mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
spi_slave_hd: add DMA Append Mode feature
This commit is contained in:
parent
76acc8ddde
commit
0538dc2d93
@ -33,16 +33,16 @@ extern "C"
|
||||
|
||||
/// Descriptor of data to send/receive
|
||||
typedef struct {
|
||||
uint8_t* data; ///< Buffer to send, must be DMA capable
|
||||
size_t len; ///< Len of data to send/receive. For receiving the buffer length should be multiples of 4 bytes, otherwise the extra part will be truncated.
|
||||
size_t trans_len; ///< Data actually received
|
||||
void* arg; ///< Extra argument indiciating this data
|
||||
uint8_t* data; ///< Buffer to send, must be DMA capable
|
||||
size_t len; ///< Len of data to send/receive. For receiving the buffer length should be multiples of 4 bytes, otherwise the extra part will be truncated.
|
||||
size_t trans_len; ///< For RX direction, it indicates the data actually received. For TX direction, it is meaningless.
|
||||
void* arg; ///< Extra argument indiciating this data
|
||||
} spi_slave_hd_data_t;
|
||||
|
||||
/// Information of SPI Slave HD event
|
||||
typedef struct {
|
||||
spi_event_t event; ///< Event type
|
||||
spi_slave_hd_data_t* trans; ///< Corresponding transaction for SPI_EV_SEND and SPI_EV_RECV events
|
||||
spi_event_t event; ///< Event type
|
||||
spi_slave_hd_data_t* trans; ///< Corresponding transaction for SPI_EV_SEND and SPI_EV_RECV events
|
||||
} spi_slave_hd_event_t;
|
||||
|
||||
/// Callback for SPI Slave HD
|
||||
@ -50,38 +50,39 @@ typedef bool (*slave_cb_t)(void* arg, spi_slave_hd_event_t* event, BaseType_t* a
|
||||
|
||||
/// Channel of SPI Slave HD to do data transaction
|
||||
typedef enum {
|
||||
SPI_SLAVE_CHAN_TX = 0, ///< The output channel (RDDMA)
|
||||
SPI_SLAVE_CHAN_RX = 1, ///< The input channel (WRDMA)
|
||||
SPI_SLAVE_CHAN_TX = 0, ///< The output channel (RDDMA)
|
||||
SPI_SLAVE_CHAN_RX = 1, ///< The input channel (WRDMA)
|
||||
} spi_slave_chan_t;
|
||||
|
||||
/// Callback configuration structure for SPI Slave HD
|
||||
typedef struct {
|
||||
slave_cb_t cb_recv; ///< Callback when receive data
|
||||
slave_cb_t cb_sent; ///< Callback when data sent
|
||||
slave_cb_t cb_buffer_tx; ///< Callback when master reads from shared buffer
|
||||
slave_cb_t cb_buffer_rx; ///< Callback when master writes to shared buffer
|
||||
slave_cb_t cb_cmd9; ///< Callback when CMD9 received
|
||||
slave_cb_t cb_cmdA; ///< Callback when CMDA received
|
||||
void* arg; ///< Argument indicating this SPI Slave HD peripheral instance
|
||||
slave_cb_t cb_buffer_tx; ///< Callback when master reads from shared buffer
|
||||
slave_cb_t cb_buffer_rx; ///< Callback when master writes to shared buffer
|
||||
slave_cb_t cb_sent; ///< Callback when data are sent
|
||||
slave_cb_t cb_recv; ///< Callback when data are received
|
||||
slave_cb_t cb_cmd9; ///< Callback when CMD9 received
|
||||
slave_cb_t cb_cmdA; ///< Callback when CMDA received
|
||||
void* arg; ///< Argument indicating this SPI Slave HD peripheral instance
|
||||
} spi_slave_hd_callback_config_t;
|
||||
|
||||
|
||||
//flags for ``spi_slave_hd_slot_config_t`` to use
|
||||
#define SPI_SLAVE_HD_TXBIT_LSBFIRST (1<<0) ///< Transmit command/address/data LSB first instead of the default MSB first
|
||||
#define SPI_SLAVE_HD_RXBIT_LSBFIRST (1<<1) ///< Receive data LSB first instead of the default MSB first
|
||||
#define SPI_SLAVE_HD_BIT_LSBFIRST (SPI_SLAVE_HD_TXBIT_LSBFIRST|SPI_SLAVE_HD_RXBIT_LSBFIRST) ///< Transmit and receive LSB first
|
||||
#define SPI_SLAVE_HD_APPEND_MODE (1<<2) ///< Adopt DMA append mode for transactions. In this mode, users can load(append) DMA descriptors without stopping the DMA
|
||||
|
||||
/// Configuration structure for the SPI Slave HD driver
|
||||
typedef struct {
|
||||
int spics_io_num; ///< CS GPIO pin for this device
|
||||
uint32_t flags; ///< Bitwise OR of SPI_SLAVE_HD_* flags
|
||||
#define SPI_SLAVE_HD_TXBIT_LSBFIRST (1<<0) ///< Transmit command/address/data LSB first instead of the default MSB first
|
||||
#define SPI_SLAVE_HD_RXBIT_LSBFIRST (1<<1) ///< Receive data LSB first instead of the default MSB first
|
||||
#define SPI_SLAVE_HD_BIT_LSBFIRST (SPI_SLAVE_HD_TXBIT_LSBFIRST|SPI_SLAVE_HD_RXBIT_LSBFIRST) ///< Transmit and receive LSB first
|
||||
|
||||
uint8_t mode; ///< SPI mode (0-3)
|
||||
int command_bits; ///< command field bits, multiples of 8 and at least 8.
|
||||
int address_bits; ///< address field bits, multiples of 8 and at least 8.
|
||||
int dummy_bits; ///< dummy field bits, multiples of 8 and at least 8.
|
||||
|
||||
int queue_size; ///< Transaction queue size. This sets how many transactions can be 'in the air' (queued using spi_slave_hd_queue_trans but not yet finished using spi_slave_hd_get_trans_result) at the same time
|
||||
|
||||
int dma_chan; ///< DMA channel used
|
||||
spi_slave_hd_callback_config_t cb_config; ///< Callback configuration
|
||||
uint8_t mode; ///< SPI mode (0-3)
|
||||
uint32_t spics_io_num; ///< CS GPIO pin for this device
|
||||
uint32_t flags; ///< Bitwise OR of SPI_SLAVE_HD_* flags
|
||||
uint32_t command_bits; ///< command field bits, multiples of 8 and at least 8.
|
||||
uint32_t address_bits; ///< address field bits, multiples of 8 and at least 8.
|
||||
uint32_t dummy_bits; ///< dummy field bits, multiples of 8 and at least 8.
|
||||
uint32_t queue_size; ///< Transaction queue size. This sets how many transactions can be 'in the air' (queued using spi_slave_hd_queue_trans but not yet finished using spi_slave_hd_get_trans_result) at the same time
|
||||
uint32_t dma_chan; ///< DMA channel used
|
||||
spi_slave_hd_callback_config_t cb_config; ///< Callback configuration
|
||||
} spi_slave_hd_slot_config_t;
|
||||
|
||||
/**
|
||||
@ -111,36 +112,39 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
|
||||
esp_err_t spi_slave_hd_deinit(spi_host_device_t host_id);
|
||||
|
||||
/**
|
||||
* @brief Queue data transaction
|
||||
* @brief Queue transactions (segment mode)
|
||||
*
|
||||
* @param host_id Host to queue the transaction
|
||||
* @param chan Channel to queue the data, SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
|
||||
* @param trans Descriptor of data to queue
|
||||
* @param chan SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
|
||||
* @param trans Transaction descriptors
|
||||
* @param timeout Timeout before the data is queued
|
||||
* @return
|
||||
* - ESP_OK: on success
|
||||
* - ESP_ERR_INVALID_ARG: The input argument is invalid. Can be the following reason:
|
||||
* - The buffer given is not DMA capable
|
||||
* - The length of data is invalid (not larger than 0, or exceed the max transfer length)
|
||||
* - The function is invalid
|
||||
* - ESP_ERR_TIMEOUT: Cannot queue the data before timeout. This is quite possible if the master
|
||||
* doesn't read/write the slave on time.
|
||||
* - The transaction direction is invalid
|
||||
* - ESP_ERR_TIMEOUT: Cannot queue the data before timeout. Master is still processing previous transaction.
|
||||
* - ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called under segment mode.
|
||||
*/
|
||||
esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t* trans, TickType_t timeout);
|
||||
|
||||
/**
|
||||
* @brief Get the result of a data transaction
|
||||
* @brief Get the result of a data transaction (segment mode)
|
||||
*
|
||||
* @note This API should be called successfully the same times as the ``spi_slave_hd_queue_trans``.
|
||||
*
|
||||
* @param host_id Host to queue the transaction
|
||||
* @param chan Channel to get the result, SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
|
||||
* @param[out] out_trans Output descriptor of the returned transaction
|
||||
* @param[out] out_trans Pointer to the transaction descriptor (``spi_slave_hd_data_t``) passed to the driver before. Hardware has finished this transaction. Member ``trans_len`` indicates the actual number of bytes of received data, it's meaningless for TX.
|
||||
* @param timeout Timeout before the result is got
|
||||
* @return
|
||||
* - ESP_OK: on success
|
||||
* - ESP_ERR_INVALID_ARG: Function is not valid
|
||||
* - ESP_ERR_TIMEOUT: There's no transaction done before timeout
|
||||
* - ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called under segment mode.
|
||||
*/
|
||||
esp_err_t spi_slave_hd_get_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t** out_trans, TickType_t timeout);
|
||||
esp_err_t spi_slave_hd_get_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout);
|
||||
|
||||
/**
|
||||
* @brief Read the shared registers
|
||||
@ -162,6 +166,42 @@ void spi_slave_hd_read_buffer(spi_host_device_t host_id, int addr, uint8_t *out_
|
||||
*/
|
||||
void spi_slave_hd_write_buffer(spi_host_device_t host_id, int addr, uint8_t *data, size_t len);
|
||||
|
||||
/**
|
||||
* @brief Load transactions (append mode)
|
||||
*
|
||||
* @note In this mode, user transaction descriptors will be appended to the DMA and the DMA will keep processing the data without stopping
|
||||
*
|
||||
* @param host_id Host to load transactions
|
||||
* @param chan SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
|
||||
* @param trans Transaction descriptor
|
||||
* @param timeout Timeout before the transaction is loaded
|
||||
* @return
|
||||
* - ESP_OK: on success
|
||||
* - ESP_ERR_INVALID_ARG: The input argument is invalid. Can be the following reason:
|
||||
* - The buffer given is not DMA capable
|
||||
* - The length of data is invalid (not larger than 0, or exceed the max transfer length)
|
||||
* - The transaction direction is invalid
|
||||
* - ESP_ERR_TIMEOUT: Master is still processing previous transaction. There is no available transaction for slave to load
|
||||
* - ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called under append mode.
