spi_slave_hd: add DMA Append Mode feature

This commit is contained in:
Armando 2021-01-18 17:16:52 +08:00
parent 76acc8ddde
commit 0538dc2d93
12 changed files with 721 additions and 213 deletions

View File

@ -33,16 +33,16 @@ extern "C"
/// Descriptor of data to send/receive
typedef struct {
uint8_t* data; ///< Buffer to send, must be DMA capable
size_t len; ///< Len of data to send/receive. For receiving the buffer length should be multiples of 4 bytes, otherwise the extra part will be truncated.
size_t trans_len; ///< Data actually received
void* arg; ///< Extra argument indiciating this data
uint8_t* data; ///< Buffer to send, must be DMA capable
size_t len; ///< Len of data to send/receive. For receiving the buffer length should be multiples of 4 bytes, otherwise the extra part will be truncated.
size_t trans_len; ///< For RX direction, it indicates the data actually received. For TX direction, it is meaningless.
void* arg; ///< Extra argument indiciating this data
} spi_slave_hd_data_t;
/// Information of SPI Slave HD event
typedef struct {
spi_event_t event; ///< Event type
spi_slave_hd_data_t* trans; ///< Corresponding transaction for SPI_EV_SEND and SPI_EV_RECV events
spi_event_t event; ///< Event type
spi_slave_hd_data_t* trans; ///< Corresponding transaction for SPI_EV_SEND and SPI_EV_RECV events
} spi_slave_hd_event_t;
/// Callback for SPI Slave HD
@ -50,38 +50,39 @@ typedef bool (*slave_cb_t)(void* arg, spi_slave_hd_event_t* event, BaseType_t* a
/// Channel of SPI Slave HD to do data transaction
typedef enum {
SPI_SLAVE_CHAN_TX = 0, ///< The output channel (RDDMA)
SPI_SLAVE_CHAN_RX = 1, ///< The input channel (WRDMA)
SPI_SLAVE_CHAN_TX = 0, ///< The output channel (RDDMA)
SPI_SLAVE_CHAN_RX = 1, ///< The input channel (WRDMA)
} spi_slave_chan_t;
/// Callback configuration structure for SPI Slave HD
typedef struct {
slave_cb_t cb_recv; ///< Callback when receive data
slave_cb_t cb_sent; ///< Callback when data sent
slave_cb_t cb_buffer_tx; ///< Callback when master reads from shared buffer
slave_cb_t cb_buffer_rx; ///< Callback when master writes to shared buffer
slave_cb_t cb_cmd9; ///< Callback when CMD9 received
slave_cb_t cb_cmdA; ///< Callback when CMDA received
void* arg; ///< Argument indicating this SPI Slave HD peripheral instance
slave_cb_t cb_buffer_tx; ///< Callback when master reads from shared buffer
slave_cb_t cb_buffer_rx; ///< Callback when master writes to shared buffer
slave_cb_t cb_sent; ///< Callback when data are sent
slave_cb_t cb_recv; ///< Callback when data are received
slave_cb_t cb_cmd9; ///< Callback when CMD9 received
slave_cb_t cb_cmdA; ///< Callback when CMDA received
void* arg; ///< Argument indicating this SPI Slave HD peripheral instance
} spi_slave_hd_callback_config_t;
//flags for ``spi_slave_hd_slot_config_t`` to use
#define SPI_SLAVE_HD_TXBIT_LSBFIRST (1<<0) ///< Transmit command/address/data LSB first instead of the default MSB first
#define SPI_SLAVE_HD_RXBIT_LSBFIRST (1<<1) ///< Receive data LSB first instead of the default MSB first
#define SPI_SLAVE_HD_BIT_LSBFIRST (SPI_SLAVE_HD_TXBIT_LSBFIRST|SPI_SLAVE_HD_RXBIT_LSBFIRST) ///< Transmit and receive LSB first
#define SPI_SLAVE_HD_APPEND_MODE (1<<2) ///< Adopt DMA append mode for transactions. In this mode, users can load(append) DMA descriptors without stopping the DMA
/// Configuration structure for the SPI Slave HD driver
typedef struct {
int spics_io_num; ///< CS GPIO pin for this device
uint32_t flags; ///< Bitwise OR of SPI_SLAVE_HD_* flags
#define SPI_SLAVE_HD_TXBIT_LSBFIRST (1<<0) ///< Transmit command/address/data LSB first instead of the default MSB first
#define SPI_SLAVE_HD_RXBIT_LSBFIRST (1<<1) ///< Receive data LSB first instead of the default MSB first
#define SPI_SLAVE_HD_BIT_LSBFIRST (SPI_SLAVE_HD_TXBIT_LSBFIRST|SPI_SLAVE_HD_RXBIT_LSBFIRST) ///< Transmit and receive LSB first
uint8_t mode; ///< SPI mode (0-3)
int command_bits; ///< command field bits, multiples of 8 and at least 8.
int address_bits; ///< address field bits, multiples of 8 and at least 8.
int dummy_bits; ///< dummy field bits, multiples of 8 and at least 8.
int queue_size; ///< Transaction queue size. This sets how many transactions can be 'in the air' (queued using spi_slave_hd_queue_trans but not yet finished using spi_slave_hd_get_trans_result) at the same time
int dma_chan; ///< DMA channel used
spi_slave_hd_callback_config_t cb_config; ///< Callback configuration
uint8_t mode; ///< SPI mode (0-3)
uint32_t spics_io_num; ///< CS GPIO pin for this device
uint32_t flags; ///< Bitwise OR of SPI_SLAVE_HD_* flags
uint32_t command_bits; ///< command field bits, multiples of 8 and at least 8.
uint32_t address_bits; ///< address field bits, multiples of 8 and at least 8.
uint32_t dummy_bits; ///< dummy field bits, multiples of 8 and at least 8.
uint32_t queue_size; ///< Transaction queue size. This sets how many transactions can be 'in the air' (queued using spi_slave_hd_queue_trans but not yet finished using spi_slave_hd_get_trans_result) at the same time
uint32_t dma_chan; ///< DMA channel used
spi_slave_hd_callback_config_t cb_config; ///< Callback configuration
} spi_slave_hd_slot_config_t;
/**
@ -111,36 +112,39 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
esp_err_t spi_slave_hd_deinit(spi_host_device_t host_id);
/**
* @brief Queue data transaction
* @brief Queue transactions (segment mode)
*
* @param host_id Host to queue the transaction
* @param chan Channel to queue the data, SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
* @param trans Descriptor of data to queue
* @param chan SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
* @param trans Transaction descriptors
* @param timeout Timeout before the data is queued
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_ARG: The input argument is invalid. Can be the following reason:
* - The buffer given is not DMA capable
* - The length of data is invalid (not larger than 0, or exceed the max transfer length)
* - The function is invalid
* - ESP_ERR_TIMEOUT: Cannot queue the data before timeout. This is quite possible if the master
* doesn't read/write the slave on time.
* - The transaction direction is invalid
* - ESP_ERR_TIMEOUT: Cannot queue the data before timeout. Master is still processing previous transaction.
* - ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called under segment mode.
*/
esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t* trans, TickType_t timeout);
/**
* @brief Get the result of a data transaction
* @brief Get the result of a data transaction (segment mode)
*
* @note This API should be called successfully the same times as the ``spi_slave_hd_queue_trans``.
*
* @param host_id Host to queue the transaction
* @param chan Channel to get the result, SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
* @param[out] out_trans Output descriptor of the returned transaction
* @param[out] out_trans Pointer to the transaction descriptor (``spi_slave_hd_data_t``) passed to the driver before. Hardware has finished this transaction. Member ``trans_len`` indicates the actual number of bytes of received data, it's meaningless for TX.
* @param timeout Timeout before the result is got
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_ARG: Function is not valid
* - ESP_ERR_TIMEOUT: There's no transaction done before timeout
* - ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called under segment mode.
*/
esp_err_t spi_slave_hd_get_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t** out_trans, TickType_t timeout);
esp_err_t spi_slave_hd_get_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout);
/**
* @brief Read the shared registers
@ -162,6 +166,42 @@ void spi_slave_hd_read_buffer(spi_host_device_t host_id, int addr, uint8_t *out_
*/
void spi_slave_hd_write_buffer(spi_host_device_t host_id, int addr, uint8_t *data, size_t len);
/**
* @brief Load transactions (append mode)
*
* @note In this mode, user transaction descriptors will be appended to the DMA and the DMA will keep processing the data without stopping
*
* @param host_id Host to load transactions
* @param chan SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
* @param trans Transaction descriptor
* @param timeout Timeout before the transaction is loaded
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_ARG: The input argument is invalid. Can be the following reason:
* - The buffer given is not DMA capable
* - The length of data is invalid (not larger than 0, or exceed the max transfer length)
* - The transaction direction is invalid
* - ESP_ERR_TIMEOUT: Master is still processing previous transaction. There is no available transaction for slave to load
* - ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called under append mode.
*/
esp_err_t spi_slave_hd_append_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t *trans, TickType_t timeout);
/**
* @brief Get the result of a data transaction (append mode)
*
* @note This API should be called the same times as the ``spi_slave_hd_append_trans``
*
* @param host_id Host to load the transaction
* @param chan SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
* @param[out] out_trans Pointer to the transaction descriptor (``spi_slave_hd_data_t``) passed to the driver before. Hardware has finished this transaction. Member ``trans_len`` indicates the actual number of bytes of received data, it's meaningless for TX.
* @param timeout Timeout before the result is got
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_ARG: Function is not valid
* - ESP_ERR_TIMEOUT: There's no transaction done before timeout
* - ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called under append mode.
*/
esp_err_t spi_slave_hd_get_append_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout);
#ifdef __cplusplus
}

