
|
#else
|
|
//no need to reset
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress(void)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
return (dmaworkaround_waiting_for_chan != 0);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
|
|
dmaworkaround_channels_busy[dmachan-1] = 0;
|
|
if (dmaworkaround_waiting_for_chan == dmachan) {
|
|
//Reset DMA
|
|
periph_module_reset( PERIPH_SPI_DMA_MODULE );
|
|
dmaworkaround_waiting_for_chan = 0;
|
|
//Call callback
|
|
dmaworkaround_cb(dmaworkaround_cb_arg);
|
|
|
|
}
|
|
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
|
|
#endif
|
|
}
|
|
|
|
void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
|
|
dmaworkaround_channels_busy[dmachan-1] = 1;
|
|
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
|
|
#endif
|
|
}
|