|
||||
*/
|
||||
esp_err_t spi_slave_hd_append_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t *trans, TickType_t timeout);
|
||||
|
||||
/**
|
||||
* @brief Get the result of a data transaction (append mode)
|
||||
*
|
||||
* @note This API should be called the same times as the ``spi_slave_hd_append_trans``
|
||||
*
|
||||
* @param host_id Host to load the transaction
|
||||
* @param chan SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
|
||||
* @param[out] out_trans Pointer to the transaction descriptor (``spi_slave_hd_data_t``) passed to the driver before. Hardware has finished this transaction. Member ``trans_len`` indicates the actual number of bytes of received data, it's meaningless for TX.
|
||||
* @param timeout Timeout before the result is got
|
||||
* @return
|
||||
* - ESP_OK: on success
|
||||
* - ESP_ERR_INVALID_ARG: Function is not valid
|
||||
* - ESP_ERR_TIMEOUT: There's no transaction done before timeout
|
||||
* - ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called under append mode.
|
||||
*/
|
||||
esp_err_t spi_slave_hd_get_append_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -220,7 +220,7 @@ void spicommon_connect_spi_and_dma(spi_host_device_t host, int dma_chan)
|
||||
spi_dma_connect_tx_channel_to_periph(gdma_chan, periph_id);
|
||||
spi_dma_set_rx_channel_priority(gdma_chan, 1);
|
||||
spi_dma_set_tx_channel_priority(gdma_chan, 1);
|
||||
#endif
|
||||
#endif //#elif SOC_GDMA_SUPPORTED
|
||||
}
|
||||
|
||||
static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
|
||||
|
@ -14,12 +14,13 @@
|
||||
|
||||
#include "esp_log.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "freertos/queue.h"
|
||||
#include "freertos/ringbuf.h"
|
||||
#include "driver/gpio.h"
|
||||
#include "driver/spi_common_internal.h"
|
||||
#include "hal/spi_slave_hd_hal.h"
|
||||
|
||||
#include "driver/spi_slave_hd.h"
|
||||
#include "hal/spi_slave_hd_hal.h"
|
||||
|
||||
|
||||
//SPI1 can never be used as the slave
|
||||
@ -27,27 +28,25 @@
|
||||
#define SPIHD_CHECK(cond,warn,ret) do{if(!(cond)){ESP_LOGE(TAG, warn); return ret;}} while(0)
|
||||
|
||||
typedef struct {
|
||||
spi_slave_hd_hal_context_t hal;
|
||||
int dma_chan;
|
||||
|
||||
int max_transfer_sz;
|
||||
uint32_t flags;
|
||||
portMUX_TYPE int_spinlock;
|
||||
intr_handle_t intr;
|
||||
intr_handle_t intr_dma;
|
||||
spi_slave_hd_callback_config_t callback;
|
||||
spi_slave_hd_hal_context_t hal;
|
||||
bool append_mode;
|
||||
|
||||
QueueHandle_t tx_trans_queue;
|
||||
QueueHandle_t tx_ret_queue;
|
||||
QueueHandle_t rx_trans_queue;
|
||||
QueueHandle_t rx_ret_queue;
|
||||
QueueHandle_t tx_cnting_sem;
|
||||
QueueHandle_t rx_cnting_sem;
|
||||
|
||||
spi_slave_hd_data_t* tx_desc;
|
||||
spi_slave_hd_data_t* rx_desc;
|
||||
|
||||
uint32_t flags;
|
||||
|
||||
int max_transfer_sz;
|
||||
|
||||
portMUX_TYPE int_spinlock;
|
||||
|
||||
#ifdef CONFIG_PM_ENABLE
|
||||
esp_pm_lock_handle_t pm_lock;
|
||||
#endif
|
||||
@ -56,17 +55,25 @@ typedef struct {
|
||||
static spi_slave_hd_slot_t *spihost[SOC_SPI_PERIPH_NUM];
|
||||
static const char TAG[] = "slave_hd";
|
||||
|
||||
|
||||
static void spi_slave_hd_intr(void* arg);
|
||||
static void spi_slave_hd_intr_segment(void *arg);
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
static void spi_slave_hd_intr_append(void *arg);
|
||||
#endif
|
||||
|
||||
esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *bus_config,
|
||||
const spi_slave_hd_slot_config_t *config)
|
||||
{
|
||||
bool spi_chan_claimed, dma_chan_claimed;
|
||||
bool append_mode = (config->flags & SPI_SLAVE_HD_APPEND_MODE);
|
||||
esp_err_t ret = ESP_OK;
|
||||
|
||||
SPIHD_CHECK(VALID_HOST(host_id), "invalid host", ESP_ERR_INVALID_ARG);
|
||||
SPIHD_CHECK(config->dma_chan == 0 || config->dma_chan == host_id, "invalid dma channel", ESP_ERR_INVALID_ARG);
|
||||
#if !CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
SPIHD_CHECK(append_mode == 0, "Append mode is only supported on ESP32S2 now", ESP_ERR_INVALID_ARG);
|
||||
#endif
|
||||
|
||||
spi_chan_claimed = spicommon_periph_claim(host_id, "slave_hd");
|
||||
SPIHD_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
|
||||
@ -100,35 +107,39 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
|
||||
gpio_set_direction(config->spics_io_num, GPIO_MODE_INPUT);
|
||||
spicommon_cs_initialize(host_id, config->spics_io_num, 0,
|
||||
!(bus_config->flags & SPICOMMON_BUSFLAG_NATIVE_PINS));
|
||||
host->dma_chan = config->dma_chan;
|
||||
host->append_mode = append_mode;
|
||||
|
||||
spi_slave_hd_hal_config_t hal_config = {
|
||||
.host_id = host_id,
|
||||
.dma_in = SPI_LL_GET_HW(host_id),
|
||||
.dma_out = SPI_LL_GET_HW(host_id),
|
||||
.dma_chan = config->dma_chan,
|
||||
.append_mode = append_mode,
|
||||
.mode = config->mode,
|
||||
.tx_lsbfirst = (config->flags & SPI_SLAVE_HD_RXBIT_LSBFIRST),
|
||||
.rx_lsbfirst = (config->flags & SPI_SLAVE_HD_TXBIT_LSBFIRST),
|
||||
.dma_chan = config->dma_chan,
|
||||
.mode = config->mode
|
||||
};
|
||||
spi_slave_hd_hal_init(&host->hal, &hal_config);
|
||||
|
||||
if (config->dma_chan != 0) {
|
||||
//See how many dma descriptors we need and allocate them
|
||||
int dma_desc_ct = (bus_config->max_transfer_sz + SPI_MAX_DMA_LEN - 1) / SPI_MAX_DMA_LEN;
|
||||
if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given
|
||||
host->max_transfer_sz = dma_desc_ct * SPI_MAX_DMA_LEN;
|
||||
host->hal.dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
|
||||
host->hal.dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
|
||||
|
||||
if (!host->hal.dmadesc_tx || !host->hal.dmadesc_rx ) {
|
||||
//Malloc for all the DMA descriptors
|
||||
uint32_t total_desc_size = spi_slave_hd_hal_get_total_desc_size(&host->hal, bus_config->max_transfer_sz);
|
||||
host->hal.dmadesc_tx = heap_caps_malloc(total_desc_size, MALLOC_CAP_DMA);
|
||||
host->hal.dmadesc_rx = heap_caps_malloc(total_desc_size, MALLOC_CAP_DMA);
|
||||
if (!host->hal.dmadesc_tx || !host->hal.dmadesc_rx) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
//Get the actual SPI bus transaction size in bytes.
|
||||
host->max_transfer_sz = spi_salve_hd_hal_get_max_bus_size(&host->hal);
|
||||
} else {
|
||||
//We're limited to non-DMA transfers: the SPI work registers can hold 64 bytes at most.