View File

@ -220,7 +220,7 @@ void spicommon_connect_spi_and_dma(spi_host_device_t host, int dma_chan)
spi_dma_connect_tx_channel_to_periph(gdma_chan, periph_id);
spi_dma_set_rx_channel_priority(gdma_chan, 1);
spi_dma_set_tx_channel_priority(gdma_chan, 1);
#endif
#endif //#elif SOC_GDMA_SUPPORTED
}
static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)

View File

@ -14,12 +14,13 @@
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/ringbuf.h"
#include "driver/gpio.h"
#include "driver/spi_common_internal.h"
#include "hal/spi_slave_hd_hal.h"
#include "driver/spi_slave_hd.h"
#include "hal/spi_slave_hd_hal.h"
//SPI1 can never be used as the slave
@ -27,27 +28,25 @@
#define SPIHD_CHECK(cond,warn,ret) do{if(!(cond)){ESP_LOGE(TAG, warn); return ret;}} while(0)
typedef struct {
spi_slave_hd_hal_context_t hal;
int dma_chan;
int max_transfer_sz;
uint32_t flags;
portMUX_TYPE int_spinlock;
intr_handle_t intr;
intr_handle_t intr_dma;
spi_slave_hd_callback_config_t callback;
spi_slave_hd_hal_context_t hal;
bool append_mode;
QueueHandle_t tx_trans_queue;
QueueHandle_t tx_ret_queue;
QueueHandle_t rx_trans_queue;
QueueHandle_t rx_ret_queue;
QueueHandle_t tx_cnting_sem;
QueueHandle_t rx_cnting_sem;
spi_slave_hd_data_t* tx_desc;
spi_slave_hd_data_t* rx_desc;
uint32_t flags;
int max_transfer_sz;
portMUX_TYPE int_spinlock;
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_handle_t pm_lock;
#endif
@ -56,17 +55,25 @@ typedef struct {
static spi_slave_hd_slot_t *spihost[SOC_SPI_PERIPH_NUM];
static const char TAG[] = "slave_hd";
static void spi_slave_hd_intr(void* arg);
static void spi_slave_hd_intr_segment(void *arg);
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
static void spi_slave_hd_intr_append(void *arg);
#endif
esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *bus_config,
const spi_slave_hd_slot_config_t *config)
{
bool spi_chan_claimed, dma_chan_claimed;
bool append_mode = (config->flags & SPI_SLAVE_HD_APPEND_MODE);
esp_err_t ret = ESP_OK;
SPIHD_CHECK(VALID_HOST(host_id), "invalid host", ESP_ERR_INVALID_ARG);
SPIHD_CHECK(config->dma_chan == 0 || config->dma_chan == host_id, "invalid dma channel", ESP_ERR_INVALID_ARG);
#if !CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
SPIHD_CHECK(append_mode == 0, "Append mode is only supported on ESP32S2 now", ESP_ERR_INVALID_ARG);
#endif
spi_chan_claimed = spicommon_periph_claim(host_id, "slave_hd");
SPIHD_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
@ -100,35 +107,39 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
gpio_set_direction(config->spics_io_num, GPIO_MODE_INPUT);
spicommon_cs_initialize(host_id, config->spics_io_num, 0,
!(bus_config->flags & SPICOMMON_BUSFLAG_NATIVE_PINS));
host->dma_chan = config->dma_chan;
host->append_mode = append_mode;
spi_slave_hd_hal_config_t hal_config = {
.host_id = host_id,
.dma_in = SPI_LL_GET_HW(host_id),
.dma_out = SPI_LL_GET_HW(host_id),
.dma_chan = config->dma_chan,
.append_mode = append_mode,
.mode = config->mode,
.tx_lsbfirst = (config->flags & SPI_SLAVE_HD_RXBIT_LSBFIRST),
.rx_lsbfirst = (config->flags & SPI_SLAVE_HD_TXBIT_LSBFIRST),
.dma_chan = config->dma_chan,
.mode = config->mode
};
spi_slave_hd_hal_init(&host->hal, &hal_config);
if (config->dma_chan != 0) {
//See how many dma descriptors we need and allocate them
int dma_desc_ct = (bus_config->max_transfer_sz + SPI_MAX_DMA_LEN - 1) / SPI_MAX_DMA_LEN;
if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given
host->max_transfer_sz = dma_desc_ct * SPI_MAX_DMA_LEN;
host->hal.dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
host->hal.dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
if (!host->hal.dmadesc_tx || !host->hal.dmadesc_rx ) {
//Malloc for all the DMA descriptors
uint32_t total_desc_size = spi_slave_hd_hal_get_total_desc_size(&host->hal, bus_config->max_transfer_sz);
host->hal.dmadesc_tx = heap_caps_malloc(total_desc_size, MALLOC_CAP_DMA);
host->hal.dmadesc_rx = heap_caps_malloc(total_desc_size, MALLOC_CAP_DMA);
if (!host->hal.dmadesc_tx || !host->hal.dmadesc_rx) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//Get the actual SPI bus transaction size in bytes.
host->max_transfer_sz = spi_salve_hd_hal_get_max_bus_size(&host->hal);
} else {
//We're limited to non-DMA transfers: the SPI work registers can hold 64 bytes at most.
host->max_transfer_sz = 0;
}
//Init the hal according to the hal_config set above
spi_slave_hd_hal_init(&host->hal, &hal_config);
#ifdef CONFIG_PM_ENABLE
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_slave", &host->pm_lock);
if (ret != ESP_OK) {
@ -138,30 +149,60 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
esp_pm_lock_acquire(host->pm_lock);
#endif //CONFIG_PM_ENABLE
//Create queues
host->tx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
//Create Queues and Semaphores
host->tx_ret_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
host->rx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
host->rx_ret_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
if (!host->tx_trans_queue || !host->tx_ret_queue ||
!host->rx_trans_queue || !host->rx_ret_queue) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
if (!host->append_mode) {
host->tx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
host->rx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
if (!host->tx_trans_queue || !host->rx_trans_queue) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
}
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
else {
host->tx_cnting_sem = xSemaphoreCreateCounting(config->queue_size, config->queue_size);
host->rx_cnting_sem = xSemaphoreCreateCounting(config->queue_size, config->queue_size);
if (!host->tx_cnting_sem || !host->rx_cnting_sem) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
}
#endif //#if CONFIG_IDF_TARGET_ESP32S2
ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr,
//Alloc intr
if (!host->append_mode) {
ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr_segment,
(void *)host, &host->intr);
if (ret != ESP_OK) {
goto cleanup;
if (ret != ESP_OK) {
goto cleanup;
}
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr_segment,
(void *)host, &host->intr_dma);
if (ret != ESP_OK) {
goto cleanup;
}
}
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
else {
ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr_append,
(void *)host, &host->intr);
if (ret != ESP_OK) {
goto cleanup;
}
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr_append,
(void *)host, &host->intr_dma);
if (ret != ESP_OK) {
goto cleanup;
}
}
#endif //#if CONFIG_IDF_TARGET_ESP32S2
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr,
(void *)host, &host->intr_dma);
if (ret != ESP_OK) {
goto cleanup;
}
//Init callbacks
memcpy((uint8_t*)&host->callback, (uint8_t*)&config->cb_config, sizeof(spi_slave_hd_callback_config_t));
spi_event_t event = 0;
if (host->callback.cb_buffer_tx!=NULL) event |= SPI_EV_BUF_TX;
if (host->callback.cb_buffer_rx!=NULL) event |= SPI_EV_BUF_RX;
@ -186,6 +227,8 @@ esp_err_t spi_slave_hd_deinit(spi_host_device_t host_id)
if (host->tx_ret_queue) vQueueDelete(host->tx_ret_queue);
if (host->rx_trans_queue) vQueueDelete(host->rx_trans_queue);
if (host->rx_ret_queue) vQueueDelete(host->rx_ret_queue);
if (host->tx_cnting_sem) vSemaphoreDelete(host->tx_cnting_sem);
if (host->rx_cnting_sem) vSemaphoreDelete(host->rx_cnting_sem);
if (host) {
free(host->hal.dmadesc_tx);
free(host->hal.dmadesc_rx);
@ -232,27 +275,27 @@ static inline IRAM_ATTR BaseType_t intr_check_clear_callback(spi_slave_hd_slot_t
return cb_awoken;
}
static IRAM_ATTR void spi_slave_hd_intr(void* arg)
static IRAM_ATTR void spi_slave_hd_intr_segment(void *arg)
{
spi_slave_hd_slot_t* host = (spi_slave_hd_slot_t*)arg;
BaseType_t awoken = pdFALSE;
spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t*)arg;
spi_slave_hd_callback_config_t *callback = &host->callback;
ESP_EARLY_LOGV("spi_hd", "intr.");
spi_slave_hd_hal_context_t *hal = &host->hal;
BaseType_t awoken = pdFALSE;
BaseType_t ret;
awoken |= intr_check_clear_callback(host, SPI_EV_BUF_TX, callback->cb_buffer_tx);
awoken |= intr_check_clear_callback(host, SPI_EV_BUF_RX, callback->cb_buffer_rx);
awoken |= intr_check_clear_callback(host, SPI_EV_CMD9, callback->cb_cmd9);
awoken |= intr_check_clear_callback(host, SPI_EV_CMDA, callback->cb_cmdA);
BaseType_t ret;
bool tx_done = false;
bool rx_done = false;
portENTER_CRITICAL_ISR(&host->int_spinlock);
if (host->tx_desc && spi_slave_hd_hal_check_disable_event(&host->hal, SPI_EV_SEND)) {
if (host->tx_desc && spi_slave_hd_hal_check_disable_event(hal, SPI_EV_SEND)) {
tx_done = true;
}
if (host->rx_desc && spi_slave_hd_hal_check_disable_event(&host->hal, SPI_EV_RECV)) {
if (host->rx_desc && spi_slave_hd_hal_check_disable_event(hal, SPI_EV_RECV)) {
rx_done = true;
}
portEXIT_CRITICAL_ISR(&host->int_spinlock);
@ -277,9 +320,7 @@ static IRAM_ATTR void spi_slave_hd_intr(void* arg)
}
if (rx_done) {
bool ret_queue = true;
host->rx_desc->trans_len = spi_slave_hd_hal_rxdma_get_len(&host->hal);
host->rx_desc->trans_len = spi_slave_hd_hal_rxdma_seg_get_len(hal);
if (callback->cb_recv) {
spi_slave_hd_event_t ev = {
.event = SPI_EV_RECV,
@ -302,33 +343,147 @@ static IRAM_ATTR void spi_slave_hd_intr(void* arg)
if (!host->tx_desc) {
ret = xQueueReceiveFromISR(host->tx_trans_queue, &host->tx_desc, &awoken);
if (ret == pdTRUE) {
spi_slave_hd_hal_txdma(&host->hal, host->tx_desc->data, host->tx_desc->len);
spi_slave_hd_hal_txdma(hal, host->tx_desc->data, host->tx_desc->len);
tx_sent = true;
}
}
if (!host->rx_desc) {
ret = xQueueReceiveFromISR(host->rx_trans_queue, &host->rx_desc, &awoken);
if (ret == pdTRUE) {
spi_slave_hd_hal_rxdma(&host->hal, host->rx_desc->data, host->rx_desc->len);
spi_slave_hd_hal_rxdma(hal, host->rx_desc->data, host->rx_desc->len);
rx_sent = true;
}
}
portENTER_CRITICAL_ISR(&host->int_spinlock);
if (rx_sent) {
spi_slave_hd_hal_enable_event_intr(&host->hal, SPI_EV_RECV);
}
if (tx_sent) {
spi_slave_hd_hal_enable_event_intr(&host->hal, SPI_EV_SEND);
spi_slave_hd_hal_enable_event_intr(hal, SPI_EV_SEND);
}
if (rx_sent) {
spi_slave_hd_hal_enable_event_intr(hal, SPI_EV_RECV);
}
portEXIT_CRITICAL_ISR(&host->int_spinlock);
if (awoken==pdTRUE) portYIELD_FROM_ISR();
}
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
static IRAM_ATTR void spi_slave_hd_intr_append(void *arg)
{
spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t*)arg;
spi_slave_hd_callback_config_t *callback = &host->callback;
spi_slave_hd_hal_context_t *hal = &host->hal;
BaseType_t awoken = pdFALSE;
BaseType_t ret;
bool tx_done = false;
bool rx_done = false;
portENTER_CRITICAL_ISR(&host->int_spinlock);
if (spi_slave_hd_hal_check_clear_event(hal, SPI_EV_SEND)) {
tx_done = true;
}
if (spi_slave_hd_hal_check_clear_event(hal, SPI_EV_RECV)) {
rx_done = true;
}
portEXIT_CRITICAL_ISR(&host->int_spinlock);
if (tx_done) {
spi_slave_hd_data_t *trans_desc;
while (1) {
bool trans_finish = false;
portENTER_CRITICAL_ISR(&host->int_spinlock);
trans_finish = spi_slave_hd_hal_get_tx_finished_trans(hal, (void **)&trans_desc);
portEXIT_CRITICAL_ISR(&host->int_spinlock);
if (!trans_finish) {
break;
}
bool ret_queue = true;
if (callback->cb_sent) {
spi_slave_hd_event_t ev = {
.event = SPI_EV_SEND,
.trans = trans_desc,
};
BaseType_t cb_awoken = pdFALSE;
ret_queue = callback->cb_sent(callback->arg, &ev, &cb_awoken);
awoken |= cb_awoken;
}
if (ret_queue) {
ret = xQueueSendFromISR(host->tx_ret_queue, &trans_desc, &awoken);
assert(ret == pdTRUE);
ret = xSemaphoreGiveFromISR(host->tx_cnting_sem, &awoken);
assert(ret == pdTRUE);
}
}
}
if (rx_done) {
spi_slave_hd_data_t *trans_desc;
size_t trans_len;
while (1) {
bool trans_finish = false;
portENTER_CRITICAL_ISR(&host->int_spinlock);
trans_finish = spi_slave_hd_hal_get_rx_finished_trans(hal, (void **)&trans_desc, &trans_len);
portEXIT_CRITICAL_ISR(&host->int_spinlock);
if (!trans_finish) {
break;
}
trans_desc->trans_len = trans_len;
bool ret_queue = true;
if (callback->cb_recv) {
spi_slave_hd_event_t ev = {
.event = SPI_EV_RECV,
.trans = trans_desc,
};
BaseType_t cb_awoken = pdFALSE;
ret_queue = callback->cb_recv(callback->arg, &ev, &cb_awoken);
awoken |= cb_awoken;
}
if (ret_queue) {
ret = xQueueSendFromISR(host->rx_ret_queue, &trans_desc, &awoken);
assert(ret == pdTRUE);
ret = xSemaphoreGiveFromISR(host->rx_cnting_sem, &awoken);
assert(ret == pdTRUE);
}
}
}
if (awoken==pdTRUE) portYIELD_FROM_ISR();
}
#endif //#if CONFIG_IDF_TARGET_ESP32S2
static esp_err_t get_ret_queue_result(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout)
{
spi_slave_hd_slot_t *host = spihost[host_id];
spi_slave_hd_data_t *trans;
BaseType_t ret;
if (chan == SPI_SLAVE_CHAN_TX) {
ret = xQueueReceive(host->tx_ret_queue, &trans, timeout);
} else {
ret = xQueueReceive(host->rx_ret_queue, &trans, timeout);
}
if (ret == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
*out_trans = trans;
return ESP_OK;
}
//---------------------------------------------------------Segment Mode Transaction APIs-----------------------------------------------------------//
esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t* trans, TickType_t timeout)
{
spi_slave_hd_slot_t* host = spihost[host_id];
SPIHD_CHECK(trans->len <= SPI_MAX_DMA_LEN, "Currently we only support transaction with data length within 4092 bytes", ESP_ERR_INVALID_ARG);
SPIHD_CHECK(host->append_mode == 0, "This API should be used for SPI Slave HD Segment Mode", ESP_ERR_INVALID_STATE);
SPIHD_CHECK(esp_ptr_dma_capable(trans->data), "The buffer should be DMA capable.", ESP_ERR_INVALID_ARG);
SPIHD_CHECK(trans->len <= host->max_transfer_sz && trans->len > 0, "Invalid buffer size", ESP_ERR_INVALID_ARG);
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
@ -351,22 +506,14 @@ esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t c
esp_err_t spi_slave_hd_get_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t** out_trans, TickType_t timeout)
{
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
esp_err_t ret;
spi_slave_hd_slot_t* host = spihost[host_id];
BaseType_t ret;
spi_slave_hd_data_t *data;
if (chan == SPI_SLAVE_CHAN_TX) {
ret = xQueueReceive(host->tx_ret_queue, &data, timeout);
} else { // chan == SPI_SLAVE_CHAN_RX
ret = xQueueReceive(host->rx_ret_queue, &data, timeout);
}
if (ret == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
*out_trans = data;
return ESP_OK;
SPIHD_CHECK(host->append_mode == 0, "This API should be used for SPI Slave HD Segment Mode", ESP_ERR_INVALID_STATE);
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
ret = get_ret_queue_result(host_id, chan, out_trans, timeout);
return ret;
}
void spi_slave_hd_read_buffer(spi_host_device_t host_id, int addr, uint8_t *out_data, size_t len)
@ -378,3 +525,55 @@ void spi_slave_hd_write_buffer(spi_host_device_t host_id, int addr, uint8_t *dat
{
spi_slave_hd_hal_write_buffer(&spihost[host_id]->hal, addr, data, len);
}
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
//---------------------------------------------------------Append Mode Transaction APIs-----------------------------------------------------------//
esp_err_t spi_slave_hd_append_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t *trans, TickType_t timeout)
{
esp_err_t err;
spi_slave_hd_slot_t *host = spihost[host_id];
spi_slave_hd_hal_context_t *hal = &host->hal;
SPIHD_CHECK(trans->len <= SPI_MAX_DMA_LEN, "Currently we only support transaction with data length within 4092 bytes", ESP_ERR_INVALID_ARG);
SPIHD_CHECK(host->append_mode == 1, "This API should be used for SPI Slave HD Append Mode", ESP_ERR_INVALID_STATE);
SPIHD_CHECK(esp_ptr_dma_capable(trans->data), "The buffer should be DMA capable.", ESP_ERR_INVALID_ARG);
SPIHD_CHECK(trans->len <= host->max_transfer_sz && trans->len > 0, "Invalid buffer size", ESP_ERR_INVALID_ARG);
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
if (chan == SPI_SLAVE_CHAN_TX) {
BaseType_t ret = xSemaphoreTake(host->tx_cnting_sem, timeout);
if (ret == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
portENTER_CRITICAL(&host->int_spinlock);
err = spi_slave_hd_hal_txdma_append(hal, trans->data, trans->len, trans);
portEXIT_CRITICAL(&host->int_spinlock);
} else {
BaseType_t ret = xSemaphoreTake(host->rx_cnting_sem, timeout);
if (ret == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
portENTER_CRITICAL(&host->int_spinlock);
err = spi_slave_hd_hal_rxdma_append(hal, trans->data, trans->len, trans);
portEXIT_CRITICAL(&host->int_spinlock);
}
if (err != ESP_OK) {
ESP_LOGE(TAG, "Wait until the DMA finishes its transaction");
}
return err;
}
esp_err_t spi_slave_hd_get_append_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout)
{
esp_err_t ret;
spi_slave_hd_slot_t* host = spihost[host_id];
SPIHD_CHECK(host->append_mode == 1, "This API should be used for SPI Slave HD Append Mode", ESP_ERR_INVALID_STATE);
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
ret = get_ret_queue_result(host_id, chan, out_trans, timeout);
return ret;
}
#endif //#if CONFIG_IDF_TARGET_ESP32S2