|
||||
host->max_transfer_sz = 0;
|
||||
}
|
||||
|
||||
//Init the hal according to the hal_config set above
|
||||
spi_slave_hd_hal_init(&host->hal, &hal_config);
|
||||
|
||||
#ifdef CONFIG_PM_ENABLE
|
||||
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_slave", &host->pm_lock);
|
||||
if (ret != ESP_OK) {
|
||||
@ -138,30 +149,60 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
|
||||
esp_pm_lock_acquire(host->pm_lock);
|
||||
#endif //CONFIG_PM_ENABLE
|
||||
|
||||
//Create queues
|
||||
host->tx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
|
||||
//Create Queues and Semaphores
|
||||
host->tx_ret_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
|
||||
host->rx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
|
||||
host->rx_ret_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
|
||||
if (!host->tx_trans_queue || !host->tx_ret_queue ||
|
||||
!host->rx_trans_queue || !host->rx_ret_queue) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto cleanup;
|
||||
if (!host->append_mode) {
|
||||
host->tx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
|
||||
host->rx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *));
|
||||
if (!host->tx_trans_queue || !host->rx_trans_queue) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
else {
|
||||
host->tx_cnting_sem = xSemaphoreCreateCounting(config->queue_size, config->queue_size);
|
||||
host->rx_cnting_sem = xSemaphoreCreateCounting(config->queue_size, config->queue_size);
|
||||
if (!host->tx_cnting_sem || !host->rx_cnting_sem) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
#endif //#if CONFIG_IDF_TARGET_ESP32S2
|
||||
|
||||
ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr,
|
||||
//Alloc intr
|
||||
if (!host->append_mode) {
|
||||
ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr_segment,
|
||||
(void *)host, &host->intr);
|
||||
if (ret != ESP_OK) {
|
||||
goto cleanup;
|
||||
if (ret != ESP_OK) {
|
||||
goto cleanup;
|
||||
}
|
||||
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr_segment,
|
||||
(void *)host, &host->intr_dma);
|
||||
if (ret != ESP_OK) {
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
else {
|
||||
ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr_append,
|
||||
(void *)host, &host->intr);
|
||||
if (ret != ESP_OK) {
|
||||
goto cleanup;
|
||||
}
|
||||
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr_append,
|
||||
(void *)host, &host->intr_dma);
|
||||
if (ret != ESP_OK) {
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
#endif //#if CONFIG_IDF_TARGET_ESP32S2
|
||||
|
||||
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr,
|
||||
(void *)host, &host->intr_dma);
|
||||
if (ret != ESP_OK) {
|
||||
goto cleanup;
|
||||
}
|
||||
//Init callbacks
|
||||
memcpy((uint8_t*)&host->callback, (uint8_t*)&config->cb_config, sizeof(spi_slave_hd_callback_config_t));
|
||||
|
||||
spi_event_t event = 0;
|
||||
if (host->callback.cb_buffer_tx!=NULL) event |= SPI_EV_BUF_TX;
|
||||
if (host->callback.cb_buffer_rx!=NULL) event |= SPI_EV_BUF_RX;
|
||||
@ -186,6 +227,8 @@ esp_err_t spi_slave_hd_deinit(spi_host_device_t host_id)
|
||||
if (host->tx_ret_queue) vQueueDelete(host->tx_ret_queue);
|
||||
if (host->rx_trans_queue) vQueueDelete(host->rx_trans_queue);
|
||||
if (host->rx_ret_queue) vQueueDelete(host->rx_ret_queue);
|
||||
if (host->tx_cnting_sem) vSemaphoreDelete(host->tx_cnting_sem);
|
||||
if (host->rx_cnting_sem) vSemaphoreDelete(host->rx_cnting_sem);
|
||||
if (host) {
|
||||
free(host->hal.dmadesc_tx);
|
||||
free(host->hal.dmadesc_rx);
|
||||
@ -232,27 +275,27 @@ static inline IRAM_ATTR BaseType_t intr_check_clear_callback(spi_slave_hd_slot_t
|
||||
return cb_awoken;
|
||||
}
|
||||
|
||||
static IRAM_ATTR void spi_slave_hd_intr(void* arg)
|
||||
static IRAM_ATTR void spi_slave_hd_intr_segment(void *arg)
|
||||
{
|
||||
spi_slave_hd_slot_t* host = (spi_slave_hd_slot_t*)arg;
|
||||
BaseType_t awoken = pdFALSE;
|
||||
spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t*)arg;
|
||||
spi_slave_hd_callback_config_t *callback = &host->callback;
|
||||
ESP_EARLY_LOGV("spi_hd", "intr.");
|
||||
spi_slave_hd_hal_context_t *hal = &host->hal;
|
||||
BaseType_t awoken = pdFALSE;
|
||||
BaseType_t ret;
|
||||
|
||||
awoken |= intr_check_clear_callback(host, SPI_EV_BUF_TX, callback->cb_buffer_tx);
|
||||
awoken |= intr_check_clear_callback(host, SPI_EV_BUF_RX, callback->cb_buffer_rx);
|
||||
awoken |= intr_check_clear_callback(host, SPI_EV_CMD9, callback->cb_cmd9);
|
||||
awoken |= intr_check_clear_callback(host, SPI_EV_CMDA, callback->cb_cmdA);
|
||||
|
||||
BaseType_t ret;
|
||||
bool tx_done = false;
|
||||
bool rx_done = false;
|
||||
|
||||
portENTER_CRITICAL_ISR(&host->int_spinlock);
|
||||
if (host->tx_desc && spi_slave_hd_hal_check_disable_event(&host->hal, SPI_EV_SEND)) {
|
||||
if (host->tx_desc && spi_slave_hd_hal_check_disable_event(hal, SPI_EV_SEND)) {
|
||||
tx_done = true;
|
||||
}
|
||||
if (host->rx_desc && spi_slave_hd_hal_check_disable_event(&host->hal, SPI_EV_RECV)) {
|
||||
if (host->rx_desc && spi_slave_hd_hal_check_disable_event(hal, SPI_EV_RECV)) {
|
||||
rx_done = true;
|
||||
}
|
||||
portEXIT_CRITICAL_ISR(&host->int_spinlock);
|
||||
@ -277,9 +320,7 @@ static IRAM_ATTR void spi_slave_hd_intr(void* arg)
|
||||
}
|
||||
if (rx_done) {
|
||||
bool ret_queue = true;
|
||||
|
||||
host->rx_desc->trans_len = spi_slave_hd_hal_rxdma_get_len(&host->hal);
|
||||
|
||||
host->rx_desc->trans_len = spi_slave_hd_hal_rxdma_seg_get_len(hal);
|
||||
if (callback->cb_recv) {
|
||||
spi_slave_hd_event_t ev = {
|
||||
.event = SPI_EV_RECV,
|
||||
@ -302,33 +343,147 @@ static IRAM_ATTR void spi_slave_hd_intr(void* arg)
|
||||
if (!host->tx_desc) {
|
||||
ret = xQueueReceiveFromISR(host->tx_trans_queue, &host->tx_desc, &awoken);
|
||||
if (ret == pdTRUE) {
|
||||
spi_slave_hd_hal_txdma(&host->hal, host->tx_desc->data, host->tx_desc->len);
|
||||
spi_slave_hd_hal_txdma(hal, host->tx_desc->data, host->tx_desc->len);
|
||||
tx_sent = true;
|
||||
}
|
||||
}
|
||||
if (!host->rx_desc) {
|
||||
ret = xQueueReceiveFromISR(host->rx_trans_queue, &host->rx_desc, &awoken);
|
||||
if (ret == pdTRUE) {
|
||||
spi_slave_hd_hal_rxdma(&host->hal, host->rx_desc->data, host->rx_desc->len);
|
||||
spi_slave_hd_hal_rxdma(hal, host->rx_desc->data, host->rx_desc->len);
|
||||
rx_sent = true;
|
||||
}
|
||||
}
|
||||
|
||||
portENTER_CRITICAL_ISR(&host->int_spinlock);
|
||||
if (rx_sent) {
|
||||
spi_slave_hd_hal_enable_event_intr(&host->hal, SPI_EV_RECV);
|
||||
}
|
||||
if (tx_sent) {
|
||||
spi_slave_hd_hal_enable_event_intr(&host->hal, SPI_EV_SEND);
|
||||
spi_slave_hd_hal_enable_event_intr(hal, SPI_EV_SEND);
|
||||
}
|
||||
if (rx_sent) {
|
||||
spi_slave_hd_hal_enable_event_intr(hal, SPI_EV_RECV);
|
||||
}
|
||||
portEXIT_CRITICAL_ISR(&host->int_spinlock);
|
||||
|
||||
if (awoken==pdTRUE) portYIELD_FROM_ISR();
|
||||
}
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
static IRAM_ATTR void spi_slave_hd_intr_append(void *arg)
|
||||
{
|
||||
spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t*)arg;
|
||||
spi_slave_hd_callback_config_t *callback = &host->callback;
|
||||
spi_slave_hd_hal_context_t *hal = &host->hal;
|
||||
BaseType_t awoken = pdFALSE;
|
||||
BaseType_t ret;
|
||||
|
||||
bool tx_done = false;
|
||||
bool rx_done = false;
|
||||
portENTER_CRITICAL_ISR(&host->int_spinlock);
|
||||
if (spi_slave_hd_hal_check_clear_event(hal, SPI_EV_SEND)) {
|
||||
tx_done = true;
|
||||
}
|
||||
if (spi_slave_hd_hal_check_clear_event(hal, SPI_EV_RECV)) {
|
||||
rx_done = true;
|
||||
}
|
||||
portEXIT_CRITICAL_ISR(&host->int_spinlock);
|
||||
|
||||
if (tx_done) {
|
||||
spi_slave_hd_data_t *trans_desc;
|
||||
while (1) {
|
||||
bool trans_finish = false;
|
||||
portENTER_CRITICAL_ISR(&host->int_spinlock);
|
||||
trans_finish = spi_slave_hd_hal_get_tx_finished_trans(hal, (void **)&trans_desc);
|
||||
portEXIT_CRITICAL_ISR(&host->int_spinlock);
|
||||
if (!trans_finish) {
|
||||
break;
|
||||
}
|
||||
|
||||
bool ret_queue = true;
|
||||
if (callback->cb_sent) {
|
||||
spi_slave_hd_event_t ev = {
|
||||
.event = SPI_EV_SEND,
|
||||
.trans = trans_desc,
|
||||
};
|
||||
BaseType_t cb_awoken = pdFALSE;
|
||||
ret_queue = callback->cb_sent(callback->arg, &ev, &cb_awoken);
|
||||
awoken |= cb_awoken;
|
||||
}
|
||||
|
||||
if (ret_queue) {
|
||||
ret = xQueueSendFromISR(host->tx_ret_queue, &trans_desc, &awoken);
|
||||
assert(ret == pdTRUE);
|
||||
|
||||
ret = xSemaphoreGiveFromISR(host->tx_cnting_sem, &awoken);
|
||||
assert(ret == pdTRUE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (rx_done) {
|
||||
spi_slave_hd_data_t *trans_desc;
|
||||
size_t trans_len;
|
||||
while (1) {
|
||||
bool trans_finish = false;
|
||||
portENTER_CRITICAL_ISR(&host->int_spinlock);
|
||||
trans_finish = spi_slave_hd_hal_get_rx_finished_trans(hal, (void **)&trans_desc, &trans_len);
|
||||
portEXIT_CRITICAL_ISR(&host->int_spinlock);
|
||||
if (!trans_finish) {
|
||||
break;
|
||||
}
|
||||
trans_desc->trans_len = trans_len;
|
||||
|
||||
bool ret_queue = true;
|
||||
if (callback->cb_recv) {
|
||||
spi_slave_hd_event_t ev = {
|
||||
.event = SPI_EV_RECV,
|
||||