View File

@ -21,7 +21,7 @@
#include "unity.h"
#include "test/test_common_spi.h"
#define TEST_DMA_MAX_SIZE 14000
#define TEST_DMA_MAX_SIZE 4092
#define TEST_BUFFER_SIZE 256 ///< buffer size of each wrdma buffer in fifo mode
#define TEST_SEG_SIZE 25
@ -92,7 +92,7 @@ void config_single_board_test_pin(void)
static void init_master_hd(spi_device_handle_t* spi, const spitest_param_set_t* config, int freq)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE;
bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE*30;
bus_cfg.quadhd_io_num = PIN_NUM_HD;
bus_cfg.quadwp_io_num = PIN_NUM_WP;
#if defined(TEST_MASTER_GPIO_MATRIX) && CONFIG_IDF_TARGET_ESP32S2
@ -111,7 +111,7 @@ static void init_master_hd(spi_device_handle_t* spi, const spitest_param_set_t*
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, spi));
}
static void init_slave_hd(int mode, const spi_slave_hd_callback_config_t* callback)
static void init_slave_hd(int mode, bool append_mode, const spi_slave_hd_callback_config_t* callback)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE*30;
@ -123,6 +123,9 @@ static void init_slave_hd(int mode, const spi_slave_hd_callback_config_t* callba
spi_slave_hd_slot_config_t slave_hd_cfg = SPI_SLOT_TEST_DEFAULT_CONFIG();
slave_hd_cfg.mode = mode;
slave_hd_cfg.dma_chan = TEST_SLAVE_HOST;
if (append_mode) {
slave_hd_cfg.flags |= SPI_SLAVE_HD_APPEND_MODE;
}
if (callback) {
slave_hd_cfg.cb_config = *callback;
} else {
@ -211,7 +214,7 @@ static void test_hd_start(spi_device_handle_t *spi, int freq, const spitest_para
.cb_buffer_tx = rdbuf_cb,
.arg = ctx,
};
init_slave_hd(cfg->mode, &callback);
init_slave_hd(cfg->mode, 0, &callback);
//when test with single board via same set of mosi, miso, clk and cs pins.
config_single_board_test_pin();
@ -503,7 +506,7 @@ TEST_CASE("test spi slave hd segment mode, master too long", "[spi][spi_slv_hd]"
init_master_hd(&spi, cfg, freq);
//no callback needed
init_slave_hd(cfg->mode, NULL);
init_slave_hd(cfg->mode, 0, NULL);
//Use GPIO matrix to connect signal of master and slave via same set of pins on one board.
config_single_board_test_pin();

View File

@ -66,7 +66,7 @@ typedef enum {
SPI_LL_INTR_WRBUF = BIT(7), ///< Has received WRBUF command. Only available in slave HD.
SPI_LL_INTR_RDDMA = BIT(8), ///< Has received RDDMA command. Only available in slave HD.
SPI_LL_INTR_WRDMA = BIT(9), ///< Has received WRDMA command. Only available in slave HD.
SPI_LL_INTR_WR_DONE = BIT(10), ///< Has received WR_DONE command. Only available in slave HD.
SPI_LL_INTR_CMD7 = BIT(10), ///< Has received CMD7 command. Only available in slave HD.
SPI_LL_INTR_CMD8 = BIT(11), ///< Has received CMD8 command. Only available in slave HD.
SPI_LL_INTR_CMD9 = BIT(12), ///< Has received CMD9 command. Only available in slave HD.
SPI_LL_INTR_CMDA = BIT(13), ///< Has received CMDA command. Only available in slave HD.
@ -976,7 +976,7 @@ static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
item(SPI_LL_INTR_RDDMA, dma_int_ena.rd_dma_done, dma_int_raw.rd_dma_done, dma_int_clr.rd_dma_done=1) \
item(SPI_LL_INTR_WRDMA, dma_int_ena.wr_dma_done, dma_int_raw.wr_dma_done, dma_int_clr.wr_dma_done=1) \
item(SPI_LL_INTR_SEG_DONE, dma_int_ena.dma_seg_trans_done, dma_int_raw.dma_seg_trans_done, dma_int_clr.dma_seg_trans_done=1) \
item(SPI_LL_INTR_WR_DONE, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
item(SPI_LL_INTR_CMD7, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
item(SPI_LL_INTR_CMD8, dma_int_ena.cmd8, dma_int_raw.cmd8, dma_int_clr.cmd8=1) \
item(SPI_LL_INTR_CMD9, dma_int_ena.cmd9, dma_int_raw.cmd9, dma_int_clr.cmd9=1) \
item(SPI_LL_INTR_CMDA, dma_int_ena.cmda, dma_int_raw.cmda, dma_int_clr.cmda=1)

View File

@ -75,7 +75,7 @@ typedef enum {
SPI_LL_INTR_WRBUF = BIT(7), ///< Has received WRBUF command. Only available in slave HD.
SPI_LL_INTR_RDDMA = BIT(8), ///< Has received RDDMA command. Only available in slave HD.
SPI_LL_INTR_WRDMA = BIT(9), ///< Has received WRDMA command. Only available in slave HD.
SPI_LL_INTR_WR_DONE = BIT(10), ///< Has received WR_DONE command. Only available in slave HD.
SPI_LL_INTR_CMD7 = BIT(10), ///< Has received CMD7 command. Only available in slave HD.
SPI_LL_INTR_CMD8 = BIT(11), ///< Has received CMD8 command. Only available in slave HD.
SPI_LL_INTR_CMD9 = BIT(12), ///< Has received CMD9 command. Only available in slave HD.
SPI_LL_INTR_CMDA = BIT(13), ///< Has received CMDA command. Only available in slave HD.
@ -150,7 +150,7 @@ static inline void spi_ll_slave_hd_init(spi_dev_t *hw)
hw->slave.soft_reset = 1;
hw->slave.soft_reset = 0;
hw->user.doutdin = 0; //we only support full duplex
hw->user.doutdin = 0; //we only support half duplex
hw->slave.slave_mode = 1;
}
@ -955,21 +955,21 @@ static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
//helper macros to generate code for each interrupts
#define FOR_EACH_ITEM(op, list) do { list(op) } while(0)
#define INTR_LIST(item) \
item(SPI_LL_INTR_TRANS_DONE, slave.int_trans_done_en, slave.trans_done, slave.trans_done=0) \
item(SPI_LL_INTR_RDBUF, slave.int_rd_buf_done_en, slv_rdbuf_dlen.rd_buf_done, slv_rdbuf_dlen.rd_buf_done=0) \
item(SPI_LL_INTR_WRBUF, slave.int_wr_buf_done_en, slv_wrbuf_dlen.wr_buf_done, slv_wrbuf_dlen.wr_buf_done=0) \
item(SPI_LL_INTR_RDDMA, slave.int_rd_dma_done_en, slv_rd_byte.rd_dma_done, slv_rd_byte.rd_dma_done=0) \
item(SPI_LL_INTR_WRDMA, slave.int_wr_dma_done_en, slave1.wr_dma_done, slave1.wr_dma_done=0) \
item(SPI_LL_INTR_IN_SUC_EOF, dma_int_ena.in_suc_eof, dma_int_raw.in_suc_eof, dma_int_clr.in_suc_eof=1) \
item(SPI_LL_INTR_OUT_EOF, dma_int_ena.out_eof, dma_int_raw.out_eof, dma_int_clr.out_eof=1) \
item(SPI_LL_INTR_OUT_TOTAL_EOF, dma_int_ena.out_total_eof, dma_int_raw.out_total_eof, dma_int_clr.out_total_eof=1) \
item(SPI_LL_INTR_SEG_DONE, slave.int_dma_seg_trans_en, hold.dma_seg_trans_done, hold.dma_seg_trans_done=0) \
item(SPI_LL_INTR_IN_FULL, dma_int_ena.infifo_full_err, dma_int_raw.infifo_full_err, dma_int_clr.infifo_full_err=1) \
item(SPI_LL_INTR_OUT_EMPTY, dma_int_ena.outfifo_empty_err, dma_int_raw.outfifo_empty_err, dma_int_clr.outfifo_empty_err=1) \
item(SPI_LL_INTR_WR_DONE, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
item(SPI_LL_INTR_CMD8, dma_int_ena.cmd8, dma_int_raw.cmd8, dma_int_clr.cmd8=1) \
item(SPI_LL_INTR_CMD9, dma_int_ena.cmd9, dma_int_raw.cmd9, dma_int_clr.cmd9=1) \
item(SPI_LL_INTR_CMDA, dma_int_ena.cmda, dma_int_raw.cmda, dma_int_clr.cmda=1)
item(SPI_LL_INTR_TRANS_DONE, slave.int_trans_done_en, slave.trans_done, slave.trans_done=0) \
item(SPI_LL_INTR_RDBUF, slave.int_rd_buf_done_en, slv_rdbuf_dlen.rd_buf_done, slv_rdbuf_dlen.rd_buf_done=0) \
item(SPI_LL_INTR_WRBUF, slave.int_wr_buf_done_en, slv_wrbuf_dlen.wr_buf_done, slv_wrbuf_dlen.wr_buf_done=0) \
item(SPI_LL_INTR_RDDMA, slave.int_rd_dma_done_en, slv_rd_byte.rd_dma_done, slv_rd_byte.rd_dma_done=0) \
item(SPI_LL_INTR_WRDMA, slave.int_wr_dma_done_en, slave1.wr_dma_done, slave1.wr_dma_done=0) \
item(SPI_LL_INTR_IN_SUC_EOF, dma_int_ena.in_suc_eof, dma_int_raw.in_suc_eof, dma_int_clr.in_suc_eof=1) \
item(SPI_LL_INTR_OUT_EOF, dma_int_ena.out_eof, dma_int_raw.out_eof, dma_int_clr.out_eof=1) \
item(SPI_LL_INTR_OUT_TOTAL_EOF, dma_int_ena.out_total_eof, dma_int_raw.out_total_eof, dma_int_clr.out_total_eof=1) \
item(SPI_LL_INTR_SEG_DONE, slave.int_dma_seg_trans_en, hold.dma_seg_trans_done, hold.dma_seg_trans_done=0) \
item(SPI_LL_INTR_IN_FULL, dma_int_ena.infifo_full_err, dma_int_raw.infifo_full_err, dma_int_clr.infifo_full_err=1) \
item(SPI_LL_INTR_OUT_EMPTY, dma_int_ena.outfifo_empty_err, dma_int_raw.outfifo_empty_err, dma_int_clr.outfifo_empty_err=1) \
item(SPI_LL_INTR_CMD7, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
item(SPI_LL_INTR_CMD8, dma_int_ena.cmd8, dma_int_raw.cmd8, dma_int_clr.cmd8=1) \
item(SPI_LL_INTR_CMD9, dma_int_ena.cmd9, dma_int_raw.cmd9, dma_int_clr.cmd9=1) \
item(SPI_LL_INTR_CMDA, dma_int_ena.cmda, dma_int_raw.cmda, dma_int_clr.cmda=1)
static inline void spi_ll_enable_intr(spi_dev_t* hw, spi_ll_intr_t intr_mask)

View File

@ -66,7 +66,7 @@ typedef enum {
SPI_LL_INTR_WRBUF = BIT(7), ///< Has received WRBUF command. Only available in slave HD.
SPI_LL_INTR_RDDMA = BIT(8), ///< Has received RDDMA command. Only available in slave HD.
SPI_LL_INTR_WRDMA = BIT(9), ///< Has received WRDMA command. Only available in slave HD.
SPI_LL_INTR_WR_DONE = BIT(10), ///< Has received WR_DONE command. Only available in slave HD.
SPI_LL_INTR_CMD7 = BIT(10), ///< Has received CMD7 command. Only available in slave HD.
SPI_LL_INTR_CMD8 = BIT(11), ///< Has received CMD8 command. Only available in slave HD.
SPI_LL_INTR_CMD9 = BIT(12), ///< Has received CMD9 command. Only available in slave HD.
SPI_LL_INTR_CMDA = BIT(13), ///< Has received CMDA command. Only available in slave HD.
@ -985,7 +985,7 @@ static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
item(SPI_LL_INTR_RDDMA, dma_int_ena.rd_dma_done, dma_int_raw.rd_dma_done, dma_int_clr.rd_dma_done=1) \
item(SPI_LL_INTR_WRDMA, dma_int_ena.wr_dma_done, dma_int_raw.wr_dma_done, dma_int_clr.wr_dma_done=1) \
item(SPI_LL_INTR_SEG_DONE, dma_int_ena.dma_seg_trans_done, dma_int_raw.dma_seg_trans_done, dma_int_clr.dma_seg_trans_done=1) \
item(SPI_LL_INTR_WR_DONE, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
item(SPI_LL_INTR_CMD7, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
item(SPI_LL_INTR_CMD8, dma_int_ena.cmd8, dma_int_raw.cmd8, dma_int_clr.cmd8=1) \
item(SPI_LL_INTR_CMD9, dma_int_ena.cmd9, dma_int_raw.cmd9, dma_int_clr.cmd9=1) \
item(SPI_LL_INTR_CMDA, dma_int_ena.cmda, dma_int_raw.cmda, dma_int_clr.cmda=1)