.trans = trans_desc,
|
||||
};
|
||||
BaseType_t cb_awoken = pdFALSE;
|
||||
ret_queue = callback->cb_recv(callback->arg, &ev, &cb_awoken);
|
||||
awoken |= cb_awoken;
|
||||
}
|
||||
|
||||
if (ret_queue) {
|
||||
ret = xQueueSendFromISR(host->rx_ret_queue, &trans_desc, &awoken);
|
||||
assert(ret == pdTRUE);
|
||||
|
||||
ret = xSemaphoreGiveFromISR(host->rx_cnting_sem, &awoken);
|
||||
assert(ret == pdTRUE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (awoken==pdTRUE) portYIELD_FROM_ISR();
|
||||
}
|
||||
#endif //#if CONFIG_IDF_TARGET_ESP32S2
|
||||
|
||||
static esp_err_t get_ret_queue_result(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout)
|
||||
{
|
||||
spi_slave_hd_slot_t *host = spihost[host_id];
|
||||
spi_slave_hd_data_t *trans;
|
||||
BaseType_t ret;
|
||||
|
||||
if (chan == SPI_SLAVE_CHAN_TX) {
|
||||
ret = xQueueReceive(host->tx_ret_queue, &trans, timeout);
|
||||
} else {
|
||||
ret = xQueueReceive(host->rx_ret_queue, &trans, timeout);
|
||||
}
|
||||
if (ret == pdFALSE) {
|
||||
return ESP_ERR_TIMEOUT;
|
||||
}
|
||||
|
||||
*out_trans = trans;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------Segment Mode Transaction APIs-----------------------------------------------------------//
|
||||
esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t* trans, TickType_t timeout)
|
||||
{
|
||||
spi_slave_hd_slot_t* host = spihost[host_id];
|
||||
|
||||
SPIHD_CHECK(trans->len <= SPI_MAX_DMA_LEN, "Currently we only support transaction with data length within 4092 bytes", ESP_ERR_INVALID_ARG);
|
||||
SPIHD_CHECK(host->append_mode == 0, "This API should be used for SPI Slave HD Segment Mode", ESP_ERR_INVALID_STATE);
|
||||
SPIHD_CHECK(esp_ptr_dma_capable(trans->data), "The buffer should be DMA capable.", ESP_ERR_INVALID_ARG);
|
||||
SPIHD_CHECK(trans->len <= host->max_transfer_sz && trans->len > 0, "Invalid buffer size", ESP_ERR_INVALID_ARG);
|
||||
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
|
||||
@ -351,22 +506,14 @@ esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t c
|
||||
|
||||
esp_err_t spi_slave_hd_get_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t** out_trans, TickType_t timeout)
|
||||
{
|
||||
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
|
||||
|
||||
esp_err_t ret;
|
||||
spi_slave_hd_slot_t* host = spihost[host_id];
|
||||
BaseType_t ret;
|
||||
spi_slave_hd_data_t *data;
|
||||
if (chan == SPI_SLAVE_CHAN_TX) {
|
||||
ret = xQueueReceive(host->tx_ret_queue, &data, timeout);
|
||||
} else { // chan == SPI_SLAVE_CHAN_RX
|
||||
ret = xQueueReceive(host->rx_ret_queue, &data, timeout);
|
||||
}
|
||||
|
||||
if (ret == pdFALSE) {
|
||||
return ESP_ERR_TIMEOUT;
|
||||
}
|
||||
*out_trans = data;
|
||||
return ESP_OK;
|
||||
SPIHD_CHECK(host->append_mode == 0, "This API should be used for SPI Slave HD Segment Mode", ESP_ERR_INVALID_STATE);
|
||||
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
|
||||
ret = get_ret_queue_result(host_id, chan, out_trans, timeout);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void spi_slave_hd_read_buffer(spi_host_device_t host_id, int addr, uint8_t *out_data, size_t len)
|
||||
@ -378,3 +525,55 @@ void spi_slave_hd_write_buffer(spi_host_device_t host_id, int addr, uint8_t *dat
|
||||
{
|
||||
spi_slave_hd_hal_write_buffer(&spihost[host_id]->hal, addr, data, len);
|
||||
}
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
//---------------------------------------------------------Append Mode Transaction APIs-----------------------------------------------------------//
|
||||
esp_err_t spi_slave_hd_append_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t *trans, TickType_t timeout)
|
||||
{
|
||||
esp_err_t err;
|
||||
spi_slave_hd_slot_t *host = spihost[host_id];
|
||||
spi_slave_hd_hal_context_t *hal = &host->hal;
|
||||
|
||||
SPIHD_CHECK(trans->len <= SPI_MAX_DMA_LEN, "Currently we only support transaction with data length within 4092 bytes", ESP_ERR_INVALID_ARG);
|
||||
SPIHD_CHECK(host->append_mode == 1, "This API should be used for SPI Slave HD Append Mode", ESP_ERR_INVALID_STATE);
|
||||
SPIHD_CHECK(esp_ptr_dma_capable(trans->data), "The buffer should be DMA capable.", ESP_ERR_INVALID_ARG);
|
||||
SPIHD_CHECK(trans->len <= host->max_transfer_sz && trans->len > 0, "Invalid buffer size", ESP_ERR_INVALID_ARG);
|
||||
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
|
||||
|
||||
if (chan == SPI_SLAVE_CHAN_TX) {
|
||||
BaseType_t ret = xSemaphoreTake(host->tx_cnting_sem, timeout);
|
||||
if (ret == pdFALSE) {
|
||||
return ESP_ERR_TIMEOUT;
|
||||
}
|
||||
portENTER_CRITICAL(&host->int_spinlock);
|
||||
err = spi_slave_hd_hal_txdma_append(hal, trans->data, trans->len, trans);
|
||||
portEXIT_CRITICAL(&host->int_spinlock);
|
||||
} else {
|
||||
BaseType_t ret = xSemaphoreTake(host->rx_cnting_sem, timeout);
|
||||
if (ret == pdFALSE) {
|
||||
return ESP_ERR_TIMEOUT;
|
||||
}
|
||||
portENTER_CRITICAL(&host->int_spinlock);
|
||||
err = spi_slave_hd_hal_rxdma_append(hal, trans->data, trans->len, trans);
|
||||
portEXIT_CRITICAL(&host->int_spinlock);
|
||||
}
|
||||
if (err != ESP_OK) {
|
||||
ESP_LOGE(TAG, "Wait until the DMA finishes its transaction");
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
esp_err_t spi_slave_hd_get_append_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout)
|
||||
{
|
||||
esp_err_t ret;
|
||||
spi_slave_hd_slot_t* host = spihost[host_id];
|
||||
|
||||
SPIHD_CHECK(host->append_mode == 1, "This API should be used for SPI Slave HD Append Mode", ESP_ERR_INVALID_STATE);
|
||||
SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG);
|
||||
ret = get_ret_queue_result(host_id, chan, out_trans, timeout);
|
||||
|
||||
return ret;
|
||||
}
|
||||
#endif //#if CONFIG_IDF_TARGET_ESP32S2
|
||||
|
@ -21,7 +21,7 @@
|
||||
#include "unity.h"
|
||||
#include "test/test_common_spi.h"
|
||||
|
||||
#define TEST_DMA_MAX_SIZE 14000
|
||||
#define TEST_DMA_MAX_SIZE 4092
|
||||
#define TEST_BUFFER_SIZE 256 ///< buffer size of each wrdma buffer in fifo mode
|
||||
#define TEST_SEG_SIZE 25
|
||||
|
||||
@ -92,7 +92,7 @@ void config_single_board_test_pin(void)
|
||||
static void init_master_hd(spi_device_handle_t* spi, const spitest_param_set_t* config, int freq)
|
||||
{
|
||||
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
|
||||
bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE;
|
||||
bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE*30;
|
||||
bus_cfg.quadhd_io_num = PIN_NUM_HD;
|
||||
bus_cfg.quadwp_io_num = PIN_NUM_WP;
|
||||
#if defined(TEST_MASTER_GPIO_MATRIX) && CONFIG_IDF_TARGET_ESP32S2
|
||||
@ -111,7 +111,7 @@ static void init_master_hd(spi_device_handle_t* spi, const spitest_param_set_t*
|
||||
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, spi));
|
||||
}
|
||||
|
||||
static void init_slave_hd(int mode, const spi_slave_hd_callback_config_t* callback)
|
||||
static void init_slave_hd(int mode, bool append_mode, const spi_slave_hd_callback_config_t* callback)
|
||||
{
|
||||
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
|
||||
bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE*30;
|
||||
@ -123,6 +123,9 @@ static void init_slave_hd(int mode, const spi_slave_hd_callback_config_t* callba
|
||||
spi_slave_hd_slot_config_t slave_hd_cfg = SPI_SLOT_TEST_DEFAULT_CONFIG();
|
||||
slave_hd_cfg.mode = mode;
|
||||
slave_hd_cfg.dma_chan = TEST_SLAVE_HOST;
|
||||
if (append_mode) {
|
||||
slave_hd_cfg.flags |= SPI_SLAVE_HD_APPEND_MODE;
|
||||
}
|
||||
if (callback) {
|
||||
slave_hd_cfg.cb_config = *callback;
|
||||
} else {
|
||||
@ -211,7 +214,7 @@ static void test_hd_start(spi_device_handle_t *spi, int freq, const spitest_para
|
||||
.cb_buffer_tx = rdbuf_cb,
|
||||
.arg = ctx,
|
||||
};
|
||||
init_slave_hd(cfg->mode, &callback);
|
||||
init_slave_hd(cfg->mode, 0, &callback);
|
||||
|
||||
//when test with single board via same set of mosi, miso, clk and cs pins.
|
||||
config_single_board_test_pin();
|
||||
@ -503,7 +506,7 @@ TEST_CASE("test spi slave hd segment mode, master too long", "[spi][spi_slv_hd]"
|
||||
init_master_hd(&spi, cfg, freq);
|
||||
|
||||
//no callback needed
|
||||
init_slave_hd(cfg->mode, NULL);
|
||||
init_slave_hd(cfg->mode, 0, NULL);
|
||||
|
||||
//Use GPIO matrix to connect signal of master and slave via same set of pins on one board.
|
||||
config_single_board_test_pin();
|
||||
|
@ -66,7 +66,7 @@ typedef enum {
|
||||
SPI_LL_INTR_WRBUF = BIT(7), ///< Has received WRBUF command. Only available in slave HD.
|
||||
SPI_LL_INTR_RDDMA = BIT(8), ///< Has received RDDMA command. Only available in slave HD.
|
||||
SPI_LL_INTR_WRDMA = BIT(9), ///< Has received WRDMA command. Only available in slave HD.
|
||||
SPI_LL_INTR_WR_DONE = BIT(10), ///< Has received WR_DONE command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMD7 = BIT(10), ///< Has received CMD7 command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMD8 = BIT(11), ///< Has received CMD8 command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMD9 = BIT(12), ///< Has received CMD9 command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMDA = BIT(13), ///< Has received CMDA command. Only available in slave HD.