View File

@ -19,9 +19,9 @@
******************************************************************************/
/*
* The HAL layer for SPI Slave HD mode, currently only segment mode is supported
* The HAL layer for SPI Slave HD mode.
*
* Usage:
* Usage (segment mode):
* - Firstly, initialize the slave with `spi_slave_hd_hal_init`
*
* - Event handling:
@ -40,7 +40,7 @@
* - RXDMA:
* - To receive data through DMA, call `spi_slave_hd_hal_rxdma`
* - When the operation is done, SPI_EV_RECV will be triggered.
* - Call ``spi_slave_hd_hal_rxdma_get_len`` to get the received length
* - Call ``spi_slave_hd_hal_rxdma_seg_get_len`` to get the received length
*
* - Shared buffer:
* - Call ``spi_slave_hd_hal_write_buffer`` to write the shared register buffer. When the buffer is
@ -56,40 +56,60 @@
#include "hal/spi_ll.h"
#include "hal/spi_types.h"
/**
* @brief Type of dma descriptor with appended members
* this structure inherits DMA descriptor, with a pointer to the transaction descriptor passed from users.
*/
typedef struct {
lldesc_t desc; ///< DMA descriptor
void *arg; ///< This points to the transaction descriptor user passed in
} spi_slave_hd_hal_desc_append_t;
/// Configuration of the HAL
typedef struct {
uint32_t host_id; ///< Host ID of the spi peripheral
spi_dma_dev_t *dma_in; ///< Input DMA(DMA -> RAM) peripheral register address
spi_dma_dev_t *dma_out; ///< Output DMA(RAM -> DMA) peripheral register address
uint32_t spics_io_num; ///< CS GPIO pin for this device
uint8_t mode; ///< SPI mode (0-3)
uint32_t command_bits; ///< command field bits, multiples of 8 and at least 8.
uint32_t address_bits; ///< address field bits, multiples of 8 and at least 8.
uint32_t dummy_bits; ///< dummy field bits, multiples of 8 and at least 8.
uint32_t host_id; ///< Host ID of the spi peripheral
spi_dma_dev_t *dma_in; ///< Input DMA(DMA -> RAM) peripheral register address
spi_dma_dev_t *dma_out; ///< Output DMA(RAM -> DMA) peripheral register address
uint32_t dma_chan; ///< The dma channel used.
bool append_mode; ///< True for DMA append mode, false for segment mode
uint32_t spics_io_num; ///< CS GPIO pin for this device
uint8_t mode; ///< SPI mode (0-3)
uint32_t command_bits; ///< command field bits, multiples of 8 and at least 8.
uint32_t address_bits; ///< address field bits, multiples of 8 and at least 8.
uint32_t dummy_bits; ///< dummy field bits, multiples of 8 and at least 8.
struct {
uint32_t tx_lsbfirst : 1; ///< Whether TX data should be sent with LSB first.
uint32_t rx_lsbfirst : 1; ///< Whether RX data should be read with LSB first.
uint32_t tx_lsbfirst : 1; ///< Whether TX data should be sent with LSB first.
uint32_t rx_lsbfirst : 1; ///< Whether RX data should be read with LSB first.
};
uint32_t dma_chan; ///< The dma channel used.
} spi_slave_hd_hal_config_t;
/// Context of the HAL, initialized by :cpp:func:`spi_slave_hd_hal_init`.
typedef struct {
spi_dev_t *dev; ///< Beginning address of the peripheral registers.
spi_dma_dev_t *dma_in; ///< Address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
spi_dma_dev_t *dma_out; ///< Address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
lldesc_t *dmadesc_tx; /**< Array of DMA descriptor used by the TX DMA.
* The amount should be larger than dmadesc_n. The driver should ensure that
* the data to be sent is shorter than the descriptors can hold.
*/
lldesc_t *dmadesc_rx; /**< Array of DMA descriptor used by the RX DMA.
* The amount should be larger than dmadesc_n. The driver should ensure that
* the data to be sent is shorter than the descriptors can hold.
*/
/* These two need to be malloced by the driver first */
spi_slave_hd_hal_desc_append_t *dmadesc_tx; ///< Head of the TX DMA descriptors.
spi_slave_hd_hal_desc_append_t *dmadesc_rx; ///< Head of the RX DMA descriptors.
/* address of the hardware */
spi_dev_t *dev; ///< Beginning address of the peripheral registers.
spi_dma_dev_t *dma_in; ///< Address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
spi_dma_dev_t *dma_out; ///< Address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
bool append_mode; ///< True for DMA append mode, false for segment mode
uint32_t dma_desc_num; ///< Number of the available DMA descriptors. Calculated from ``bus_max_transfer_size``.
spi_slave_hd_hal_desc_append_t *tx_cur_desc; ///< Current TX DMA descriptor that could be linked (set up).
spi_slave_hd_hal_desc_append_t *tx_dma_head; ///< Head of the linked TX DMA descriptors which are not used by hardware
spi_slave_hd_hal_desc_append_t *tx_dma_tail; ///< Tail of the linked TX DMA descriptors which are not used by hardware
uint32_t tx_used_desc_cnt; ///< Number of the TX descriptors that have been setup
uint32_t tx_recycled_desc_cnt; ///< Number of the TX descriptors that could be recycled
spi_slave_hd_hal_desc_append_t *rx_cur_desc; ///< Current RX DMA descriptor that could be linked (set up).
spi_slave_hd_hal_desc_append_t *rx_dma_head; ///< Head of the linked RX DMA descriptors which are not used by hardware
spi_slave_hd_hal_desc_append_t *rx_dma_tail; ///< Tail of the linked RX DMA descriptors which are not used by hardware
uint32_t rx_used_desc_cnt; ///< Number of the RX descriptors that have been setup
uint32_t rx_recycled_desc_cnt; ///< Number of the RX descriptors that could be recycled
/* Internal status used by the HAL implementation, initialized as 0. */
uint32_t intr_not_triggered;
uint32_t intr_not_triggered;
} spi_slave_hd_hal_context_t;
/**
@ -100,6 +120,23 @@ typedef struct {
*/
void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_hal_config_t *hal_config);
/**
* @brief Get the size of one DMA descriptor
*
* @param hal Context of the HAL layer
* @param bus_size SPI bus maximum transfer size, in bytes.
* @return Total size needed for all the DMA descriptors
*/
uint32_t spi_slave_hd_hal_get_total_desc_size(spi_slave_hd_hal_context_t *hal, uint32_t bus_size);
/**
* @brief Get the actual bus size
*
* @param hal Context of the HAL layer
* @return Actual bus transaction size
*/
uint32_t spi_salve_hd_hal_get_max_bus_size(spi_slave_hd_hal_context_t *hal);
/**
* @brief Check and clear signal of one event
*
@ -160,7 +197,7 @@ void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, s
* @param hal Context of the HAL layer
* @return The received length
*/
int spi_slave_hd_hal_rxdma_get_len(spi_slave_hd_hal_context_t *hal);
int spi_slave_hd_hal_rxdma_seg_get_len(spi_slave_hd_hal_context_t *hal);
////////////////////////////////////////////////////////////////////////////////
// TX DMA
@ -212,3 +249,54 @@ int spi_slave_hd_hal_get_rxlen(spi_slave_hd_hal_context_t *hal);
* @return The address of last transaction
*/
int spi_slave_hd_hal_get_last_addr(spi_slave_hd_hal_context_t *hal);
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
////////////////////////////////////////////////////////////////////////////////
// Append Mode
////////////////////////////////////////////////////////////////////////////////
/**
* @brief Return the finished TX transaction
*
* @param hal Context of the HAL layer
* @param out_trans Pointer to the caller-defined transaction
* @return 1: Transaction is finished; 0: Transaction is not finished
*/
bool spi_slave_hd_hal_get_tx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans);
/**
* @brief Return the finished RX transaction
*
* @param hal Context of the HAL layer
* @param out_trans Pointer to the caller-defined transaction
* @param out_len Actual number of bytes of received data
* @return 1: Transaction is finished; 0: Transaction is not finished
*/
bool spi_slave_hd_hal_get_rx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans, size_t *out_len);
/**
* @brief Load the TX DMA descriptors without stopping the DMA
*
* @param hal Context of the HAL layer
* @param data Buffer of the transaction data
* @param len Length of the data
* @param arg Pointer used by the caller to indicate the tranaction. Will be returned by ``spi_slave_hd_hal_get_tx_finished_trans`` when transaction is finished
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_STATE: Function called in invalid state.
*/
esp_err_t spi_slave_hd_hal_txdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg);
/**
* @brief Load the RX DMA descriptors without stopping the DMA
*
* @param hal Context of the HAL layer
* @param data Buffer of the transaction data
* @param len Length of the data
* @param arg Pointer used by the caller to indicate the tranaction. Will be returned by ``spi_slave_hd_hal_get_rx_finished_trans`` when transaction is finished
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_STATE: Function called in invalid state.
*/
esp_err_t spi_slave_hd_hal_rxdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg);
#endif //#if CONFIG_IDF_TARGET_ESP32S2