|
||||
@ -976,7 +976,7 @@ static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
|
||||
item(SPI_LL_INTR_RDDMA, dma_int_ena.rd_dma_done, dma_int_raw.rd_dma_done, dma_int_clr.rd_dma_done=1) \
|
||||
item(SPI_LL_INTR_WRDMA, dma_int_ena.wr_dma_done, dma_int_raw.wr_dma_done, dma_int_clr.wr_dma_done=1) \
|
||||
item(SPI_LL_INTR_SEG_DONE, dma_int_ena.dma_seg_trans_done, dma_int_raw.dma_seg_trans_done, dma_int_clr.dma_seg_trans_done=1) \
|
||||
item(SPI_LL_INTR_WR_DONE, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
|
||||
item(SPI_LL_INTR_CMD7, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
|
||||
item(SPI_LL_INTR_CMD8, dma_int_ena.cmd8, dma_int_raw.cmd8, dma_int_clr.cmd8=1) \
|
||||
item(SPI_LL_INTR_CMD9, dma_int_ena.cmd9, dma_int_raw.cmd9, dma_int_clr.cmd9=1) \
|
||||
item(SPI_LL_INTR_CMDA, dma_int_ena.cmda, dma_int_raw.cmda, dma_int_clr.cmda=1)
|
||||
|
@ -75,7 +75,7 @@ typedef enum {
|
||||
SPI_LL_INTR_WRBUF = BIT(7), ///< Has received WRBUF command. Only available in slave HD.
|
||||
SPI_LL_INTR_RDDMA = BIT(8), ///< Has received RDDMA command. Only available in slave HD.
|
||||
SPI_LL_INTR_WRDMA = BIT(9), ///< Has received WRDMA command. Only available in slave HD.
|
||||
SPI_LL_INTR_WR_DONE = BIT(10), ///< Has received WR_DONE command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMD7 = BIT(10), ///< Has received CMD7 command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMD8 = BIT(11), ///< Has received CMD8 command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMD9 = BIT(12), ///< Has received CMD9 command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMDA = BIT(13), ///< Has received CMDA command. Only available in slave HD.
|
||||
@ -150,7 +150,7 @@ static inline void spi_ll_slave_hd_init(spi_dev_t *hw)
|
||||
hw->slave.soft_reset = 1;
|
||||
hw->slave.soft_reset = 0;
|
||||
|
||||
hw->user.doutdin = 0; //we only support full duplex
|
||||
hw->user.doutdin = 0; //we only support half duplex
|
||||
hw->slave.slave_mode = 1;
|
||||
}
|
||||
|
||||
@ -955,21 +955,21 @@ static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
|
||||
//helper macros to generate code for each interrupts
|
||||
#define FOR_EACH_ITEM(op, list) do { list(op) } while(0)
|
||||
#define INTR_LIST(item) \
|
||||
item(SPI_LL_INTR_TRANS_DONE, slave.int_trans_done_en, slave.trans_done, slave.trans_done=0) \
|
||||
item(SPI_LL_INTR_RDBUF, slave.int_rd_buf_done_en, slv_rdbuf_dlen.rd_buf_done, slv_rdbuf_dlen.rd_buf_done=0) \
|
||||
item(SPI_LL_INTR_WRBUF, slave.int_wr_buf_done_en, slv_wrbuf_dlen.wr_buf_done, slv_wrbuf_dlen.wr_buf_done=0) \
|
||||
item(SPI_LL_INTR_RDDMA, slave.int_rd_dma_done_en, slv_rd_byte.rd_dma_done, slv_rd_byte.rd_dma_done=0) \
|
||||
item(SPI_LL_INTR_WRDMA, slave.int_wr_dma_done_en, slave1.wr_dma_done, slave1.wr_dma_done=0) \
|
||||
item(SPI_LL_INTR_IN_SUC_EOF, dma_int_ena.in_suc_eof, dma_int_raw.in_suc_eof, dma_int_clr.in_suc_eof=1) \
|
||||
item(SPI_LL_INTR_OUT_EOF, dma_int_ena.out_eof, dma_int_raw.out_eof, dma_int_clr.out_eof=1) \
|
||||
item(SPI_LL_INTR_OUT_TOTAL_EOF, dma_int_ena.out_total_eof, dma_int_raw.out_total_eof, dma_int_clr.out_total_eof=1) \
|
||||
item(SPI_LL_INTR_SEG_DONE, slave.int_dma_seg_trans_en, hold.dma_seg_trans_done, hold.dma_seg_trans_done=0) \
|
||||
item(SPI_LL_INTR_IN_FULL, dma_int_ena.infifo_full_err, dma_int_raw.infifo_full_err, dma_int_clr.infifo_full_err=1) \
|
||||
item(SPI_LL_INTR_OUT_EMPTY, dma_int_ena.outfifo_empty_err, dma_int_raw.outfifo_empty_err, dma_int_clr.outfifo_empty_err=1) \
|
||||
item(SPI_LL_INTR_WR_DONE, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
|
||||
item(SPI_LL_INTR_CMD8, dma_int_ena.cmd8, dma_int_raw.cmd8, dma_int_clr.cmd8=1) \
|
||||
item(SPI_LL_INTR_CMD9, dma_int_ena.cmd9, dma_int_raw.cmd9, dma_int_clr.cmd9=1) \
|
||||
item(SPI_LL_INTR_CMDA, dma_int_ena.cmda, dma_int_raw.cmda, dma_int_clr.cmda=1)
|
||||
item(SPI_LL_INTR_TRANS_DONE, slave.int_trans_done_en, slave.trans_done, slave.trans_done=0) \
|
||||
item(SPI_LL_INTR_RDBUF, slave.int_rd_buf_done_en, slv_rdbuf_dlen.rd_buf_done, slv_rdbuf_dlen.rd_buf_done=0) \
|
||||
item(SPI_LL_INTR_WRBUF, slave.int_wr_buf_done_en, slv_wrbuf_dlen.wr_buf_done, slv_wrbuf_dlen.wr_buf_done=0) \
|
||||
item(SPI_LL_INTR_RDDMA, slave.int_rd_dma_done_en, slv_rd_byte.rd_dma_done, slv_rd_byte.rd_dma_done=0) \
|
||||
item(SPI_LL_INTR_WRDMA, slave.int_wr_dma_done_en, slave1.wr_dma_done, slave1.wr_dma_done=0) \
|
||||
item(SPI_LL_INTR_IN_SUC_EOF, dma_int_ena.in_suc_eof, dma_int_raw.in_suc_eof, dma_int_clr.in_suc_eof=1) \
|
||||
item(SPI_LL_INTR_OUT_EOF, dma_int_ena.out_eof, dma_int_raw.out_eof, dma_int_clr.out_eof=1) \
|
||||
item(SPI_LL_INTR_OUT_TOTAL_EOF, dma_int_ena.out_total_eof, dma_int_raw.out_total_eof, dma_int_clr.out_total_eof=1) \
|
||||
item(SPI_LL_INTR_SEG_DONE, slave.int_dma_seg_trans_en, hold.dma_seg_trans_done, hold.dma_seg_trans_done=0) \
|
||||
item(SPI_LL_INTR_IN_FULL, dma_int_ena.infifo_full_err, dma_int_raw.infifo_full_err, dma_int_clr.infifo_full_err=1) \
|
||||
item(SPI_LL_INTR_OUT_EMPTY, dma_int_ena.outfifo_empty_err, dma_int_raw.outfifo_empty_err, dma_int_clr.outfifo_empty_err=1) \
|
||||
item(SPI_LL_INTR_CMD7, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
|
||||
item(SPI_LL_INTR_CMD8, dma_int_ena.cmd8, dma_int_raw.cmd8, dma_int_clr.cmd8=1) \
|
||||
item(SPI_LL_INTR_CMD9, dma_int_ena.cmd9, dma_int_raw.cmd9, dma_int_clr.cmd9=1) \
|
||||
item(SPI_LL_INTR_CMDA, dma_int_ena.cmda, dma_int_raw.cmda, dma_int_clr.cmda=1)
|
||||
|
||||
|
||||
static inline void spi_ll_enable_intr(spi_dev_t* hw, spi_ll_intr_t intr_mask)
|
||||
|
@ -66,7 +66,7 @@ typedef enum {
|
||||
SPI_LL_INTR_WRBUF = BIT(7), ///< Has received WRBUF command. Only available in slave HD.
|
||||
SPI_LL_INTR_RDDMA = BIT(8), ///< Has received RDDMA command. Only available in slave HD.
|
||||
SPI_LL_INTR_WRDMA = BIT(9), ///< Has received WRDMA command. Only available in slave HD.
|
||||
SPI_LL_INTR_WR_DONE = BIT(10), ///< Has received WR_DONE command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMD7 = BIT(10), ///< Has received CMD7 command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMD8 = BIT(11), ///< Has received CMD8 command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMD9 = BIT(12), ///< Has received CMD9 command. Only available in slave HD.
|
||||
SPI_LL_INTR_CMDA = BIT(13), ///< Has received CMDA command. Only available in slave HD.
|
||||
@ -985,7 +985,7 @@ static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
|
||||
item(SPI_LL_INTR_RDDMA, dma_int_ena.rd_dma_done, dma_int_raw.rd_dma_done, dma_int_clr.rd_dma_done=1) \
|
||||
item(SPI_LL_INTR_WRDMA, dma_int_ena.wr_dma_done, dma_int_raw.wr_dma_done, dma_int_clr.wr_dma_done=1) \
|
||||
item(SPI_LL_INTR_SEG_DONE, dma_int_ena.dma_seg_trans_done, dma_int_raw.dma_seg_trans_done, dma_int_clr.dma_seg_trans_done=1) \
|
||||
item(SPI_LL_INTR_WR_DONE, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
|
||||
item(SPI_LL_INTR_CMD7, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
|
||||
item(SPI_LL_INTR_CMD8, dma_int_ena.cmd8, dma_int_raw.cmd8, dma_int_clr.cmd8=1) \
|
||||
item(SPI_LL_INTR_CMD9, dma_int_ena.cmd9, dma_int_raw.cmd9, dma_int_clr.cmd9=1) \
|
||||
item(SPI_LL_INTR_CMDA, dma_int_ena.cmda, dma_int_raw.cmda, dma_int_clr.cmda=1)
|
||||
|
@ -19,9 +19,9 @@
|
||||
******************************************************************************/
|
||||
|
||||
/*
|
||||
* The HAL layer for SPI Slave HD mode, currently only segment mode is supported
|
||||
* The HAL layer for SPI Slave HD mode.
|
||||
*
|
||||
* Usage:
|
||||
* Usage (segment mode):
|
||||
* - Firstly, initialize the slave with `spi_slave_hd_hal_init`
|
||||
*
|
||||
* - Event handling:
|
||||
@ -40,7 +40,7 @@
|
||||
* - RXDMA:
|
||||
* - To receive data through DMA, call `spi_slave_hd_hal_rxdma`
|
||||
* - When the operation is done, SPI_EV_RECV will be triggered.
|
||||
* - Call ``spi_slave_hd_hal_rxdma_get_len`` to get the received length
|
||||
* - Call ``spi_slave_hd_hal_rxdma_seg_get_len`` to get the received length
|
||||
*
|
||||
* - Shared buffer:
|
||||
* - Call ``spi_slave_hd_hal_write_buffer`` to write the shared register buffer. When the buffer is
|
||||
@ -56,40 +56,60 @@
|
||||
#include "hal/spi_ll.h"
|
||||
#include "hal/spi_types.h"
|
||||
|
||||
/**
|
||||
* @brief Type of dma descriptor with appended members
|
||||
* this structure inherits DMA descriptor, with a pointer to the transaction descriptor passed from users.
|
||||
*/
|
||||
typedef struct {
|
||||
lldesc_t desc; ///< DMA descriptor
|
||||
void *arg; ///< This points to the transaction descriptor user passed in
|
||||
} spi_slave_hd_hal_desc_append_t;
|
||||
|
||||
/// Configuration of the HAL
|
||||
typedef struct {
|
||||
uint32_t host_id; ///< Host ID of the spi peripheral
|
||||
spi_dma_dev_t *dma_in; ///< Input DMA(DMA -> RAM) peripheral register address
|
||||
spi_dma_dev_t *dma_out; ///< Output DMA(RAM -> DMA) peripheral register address
|
||||
uint32_t spics_io_num; ///< CS GPIO pin for this device
|
||||
uint8_t mode; ///< SPI mode (0-3)
|
||||
uint32_t command_bits; ///< command field bits, multiples of 8 and at least 8.
|
||||
uint32_t address_bits; ///< address field bits, multiples of 8 and at least 8.
|
||||
uint32_t dummy_bits; ///< dummy field bits, multiples of 8 and at least 8.
|
||||
uint32_t host_id; ///< Host ID of the spi peripheral
|
||||
spi_dma_dev_t *dma_in; ///< Input DMA(DMA -> RAM) peripheral register address
|
||||
spi_dma_dev_t *dma_out; ///< Output DMA(RAM -> DMA) peripheral register address
|
||||
uint32_t dma_chan; ///< The dma channel used.
|
||||
bool append_mode; ///< True for DMA append mode, false for segment mode
|
||||
uint32_t spics_io_num; ///< CS GPIO pin for this device
|
||||
uint8_t mode; ///< SPI mode (0-3)
|
||||
uint32_t command_bits; ///< command field bits, multiples of 8 and at least 8.
|
||||
uint32_t address_bits; ///< address field bits, multiples of 8 and at least 8.
|
||||
uint32_t dummy_bits; ///< dummy field bits, multiples of 8 and at least 8.
|
||||
|
||||
struct {
|
||||
uint32_t tx_lsbfirst : 1; ///< Whether TX data should be sent with LSB first.
|
||||
uint32_t rx_lsbfirst : 1; ///< Whether RX data should be read with LSB first.
|
||||
uint32_t tx_lsbfirst : 1; ///< Whether TX data should be sent with LSB first.
|
||||
uint32_t rx_lsbfirst : 1; ///< Whether RX data should be read with LSB first.
|
||||
};
|
||||
uint32_t dma_chan; ///< The dma channel used.
|
||||
} spi_slave_hd_hal_config_t;
|
||||
|
||||
/// Context of the HAL, initialized by :cpp:func:`spi_slave_hd_hal_init`.
|
||||
typedef struct {
|
||||
spi_dev_t *dev; ///< Beginning address of the peripheral registers.
|
||||
spi_dma_dev_t *dma_in; ///< Address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
|
||||
spi_dma_dev_t *dma_out; ///< Address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
|
||||
lldesc_t *dmadesc_tx; /**< Array of DMA descriptor used by the TX DMA.
|
||||
* The amount should be larger than dmadesc_n. The driver should ensure that
|
||||
* the data to be sent is shorter than the descriptors can hold.
|
||||
*/
|
||||
lldesc_t *dmadesc_rx; /**< Array of DMA descriptor used by the RX DMA.
|
||||
* The amount should be larger than dmadesc_n. The driver should ensure that
|
||||
* the data to be sent is shorter than the descriptors can hold.
|
||||
*/
|
||||
/* These two need to be malloced by the driver first */
|
||||
spi_slave_hd_hal_desc_append_t *dmadesc_tx; ///< Head of the TX DMA descriptors.
|
||||
spi_slave_hd_hal_desc_append_t *dmadesc_rx; ///< Head of the RX DMA descriptors.
|
||||
|
||||
/* address of the hardware */
|
||||
spi_dev_t *dev; ///< Beginning address of the peripheral registers.
|
||||
spi_dma_dev_t *dma_in; ///< Address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
|
||||
spi_dma_dev_t *dma_out; ///< Address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
|
||||
|
||||
bool append_mode; ///< True for DMA append mode, false for segment mode
|
||||
uint32_t dma_desc_num; ///< Number of the available DMA descriptors. Calculated from ``bus_max_transfer_size``.
|
||||
spi_slave_hd_hal_desc_append_t *tx_cur_desc; ///< Current TX DMA descriptor that could be linked (set up).
|
||||
spi_slave_hd_hal_desc_append_t *tx_dma_head; ///< Head of the linked TX DMA descriptors which are not used by hardware
|
||||
spi_slave_hd_hal_desc_append_t *tx_dma_tail; ///< Tail of the linked TX DMA descriptors which are not used by hardware
|
||||
uint32_t tx_used_desc_cnt; ///< Number of the TX descriptors that have been setup
|
||||
uint32_t tx_recycled_desc_cnt; ///< Number of the TX descriptors that could be recycled
|
||||
spi_slave_hd_hal_desc_append_t *rx_cur_desc; ///< Current RX DMA descriptor that could be linked (set up).
|
||||
spi_slave_hd_hal_desc_append_t *rx_dma_head; ///< Head of the linked RX DMA descriptors which are not used by hardware
|
||||
spi_slave_hd_hal_desc_append_t *rx_dma_tail; ///< Tail of the linked RX DMA descriptors which are not used by hardware
|
||||
uint32_t rx_used_desc_cnt; ///< Number of the RX descriptors that have been setup
|
||||
uint32_t rx_recycled_desc_cnt; ///< Number of the RX descriptors that could be recycled
|
||||
|
||||
/* Internal status used by the HAL implementation, initialized as 0. */
|
||||
uint32_t intr_not_triggered;
|
||||
uint32_t intr_not_triggered;
|
||||
} spi_slave_hd_hal_context_t;
|
||||
|
||||
/**
|
||||
@ -100,6 +120,23 @@ typedef struct {
|
||||
*/
|
||||
void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_hal_config_t *hal_config);
|
||||
|
||||
/**
|
||||
* @brief Get the size of one DMA descriptor
|
||||
*
|
||||
* @param hal Context of the HAL layer
|
||||
* @param bus_size SPI bus maximum transfer size, in bytes.
|
||||
* @return Total size needed for all the DMA descriptors
|
||||
*/
|
||||
uint32_t spi_slave_hd_hal_get_total_desc_size(spi_slave_hd_hal_context_t *hal, uint32_t bus_size);
|
||||
|
||||
/**
|
||||
* @brief Get the actual bus size
|
||||
*
|
||||
* @param hal Context of the HAL layer
|
||||
* @return Actual bus transaction size
|
||||
*/
|
||||
uint32_t spi_salve_hd_hal_get_max_bus_size(spi_slave_hd_hal_context_t *hal);
|
||||
|
||||
/**
|
||||
* @brief Check and clear signal of one event
|
||||
*
|
||||
@ -160,7 +197,7 @@ void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, s
|
||||
* @param hal Context of the HAL layer
|
||||
* @return The received length
|
||||
*/
|
||||
int spi_slave_hd_hal_rxdma_get_len(spi_slave_hd_hal_context_t *hal);
|
||||
int spi_slave_hd_hal_rxdma_seg_get_len(spi_slave_hd_hal_context_t *hal);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// TX DMA
|
||||
@ -212,3 +249,54 @@ int spi_slave_hd_hal_get_rxlen(spi_slave_hd_hal_context_t *hal);
|
||||
* @return The address of last transaction
|
||||
*/
|
||||
int spi_slave_hd_hal_get_last_addr(spi_slave_hd_hal_context_t *hal);
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Append Mode
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/**
|
||||
* @brief Return the finished TX transaction
|
||||
*
|
||||
* @param hal Context of the HAL layer
|
||||
* @param out_trans Pointer to the caller-defined transaction
|
||||
* @return 1: Transaction is finished; 0: Transaction is not finished
|
||||
*/
|
||||
bool spi_slave_hd_hal_get_tx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans);
|
||||
|
||||
/**
|
||||
* @brief Return the finished RX transaction
|
||||
*
|
||||
* @param hal Context of the HAL layer
|
||||
* @param out_trans Pointer to the caller-defined transaction
|
||||
* @param out_len Actual number of bytes of received data
|
||||
* @return 1: Transaction is finished; 0: Transaction is not finished
|
||||
*/
|
||||
bool spi_slave_hd_hal_get_rx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans, size_t *out_len);
|
||||
|
||||
/**
|
||||
* @brief Load the TX DMA descriptors without stopping the DMA
|
||||
*
|
||||
* @param hal Context of the HAL layer
|
||||
* @param data Buffer of the transaction data
|
||||
* @param len Length of the data
|
||||
* @param arg Pointer used by the caller to indicate the tranaction. Will be returned by ``spi_slave_hd_hal_get_tx_finished_trans`` when transaction is finished
|
||||
* @return
|
||||
* - ESP_OK: on success
|
||||
* - ESP_ERR_INVALID_STATE: Function called in invalid state.
|
||||
*/
|
||||
esp_err_t spi_slave_hd_hal_txdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg);
|
||||
|
||||
/**
|
||||
* @brief Load the RX DMA descriptors without stopping the DMA
|
||||
*
|
||||
* @param hal Context of the HAL layer
|
||||
* @param data Buffer of the transaction data
|
||||
* @param len Length of the data
|
||||
* @param arg Pointer used by the caller to indicate the tranaction. Will be returned by ``spi_slave_hd_hal_get_rx_finished_trans`` when transaction is finished
|
||||
* @return
|
||||
* - ESP_OK: on success
|
||||
* - ESP_ERR_INVALID_STATE: Function called in invalid state.