View File

@ -31,13 +31,13 @@ typedef enum {
/// SPI Events
typedef enum {
SPI_EV_BUF_TX = BIT(0), ///< The buffer has sent data to master, Slave HD only
SPI_EV_BUF_RX = BIT(1), ///< The buffer has received data from master, Slave HD only
SPI_EV_SEND = BIT(2), ///< Has sent data to master through RDDMA, Slave HD only
SPI_EV_RECV = BIT(3), ///< Has received data from master through WRDMA, Slave HD only
SPI_EV_CMD9 = BIT(4), ///< Received CMD9 from master, Slave HD only
SPI_EV_CMDA = BIT(5), ///< Received CMDA from master, Slave HD only
SPI_EV_TRANS = BIT(6), ///< A transaction has done
SPI_EV_BUF_TX = BIT(0), ///< The buffer has sent data to master, Slave HD only
SPI_EV_BUF_RX = BIT(1), ///< The buffer has received data from master, Slave HD only
SPI_EV_SEND = BIT(2), ///< Slave has loaded some data to DMA, and master has received certain number of the data, the number is determined by master. Slave HD only
SPI_EV_RECV = BIT(3), ///< Slave has received certain number of data from master, the number is determined by master. Slave HD only.
SPI_EV_CMD9 = BIT(4), ///< Received CMD9 from master, Slave HD only
SPI_EV_CMDA = BIT(5), ///< Received CMDA from master, Slave HD only
SPI_EV_TRANS = BIT(6), ///< A transaction has done
} spi_event_t;
FLAG_ATTR(spi_event_t)

View File

@ -26,8 +26,8 @@
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#endif
static const char SPI_HAL_TAG[] = "spi_hal";

View File

@ -11,8 +11,8 @@
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#endif
static void s_spi_slave_hal_dma_init_config(const spi_slave_hal_context_t *hal)

View File

@ -35,8 +35,8 @@
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_start(dev, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\
@ -53,15 +53,18 @@ static void s_spi_slave_hd_hal_dma_init_config(const spi_slave_hd_hal_context_t
spi_dma_ll_tx_enable_burst_data(hal->dma_out, 1);
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, 1);
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, 1);
spi_dma_ll_enable_out_auto_wrback(hal->dma_out, 1);
}
void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_hal_config_t *hal_config)
{
memset(hal, 0, sizeof(spi_slave_hd_hal_context_t));
spi_dev_t* hw = SPI_LL_GET_HW(hal_config->host_id);
hal->dev = hw;
hal->dma_in = hal_config->dma_in;
hal->dma_out = hal_config->dma_out;
hal->append_mode = hal_config->append_mode;
hal->rx_cur_desc = hal->dmadesc_rx;
hal->tx_cur_desc = hal->dmadesc_tx;
//Configure slave
s_spi_slave_hd_hal_dma_init_config(hal);
@ -76,23 +79,30 @@ void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_h
spi_ll_disable_intr(hw, UINT32_MAX);
spi_ll_clear_intr(hw, UINT32_MAX);
if (!hal_config->append_mode) {
spi_ll_set_intr(hw, SPI_LL_INTR_CMD7 | SPI_LL_INTR_CMD8);
spi_ll_set_intr(hw, SPI_LL_INTR_WR_DONE | SPI_LL_INTR_CMD8);
bool workaround_required = false;
if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD7)) {
hal->intr_not_triggered |= SPI_EV_RECV;
workaround_required = true;
}
if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD8)) {
hal->intr_not_triggered |= SPI_EV_SEND;
workaround_required = true;
}
bool workaround_required = false;
if (!spi_ll_get_intr(hw, SPI_LL_INTR_WR_DONE)) {
hal->intr_not_triggered |= SPI_EV_RECV;
workaround_required = true;
if (workaround_required) {
//Workaround if the previous interrupts are not writable
spi_ll_set_intr(hw, SPI_LL_INTR_TRANS_DONE);
}
}
if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD8)) {
hal->intr_not_triggered |= SPI_EV_SEND;
workaround_required = true;
}
if (workaround_required) {
//Workaround if the previous interrupts are not writable
spi_ll_set_intr(hw, SPI_LL_INTR_TRANS_DONE);
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
else {
spi_ll_enable_intr(hw, SPI_LL_INTR_OUT_EOF | SPI_LL_INTR_CMD7);
}
#endif
spi_ll_slave_hd_set_len_cond(hw, SPI_LL_TRANS_LEN_COND_WRBUF |
SPI_LL_TRANS_LEN_COND_WRDMA |
@ -102,24 +112,41 @@ void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_h
spi_ll_slave_set_seg_mode(hal->dev, true);
}
uint32_t spi_salve_hd_hal_get_max_bus_size(spi_slave_hd_hal_context_t *hal)
{
return hal->dma_desc_num * LLDESC_MAX_NUM_PER_DESC;
}
uint32_t spi_slave_hd_hal_get_total_desc_size(spi_slave_hd_hal_context_t *hal, uint32_t bus_size)
{
//See how many dma descriptors we need
int dma_desc_ct = (bus_size + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
if (dma_desc_ct == 0) {
dma_desc_ct = 1; //default to 4k when max is not given
}
hal->dma_desc_num = dma_desc_ct;
return hal->dma_desc_num * sizeof(spi_slave_hd_hal_desc_append_t);
}
void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, size_t len)
{
lldesc_setup_link(hal->dmadesc_rx, out_buf, len, true);
lldesc_setup_link(&hal->dmadesc_rx->desc, out_buf, len, true);
spi_ll_dma_rx_fifo_reset(hal->dev);
spi_dma_ll_rx_reset(hal->dma_in);
spi_ll_slave_reset(hal->dev);
spi_ll_infifo_full_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_WR_DONE);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
spi_ll_slave_set_rx_bitlen(hal->dev, len * 8);
spi_ll_dma_rx_enable(hal->dev, 1);
spi_dma_ll_rx_start(hal->dma_in, &hal->dmadesc_rx[0]);
spi_dma_ll_rx_start(hal->dma_in, &hal->dmadesc_rx->desc);
}
void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len)
{
lldesc_setup_link(hal->dmadesc_tx, data, len, false);
lldesc_setup_link(&hal->dmadesc_tx->desc, data, len, false);
spi_ll_dma_tx_fifo_reset(hal->dev);
spi_dma_ll_tx_reset(hal->dma_out);
@ -128,25 +155,29 @@ void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD8);
spi_ll_dma_tx_enable(hal->dev, 1);
spi_dma_ll_tx_start(hal->dma_out, &hal->dmadesc_tx[0]);
spi_dma_ll_tx_start(hal->dma_out, &hal->dmadesc_tx->desc);
}
static spi_ll_intr_t get_event_intr(spi_event_t ev)
static spi_ll_intr_t get_event_intr(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
{
spi_ll_intr_t intr = 0;
if (ev & SPI_EV_BUF_TX) intr |= SPI_LL_INTR_RDBUF;
if (ev & SPI_EV_BUF_RX) intr |= SPI_LL_INTR_WRBUF;
if (ev & SPI_EV_SEND) intr |= SPI_LL_INTR_CMD8;
if (ev & SPI_EV_RECV) intr |= SPI_LL_INTR_WR_DONE;
if (ev & SPI_EV_CMD9) intr |= SPI_LL_INTR_CMD9;
if (ev & SPI_EV_CMDA) intr |= SPI_LL_INTR_CMDA;
if (ev & SPI_EV_TRANS) intr |= SPI_LL_INTR_TRANS_DONE;
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
if ((ev & SPI_EV_SEND) && hal->append_mode) intr |= SPI_LL_INTR_OUT_EOF;
#endif
if ((ev & SPI_EV_SEND) && !hal->append_mode) intr |= SPI_LL_INTR_CMD8;
if (ev & SPI_EV_RECV) intr |= SPI_LL_INTR_CMD7;
if (ev & SPI_EV_BUF_TX) intr |= SPI_LL_INTR_RDBUF;
if (ev & SPI_EV_BUF_RX) intr |= SPI_LL_INTR_WRBUF;
if (ev & SPI_EV_CMD9) intr |= SPI_LL_INTR_CMD9;
if (ev & SPI_EV_CMDA) intr |= SPI_LL_INTR_CMDA;
if (ev & SPI_EV_TRANS) intr |= SPI_LL_INTR_TRANS_DONE;
return intr;
}
bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
{
spi_ll_intr_t intr = get_event_intr(ev);
spi_ll_intr_t intr = get_event_intr(hal, ev);
if (spi_ll_get_intr(hal->dev, intr)) {
spi_ll_clear_intr(hal->dev, intr);
return true;
@ -154,15 +185,15 @@ bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t* hal, spi_eve
return false;
}
bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
{
//The trans_done interrupt is used for the workaround when some interrupt is not writable
spi_ll_intr_t intr = get_event_intr(ev);
spi_ll_intr_t intr = get_event_intr(hal, ev);
// Workaround for these interrupts not writable
uint32_t missing_intr = hal->intr_not_triggered & ev;
if (missing_intr) {
if ((missing_intr & SPI_EV_RECV) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_WR_DONE)) {
if ((missing_intr & SPI_EV_RECV) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_CMD7)) {
hal->intr_not_triggered &= ~SPI_EV_RECV;
}
if ((missing_intr & SPI_EV_SEND) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_CMD8)) {
@ -182,13 +213,13 @@ bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t* hal, spi_e
void spi_slave_hd_hal_enable_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
{
spi_ll_intr_t intr = get_event_intr(ev);
spi_ll_intr_t intr = get_event_intr(hal, ev);
spi_ll_enable_intr(hal->dev, intr);
}
void spi_slave_hd_hal_invoke_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
{
spi_ll_intr_t intr = get_event_intr(ev);
spi_ll_intr_t intr = get_event_intr(hal, ev);
// Workaround for these interrupts not writable
if (hal->intr_not_triggered & ev & (SPI_EV_RECV | SPI_EV_SEND)) {
@ -219,8 +250,155 @@ int spi_slave_hd_hal_get_rxlen(spi_slave_hd_hal_context_t *hal)
return spi_ll_slave_get_rx_byte_len(hal->dev);
}
int spi_slave_hd_hal_rxdma_get_len(spi_slave_hd_hal_context_t *hal)
int spi_slave_hd_hal_rxdma_seg_get_len(spi_slave_hd_hal_context_t *hal)
{
lldesc_t* desc = &hal->dmadesc_rx[0];
lldesc_t* desc = &hal->dmadesc_rx->desc;
return lldesc_get_received_len(desc, NULL);
}
bool spi_slave_hd_hal_get_tx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans)
{
if (!hal->tx_dma_head || hal->tx_dma_head->desc.owner) {
return false;
}
*out_trans = hal->tx_dma_head->arg;
hal->tx_recycled_desc_cnt++;
hal->tx_dma_head = (spi_slave_hd_hal_desc_append_t *)STAILQ_NEXT(&hal->tx_dma_head->desc, qe);
return true;
}
bool spi_slave_hd_hal_get_rx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans, size_t *out_len)
{
if (!hal->rx_dma_head || hal->rx_dma_head->desc.owner) {
return false;
}
*out_trans = hal->rx_dma_head->arg;
*out_len = hal->rx_dma_head->desc.length;
hal->rx_recycled_desc_cnt++;
hal->rx_dma_head = (spi_slave_hd_hal_desc_append_t *)STAILQ_NEXT(&hal->rx_dma_head->desc, qe);
return true;
}
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
static void spi_slave_hd_hal_link_append_desc(spi_slave_hd_hal_desc_append_t *dmadesc, const void *data, int len, bool isrx, void *arg)
{
assert(len <= LLDESC_MAX_NUM_PER_DESC); //TODO: Add support for transaction with length larger than 4092, IDF-2660
int n = 0;
while (len) {
int dmachunklen = len;
if (dmachunklen > LLDESC_MAX_NUM_PER_DESC) {
dmachunklen = LLDESC_MAX_NUM_PER_DESC;
}
if (isrx) {
//Receive needs DMA length rounded to next 32-bit boundary
dmadesc[n].desc.size = (dmachunklen + 3) & (~3);
dmadesc[n].desc.length = (dmachunklen + 3) & (~3);
} else {
dmadesc[n].desc.size = dmachunklen;
dmadesc[n].desc.length = dmachunklen;
}
dmadesc[n].desc.buf = (uint8_t *)data;
dmadesc[n].desc.eof = 0;
dmadesc[n].desc.sosf = 0;
dmadesc[n].desc.owner = 1;
dmadesc[n].desc.qe.stqe_next = &dmadesc[n + 1].desc;
dmadesc[n].arg = arg;
len -= dmachunklen;
data += dmachunklen;
n++;
}
dmadesc[n - 1].desc.eof = 1; //Mark last DMA desc as end of stream.
dmadesc[n - 1].desc.qe.stqe_next = NULL;
}
esp_err_t spi_slave_hd_hal_txdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg)
{
//Check if there are enough available DMA descriptors for software to use
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
int not_recycled_desc_num = hal->tx_used_desc_cnt - hal->tx_recycled_desc_cnt;
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
if (num_required > available_desc_num) {
return ESP_ERR_INVALID_STATE;
}
spi_slave_hd_hal_link_append_desc(hal->tx_cur_desc, data, len, false, arg);
if (!hal->tx_dma_head) {
//start a new link
hal->tx_dma_head = hal->tx_cur_desc;
hal->tx_dma_tail = hal->tx_cur_desc;
spi_dma_ll_tx_reset(hal->dma_out);
spi_ll_outfifo_empty_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_OUT_EOF);
spi_ll_dma_tx_enable(hal->dev, 1);
spi_dma_ll_tx_start(hal->dma_out, &hal->tx_dma_head->desc);
} else {
//there is already a link
STAILQ_NEXT(&hal->tx_dma_tail->desc, qe) = &hal->tx_cur_desc->desc;
hal->tx_dma_tail = hal->tx_cur_desc;
spi_dma_ll_tx_restart(hal->dma_out);
}
//Move the current descriptor pointer according to the number of the linked descriptors
for (int i = 0; i < num_required; i++) {
hal->tx_used_desc_cnt++;
hal->tx_cur_desc++;
if (hal->tx_cur_desc == hal->dmadesc_tx + hal->dma_desc_num) {
hal->tx_cur_desc = hal->dmadesc_tx;
}
}
return ESP_OK;
}
esp_err_t spi_slave_hd_hal_rxdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg)
{
//Check if there are enough available dma descriptors for software to use
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
int not_recycled_desc_num = hal->rx_used_desc_cnt - hal->rx_recycled_desc_cnt;
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
if (num_required > available_desc_num) {
return ESP_ERR_INVALID_STATE;
}
spi_slave_hd_hal_link_append_desc(hal->rx_cur_desc, data, len, false, arg);
if (!hal->rx_dma_head) {
//start a new link
hal->rx_dma_head = hal->rx_cur_desc;
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_ll_rx_reset(hal->dma_in);
spi_ll_infifo_full_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
spi_ll_dma_rx_enable(hal->dev, 1);
spi_dma_ll_rx_start(hal->dma_in, &hal->rx_dma_head->desc);
} else {
//there is already a link
STAILQ_NEXT(&hal->rx_dma_tail->desc, qe) = &hal->rx_cur_desc->desc;
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_ll_rx_restart(hal->dma_in);
}
//Move the current descriptor pointer according to the number of the linked descriptors
for (int i = 0; i < num_required; i++) {
hal->rx_used_desc_cnt++;
hal->rx_cur_desc++;
if (hal->rx_cur_desc == hal->dmadesc_rx + hal->dma_desc_num) {
hal->rx_cur_desc = hal->dmadesc_rx;
}
}
return ESP_OK;
}
#endif //#if CONFIG_IDF_TARGET_ESP32S2