|
||||
*/
|
||||
esp_err_t spi_slave_hd_hal_rxdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg);
|
||||
#endif //#if CONFIG_IDF_TARGET_ESP32S2
|
||||
|
@ -31,13 +31,13 @@ typedef enum {
|
||||
|
||||
/// SPI Events
|
||||
typedef enum {
|
||||
SPI_EV_BUF_TX = BIT(0), ///< The buffer has sent data to master, Slave HD only
|
||||
SPI_EV_BUF_RX = BIT(1), ///< The buffer has received data from master, Slave HD only
|
||||
SPI_EV_SEND = BIT(2), ///< Has sent data to master through RDDMA, Slave HD only
|
||||
SPI_EV_RECV = BIT(3), ///< Has received data from master through WRDMA, Slave HD only
|
||||
SPI_EV_CMD9 = BIT(4), ///< Received CMD9 from master, Slave HD only
|
||||
SPI_EV_CMDA = BIT(5), ///< Received CMDA from master, Slave HD only
|
||||
SPI_EV_TRANS = BIT(6), ///< A transaction has done
|
||||
SPI_EV_BUF_TX = BIT(0), ///< The buffer has sent data to master, Slave HD only
|
||||
SPI_EV_BUF_RX = BIT(1), ///< The buffer has received data from master, Slave HD only
|
||||
SPI_EV_SEND = BIT(2), ///< Slave has loaded some data to DMA, and master has received certain number of the data, the number is determined by master. Slave HD only
|
||||
SPI_EV_RECV = BIT(3), ///< Slave has received certain number of data from master, the number is determined by master. Slave HD only.
|
||||
SPI_EV_CMD9 = BIT(4), ///< Received CMD9 from master, Slave HD only
|
||||
SPI_EV_CMDA = BIT(5), ///< Received CMDA from master, Slave HD only
|
||||
SPI_EV_TRANS = BIT(6), ///< A transaction has done
|
||||
} spi_event_t;
|
||||
FLAG_ATTR(spi_event_t)
|
||||
|
||||
|
@ -26,8 +26,8 @@
|
||||
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
|
||||
#define spi_dma_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
|
||||
#define spi_dma_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
|
||||
#endif
|
||||
|
||||
static const char SPI_HAL_TAG[] = "spi_hal";
|
||||
|
@ -11,8 +11,8 @@
|
||||
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#endif
|
||||
|
||||
static void s_spi_slave_hal_dma_init_config(const spi_slave_hal_context_t *hal)
|
||||
|
@ -35,8 +35,8 @@
|
||||
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
|
||||
#define spi_dma_ll_rx_start(dev, addr) do {\
|
||||
gdma_ll_rx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\
|
||||
gdma_ll_rx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\
|
||||
@ -53,15 +53,18 @@ static void s_spi_slave_hd_hal_dma_init_config(const spi_slave_hd_hal_context_t
|
||||
spi_dma_ll_tx_enable_burst_data(hal->dma_out, 1);
|
||||
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, 1);
|
||||
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, 1);
|
||||
spi_dma_ll_enable_out_auto_wrback(hal->dma_out, 1);
|
||||
}
|
||||
|
||||
void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_hal_config_t *hal_config)
|
||||
{
|
||||
memset(hal, 0, sizeof(spi_slave_hd_hal_context_t));
|
||||
spi_dev_t* hw = SPI_LL_GET_HW(hal_config->host_id);
|
||||
hal->dev = hw;
|
||||
hal->dma_in = hal_config->dma_in;
|
||||
hal->dma_out = hal_config->dma_out;
|
||||
hal->append_mode = hal_config->append_mode;
|
||||
hal->rx_cur_desc = hal->dmadesc_rx;
|
||||
hal->tx_cur_desc = hal->dmadesc_tx;
|
||||
|
||||
//Configure slave
|
||||
s_spi_slave_hd_hal_dma_init_config(hal);
|
||||
@ -76,23 +79,30 @@ void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_h
|
||||
|
||||
spi_ll_disable_intr(hw, UINT32_MAX);
|
||||
spi_ll_clear_intr(hw, UINT32_MAX);
|
||||
if (!hal_config->append_mode) {
|
||||
spi_ll_set_intr(hw, SPI_LL_INTR_CMD7 | SPI_LL_INTR_CMD8);
|
||||
|
||||
spi_ll_set_intr(hw, SPI_LL_INTR_WR_DONE | SPI_LL_INTR_CMD8);
|
||||
bool workaround_required = false;
|
||||
if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD7)) {
|
||||
hal->intr_not_triggered |= SPI_EV_RECV;
|
||||
workaround_required = true;
|
||||
}
|
||||
if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD8)) {
|
||||
hal->intr_not_triggered |= SPI_EV_SEND;
|
||||
workaround_required = true;
|
||||
}
|
||||
|
||||
bool workaround_required = false;
|
||||
if (!spi_ll_get_intr(hw, SPI_LL_INTR_WR_DONE)) {
|
||||
hal->intr_not_triggered |= SPI_EV_RECV;
|
||||
workaround_required = true;
|
||||
if (workaround_required) {
|
||||
//Workaround if the previous interrupts are not writable
|
||||
spi_ll_set_intr(hw, SPI_LL_INTR_TRANS_DONE);
|
||||
}
|
||||
}
|
||||
if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD8)) {
|
||||
hal->intr_not_triggered |= SPI_EV_SEND;
|
||||
workaround_required = true;
|
||||
}
|
||||
|
||||
if (workaround_required) {
|
||||
//Workaround if the previous interrupts are not writable
|
||||
spi_ll_set_intr(hw, SPI_LL_INTR_TRANS_DONE);
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
else {
|
||||
spi_ll_enable_intr(hw, SPI_LL_INTR_OUT_EOF | SPI_LL_INTR_CMD7);
|
||||
}
|
||||
#endif
|
||||
|
||||
spi_ll_slave_hd_set_len_cond(hw, SPI_LL_TRANS_LEN_COND_WRBUF |
|
||||
SPI_LL_TRANS_LEN_COND_WRDMA |
|
||||
@ -102,24 +112,41 @@ void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_h
|
||||
spi_ll_slave_set_seg_mode(hal->dev, true);
|
||||
}
|
||||
|
||||
uint32_t spi_salve_hd_hal_get_max_bus_size(spi_slave_hd_hal_context_t *hal)
|
||||
{
|
||||
return hal->dma_desc_num * LLDESC_MAX_NUM_PER_DESC;
|
||||
}
|
||||
|
||||
uint32_t spi_slave_hd_hal_get_total_desc_size(spi_slave_hd_hal_context_t *hal, uint32_t bus_size)
|
||||
{
|
||||
//See how many dma descriptors we need
|
||||
int dma_desc_ct = (bus_size + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
|
||||
if (dma_desc_ct == 0) {
|
||||
dma_desc_ct = 1; //default to 4k when max is not given
|
||||
}
|
||||
hal->dma_desc_num = dma_desc_ct;
|
||||
|
||||
return hal->dma_desc_num * sizeof(spi_slave_hd_hal_desc_append_t);
|
||||
}
|
||||
|
||||
void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, size_t len)
|
||||
{
|
||||
lldesc_setup_link(hal->dmadesc_rx, out_buf, len, true);
|
||||
lldesc_setup_link(&hal->dmadesc_rx->desc, out_buf, len, true);
|
||||
|
||||
spi_ll_dma_rx_fifo_reset(hal->dev);
|
||||
spi_dma_ll_rx_reset(hal->dma_in);
|
||||
spi_ll_slave_reset(hal->dev);
|
||||
spi_ll_infifo_full_clr(hal->dev);
|
||||
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_WR_DONE);
|
||||
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
|
||||
|
||||
spi_ll_slave_set_rx_bitlen(hal->dev, len * 8);
|
||||
spi_ll_dma_rx_enable(hal->dev, 1);
|
||||
spi_dma_ll_rx_start(hal->dma_in, &hal->dmadesc_rx[0]);
|
||||
spi_dma_ll_rx_start(hal->dma_in, &hal->dmadesc_rx->desc);
|
||||
}
|
||||
|
||||
void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len)
|
||||
{
|
||||
lldesc_setup_link(hal->dmadesc_tx, data, len, false);
|
||||
lldesc_setup_link(&hal->dmadesc_tx->desc, data, len, false);
|
||||
|
||||
spi_ll_dma_tx_fifo_reset(hal->dev);
|
||||
spi_dma_ll_tx_reset(hal->dma_out);
|
||||
@ -128,25 +155,29 @@ void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size
|
||||
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD8);
|
||||
|
||||
spi_ll_dma_tx_enable(hal->dev, 1);
|
||||
spi_dma_ll_tx_start(hal->dma_out, &hal->dmadesc_tx[0]);
|
||||
spi_dma_ll_tx_start(hal->dma_out, &hal->dmadesc_tx->desc);
|
||||
}
|
||||
|
||||
static spi_ll_intr_t get_event_intr(spi_event_t ev)
|
||||
static spi_ll_intr_t get_event_intr(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
|
||||
{
|
||||
spi_ll_intr_t intr = 0;
|
||||
if (ev & SPI_EV_BUF_TX) intr |= SPI_LL_INTR_RDBUF;
|
||||
if (ev & SPI_EV_BUF_RX) intr |= SPI_LL_INTR_WRBUF;
|
||||
if (ev & SPI_EV_SEND) intr |= SPI_LL_INTR_CMD8;
|
||||
if (ev & SPI_EV_RECV) intr |= SPI_LL_INTR_WR_DONE;
|
||||
if (ev & SPI_EV_CMD9) intr |= SPI_LL_INTR_CMD9;
|
||||
if (ev & SPI_EV_CMDA) intr |= SPI_LL_INTR_CMDA;
|
||||
if (ev & SPI_EV_TRANS) intr |= SPI_LL_INTR_TRANS_DONE;
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
if ((ev & SPI_EV_SEND) && hal->append_mode) intr |= SPI_LL_INTR_OUT_EOF;
|
||||
#endif
|
||||
if ((ev & SPI_EV_SEND) && !hal->append_mode) intr |= SPI_LL_INTR_CMD8;
|
||||
if (ev & SPI_EV_RECV) intr |= SPI_LL_INTR_CMD7;
|
||||
if (ev & SPI_EV_BUF_TX) intr |= SPI_LL_INTR_RDBUF;
|
||||
if (ev & SPI_EV_BUF_RX) intr |= SPI_LL_INTR_WRBUF;
|
||||
if (ev & SPI_EV_CMD9) intr |= SPI_LL_INTR_CMD9;
|
||||
if (ev & SPI_EV_CMDA) intr |= SPI_LL_INTR_CMDA;
|
||||
if (ev & SPI_EV_TRANS) intr |= SPI_LL_INTR_TRANS_DONE;
|
||||
return intr;
|
||||
}
|
||||
|
||||
bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
|
||||
bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
|
||||
{
|
||||
spi_ll_intr_t intr = get_event_intr(ev);
|
||||
spi_ll_intr_t intr = get_event_intr(hal, ev);
|
||||
if (spi_ll_get_intr(hal->dev, intr)) {
|
||||
spi_ll_clear_intr(hal->dev, intr);
|
||||
return true;
|
||||
@ -154,15 +185,15 @@ bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t* hal, spi_eve
|
||||
return false;
|
||||
}
|
||||
|
||||
bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
|
||||
bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
|
||||
{
|
||||
//The trans_done interrupt is used for the workaround when some interrupt is not writable
|
||||
spi_ll_intr_t intr = get_event_intr(ev);
|
||||
spi_ll_intr_t intr = get_event_intr(hal, ev);
|
||||
|
||||
// Workaround for these interrupts not writable
|
||||
uint32_t missing_intr = hal->intr_not_triggered & ev;
|
||||
if (missing_intr) {
|
||||
if ((missing_intr & SPI_EV_RECV) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_WR_DONE)) {
|
||||
if ((missing_intr & SPI_EV_RECV) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_CMD7)) {
|
||||
hal->intr_not_triggered &= ~SPI_EV_RECV;
|
||||
}
|
||||
if ((missing_intr & SPI_EV_SEND) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_CMD8)) {
|
||||
@ -182,13 +213,13 @@ bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t* hal, spi_e
|
||||
|
||||
void spi_slave_hd_hal_enable_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
|
||||
{
|
||||
spi_ll_intr_t intr = get_event_intr(ev);
|
||||
spi_ll_intr_t intr = get_event_intr(hal, ev);
|
||||
spi_ll_enable_intr(hal->dev, intr);
|
||||
}
|
||||
|
||||
void spi_slave_hd_hal_invoke_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
|
||||
{
|
||||
spi_ll_intr_t intr = get_event_intr(ev);
|
||||
spi_ll_intr_t intr = get_event_intr(hal, ev);
|
||||
|
||||
// Workaround for these interrupts not writable
|
||||
if (hal->intr_not_triggered & ev & (SPI_EV_RECV | SPI_EV_SEND)) {
|
||||
@ -219,8 +250,155 @@ int spi_slave_hd_hal_get_rxlen(spi_slave_hd_hal_context_t *hal)
|
||||
return spi_ll_slave_get_rx_byte_len(hal->dev);
|
||||
}
|
||||
|
||||
int spi_slave_hd_hal_rxdma_get_len(spi_slave_hd_hal_context_t *hal)
|
||||
int spi_slave_hd_hal_rxdma_seg_get_len(spi_slave_hd_hal_context_t *hal)
|
||||
{
|
||||
lldesc_t* desc = &hal->dmadesc_rx[0];
|
||||
lldesc_t* desc = &hal->dmadesc_rx->desc;
|
||||
return lldesc_get_received_len(desc, NULL);
|
||||
}
|
||||
|
||||
bool spi_slave_hd_hal_get_tx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans)
|
||||
{
|
||||
if (!hal->tx_dma_head || hal->tx_dma_head->desc.owner) {
|
||||
return false;
|
||||
}
|
||||
|
||||
*out_trans = hal->tx_dma_head->arg;
|
||||
hal->tx_recycled_desc_cnt++;
|
||||
hal->tx_dma_head = (spi_slave_hd_hal_desc_append_t *)STAILQ_NEXT(&hal->tx_dma_head->desc, qe);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool spi_slave_hd_hal_get_rx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans, size_t *out_len)
|
||||
{
|
||||
if (!hal->rx_dma_head || hal->rx_dma_head->desc.owner) {
|
||||
return false;
|
||||
}
|
||||
|
||||
*out_trans = hal->rx_dma_head->arg;
|
||||
*out_len = hal->rx_dma_head->desc.length;
|
||||
hal->rx_recycled_desc_cnt++;
|
||||
hal->rx_dma_head = (spi_slave_hd_hal_desc_append_t *)STAILQ_NEXT(&hal->rx_dma_head->desc, qe);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
//Append mode is only supported on ESP32S2 now
|
||||
static void spi_slave_hd_hal_link_append_desc(spi_slave_hd_hal_desc_append_t *dmadesc, const void *data, int len, bool isrx, void *arg)
|
||||
{
|
||||
assert(len <= LLDESC_MAX_NUM_PER_DESC); //TODO: Add support for transaction with length larger than 4092, IDF-2660
|
||||
int n = 0;
|
||||
while (len) {
|
||||
int dmachunklen = len;
|
||||
if (dmachunklen > LLDESC_MAX_NUM_PER_DESC) {
|
||||
dmachunklen = LLDESC_MAX_NUM_PER_DESC;
|
||||
}
|
||||
if (isrx) {
|
||||
//Receive needs DMA length rounded to next 32-bit boundary
|
||||
dmadesc[n].desc.size = (dmachunklen + 3) & (~3);
|
||||
dmadesc[n].desc.length = (dmachunklen + 3) & (~3);
|
||||
} else {
|
||||
dmadesc[n].desc.size = dmachunklen;
|
||||
dmadesc[n].desc.length = dmachunklen;
|
||||
}
|
||||
dmadesc[n].desc.buf = (uint8_t *)data;
|
||||
dmadesc[n].desc.eof = 0;
|
||||
dmadesc[n].desc.sosf = 0;
|
||||
dmadesc[n].desc.owner = 1;
|
||||
dmadesc[n].desc.qe.stqe_next = &dmadesc[n + 1].desc;
|
||||
dmadesc[n].arg = arg;
|
||||
len -= dmachunklen;
|
||||
data += dmachunklen;
|
||||
n++;
|
||||
}
|
||||
dmadesc[n - 1].desc.eof = 1; //Mark last DMA desc as end of stream.
|
||||
dmadesc[n - 1].desc.qe.stqe_next = NULL;
|
||||
}
|
||||
|
||||
esp_err_t spi_slave_hd_hal_txdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg)
|
||||
{
|
||||
//Check if there are enough available DMA descriptors for software to use
|
||||
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
|
||||
int not_recycled_desc_num = hal->tx_used_desc_cnt - hal->tx_recycled_desc_cnt;
|
||||
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
|
||||
if (num_required > available_desc_num) {
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
|
||||
spi_slave_hd_hal_link_append_desc(hal->tx_cur_desc, data, len, false, arg);
|
||||
|
||||
if (!hal->tx_dma_head) {
|
||||
//start a new link
|
||||
hal->tx_dma_head = hal->tx_cur_desc;
|
||||
hal->tx_dma_tail = hal->tx_cur_desc;
|
||||
|
||||
spi_dma_ll_tx_reset(hal->dma_out);
|
||||
spi_ll_outfifo_empty_clr(hal->dev);
|
||||
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_OUT_EOF);
|
||||
|
||||
spi_ll_dma_tx_enable(hal->dev, 1);
|
||||
spi_dma_ll_tx_start(hal->dma_out, &hal->tx_dma_head->desc);
|
||||
} else {
|
||||
//there is already a link
|
||||
STAILQ_NEXT(&hal->tx_dma_tail->desc, qe) = &hal->tx_cur_desc->desc;
|
||||
hal->tx_dma_tail = hal->tx_cur_desc;
|
||||
|
||||
spi_dma_ll_tx_restart(hal->dma_out);
|
||||
}
|
||||
|
||||
//Move the current descriptor pointer according to the number of the linked descriptors
|
||||
for (int i = 0; i < num_required; i++) {
|
||||
hal->tx_used_desc_cnt++;
|
||||
hal->tx_cur_desc++;
|
||||
if (hal->tx_cur_desc == hal->dmadesc_tx + hal->dma_desc_num) {
|
||||
hal->tx_cur_desc = hal->dmadesc_tx;
|
||||
}
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t spi_slave_hd_hal_rxdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg)
|
||||
{
|
||||
//Check if there are enough available dma descriptors for software to use
|
||||
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
|
||||
int not_recycled_desc_num = hal->rx_used_desc_cnt - hal->rx_recycled_desc_cnt;
|
||||
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
|
||||
if (num_required > available_desc_num) {
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
|
||||
spi_slave_hd_hal_link_append_desc(hal->rx_cur_desc, data, len, false, arg);
|
||||
|
||||
if (!hal->rx_dma_head) {
|
||||
//start a new link
|
||||
hal->rx_dma_head = hal->rx_cur_desc;
|
||||
hal->rx_dma_tail = hal->rx_cur_desc;
|
||||
|
||||
spi_dma_ll_rx_reset(hal->dma_in);
|
||||
spi_ll_infifo_full_clr(hal->dev);
|
||||
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
|
||||
|
||||
spi_ll_dma_rx_enable(hal->dev, 1);
|
||||
spi_dma_ll_rx_start(hal->dma_in, &hal->rx_dma_head->desc);
|
||||
} else {
|
||||
//there is already a link
|
||||
STAILQ_NEXT(&hal->rx_dma_tail->desc, qe) = &hal->rx_cur_desc->desc;
|
||||
hal->rx_dma_tail = hal->rx_cur_desc;
|
||||
|
||||
spi_dma_ll_rx_restart(hal->dma_in);
|
||||
}
|
||||
|
||||
//Move the current descriptor pointer according to the number of the linked descriptors
|
||||
for (int i = 0; i < num_required; i++) {
|
||||
hal->rx_used_desc_cnt++;
|
||||
hal->rx_cur_desc++;
|
||||
if (hal->rx_cur_desc == hal->dmadesc_rx + hal->dma_desc_num) {
|
||||
hal->rx_cur_desc = hal->dmadesc_rx;
|
||||
}
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
#endif //#if CONFIG_IDF_TARGET_ESP32S2
|
||||
|
Loading…
Reference in New Issue
Block a user