esp-idf/components/hal/esp32p4/include/axi_dma_ll.h

454 lines
13 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include "hal/gdma_types.h"
#include "hal/gdma_ll.h"
#include "soc/axi_dma_struct.h"
#include "soc/axi_dma_reg.h"
#ifdef __cplusplus
extern "C" {
#endif
#define AXI_DMA_LL_GET_HW(id) (((id) == 0) ? (&AXI_DMA) : NULL)
// any "dummy" peripheral ID can be used for M2M mode
#define AXI_DMA_LL_M2M_FREE_PERIPH_ID_MASK (0xFFC0)
#define AXI_DMA_LL_INVALID_PERIPH_ID (0x3F)
///////////////////////////////////// Common /////////////////////////////////////////
/**
* @brief Force enable register clock
*/
static inline void axi_dma_ll_force_enable_reg_clock(axi_dma_dev_t *dev, bool enable)
{
dev->misc_conf.clk_en = enable;
}
/**
* @brief Disable priority arbitration
*
* @param dev DMA register base address
* @param dis True to disable, false to enable
*/
static inline void axi_dma_ll_disable_prio_arb(axi_dma_dev_t *dev, bool dis)
{
dev->misc_conf.arb_pri_dis = dis;
}
/**
* @brief Reset DMA FSM (Read and Write)
*
* @param dev DMA register base address
*/
static inline void axi_dma_ll_reset_fsm(axi_dma_dev_t *dev)
{
dev->misc_conf.axim_rst_rd_inter = 1;
dev->misc_conf.axim_rst_rd_inter = 0;
dev->misc_conf.axim_rst_wr_inter = 1;
dev->misc_conf.axim_rst_wr_inter = 0;
}
///////////////////////////////////// RX /////////////////////////////////////////
/**
* @brief Get DMA RX channel interrupt status word
*/
__attribute__((always_inline))
static inline uint32_t axi_dma_ll_rx_get_interrupt_status(axi_dma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].intr.st.val;
}
/**
* @brief Enable DMA RX channel interrupt
*/
static inline void axi_dma_ll_rx_enable_interrupt(axi_dma_dev_t *dev, uint32_t channel, uint32_t mask, bool enable)
{
if (enable) {
dev->in[channel].intr.ena.val |= mask;
} else {
dev->in[channel].intr.ena.val &= ~mask;
}
}
/**
* @brief Clear DMA RX channel interrupt
*/
__attribute__((always_inline))
static inline void axi_dma_ll_rx_clear_interrupt_status(axi_dma_dev_t *dev, uint32_t channel, uint32_t mask)
{
dev->in[channel].intr.clr.val = mask;
}
/**
* @brief Get DMA RX channel interrupt status register address
*/
static inline volatile void *axi_dma_ll_rx_get_interrupt_status_reg(axi_dma_dev_t *dev, uint32_t channel)
{
return (volatile void *)(&dev->in[channel].intr.st);
}
/**
* @brief Enable DMA RX channel to check the owner bit in the descriptor, disabled by default
*/
static inline void axi_dma_ll_rx_enable_owner_check(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
dev->in[channel].conf.in_conf1.in_check_owner_chn = enable;
}
/**
* @brief Enable DMA RX channel burst reading data, disabled by default
*/
static inline void axi_dma_ll_rx_enable_data_burst(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
// TODO: IDF-6504
}
/**
* @brief Enable DMA RX channel burst reading descriptor link, disabled by default
*/
static inline void axi_dma_ll_rx_enable_descriptor_burst(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
dev->in[channel].conf.in_conf0.indscr_burst_en_chn = enable;
}
/**
* @brief Reset DMA RX channel FSM and FIFO pointer
*/
__attribute__((always_inline))
static inline void axi_dma_ll_rx_reset_channel(axi_dma_dev_t *dev, uint32_t channel)
{
dev->in[channel].conf.in_conf0.in_rst_chn = 1;
dev->in[channel].conf.in_conf0.in_rst_chn = 0;
}
/**
* @brief Pop data from DMA RX FIFO
*/
static inline uint32_t axi_dma_ll_rx_pop_data(axi_dma_dev_t *dev, uint32_t channel)
{
dev->in[channel].conf.in_pop.infifo_pop_chn = 1;
return dev->in[channel].conf.in_pop.infifo_rdata_chn;
}
/**
* @brief Set the descriptor link base address for RX channel
*/
__attribute__((always_inline))
static inline void axi_dma_ll_rx_set_desc_addr(axi_dma_dev_t *dev, uint32_t channel, uint32_t addr)
{
dev->in[channel].conf.in_link2.inlink_addr_chn = addr;
}
/**
* @brief Start dealing with RX descriptors
*/
__attribute__((always_inline))
static inline void axi_dma_ll_rx_start(axi_dma_dev_t *dev, uint32_t channel)
{
dev->in[channel].conf.in_link1.inlink_start_chn = 1;
}
/**
* @brief Stop dealing with RX descriptors
*/
__attribute__((always_inline))
static inline void axi_dma_ll_rx_stop(axi_dma_dev_t *dev, uint32_t channel)
{
dev->in[channel].conf.in_link1.inlink_stop_chn = 1;
}
/**
* @brief Restart a new inlink right after the last descriptor
*/
__attribute__((always_inline))
static inline void axi_dma_ll_rx_restart(axi_dma_dev_t *dev, uint32_t channel)
{
dev->in[channel].conf.in_link1.inlink_restart_chn = 1;
}
/**
* @brief Enable DMA RX to return the address of current descriptor when receives error
*/
static inline void axi_dma_ll_rx_enable_auto_return(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
dev->in[channel].conf.in_link1.inlink_auto_ret_chn = enable;
}
/**
* @brief Check if DMA RX FSM is in IDLE state
*/
static inline bool axi_dma_ll_rx_is_fsm_idle(axi_dma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].conf.in_link1.inlink_park_chn;
}
/**
* @brief Get RX success EOF descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t axi_dma_ll_rx_get_success_eof_desc_addr(axi_dma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].conf.in_suc_eof_des_addr.val;
}
/**
* @brief Get RX error EOF descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t axi_dma_ll_rx_get_error_eof_desc_addr(axi_dma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].conf.in_err_eof_des_addr.val;
}
/**
* @brief Get the pre-fetched RX descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t axi_dma_ll_rx_get_prefetched_desc_addr(axi_dma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].conf.in_dscr.val;
}
/**
* @brief Set priority for DMA RX channel
*/
static inline void axi_dma_ll_rx_set_priority(axi_dma_dev_t *dev, uint32_t channel, uint32_t prio)
{
dev->in[channel].conf.in_pri.rx_pri_chn = prio;
}
/**
* @brief Connect DMA RX channel to a given peripheral
*/
static inline void axi_dma_ll_rx_connect_to_periph(axi_dma_dev_t *dev, uint32_t channel, gdma_trigger_peripheral_t periph, int periph_id)
{
dev->in[channel].conf.in_peri_sel.peri_in_sel_chn = periph_id;
dev->in[channel].conf.in_conf0.mem_trans_en_chn = (periph == GDMA_TRIG_PERIPH_M2M);
}
/**
* @brief Disconnect DMA RX channel from peripheral
*/
static inline void axi_dma_ll_rx_disconnect_from_periph(axi_dma_dev_t *dev, uint32_t channel)
{
dev->in[channel].conf.in_peri_sel.peri_in_sel_chn = GDMA_LL_INVALID_PERIPH_ID;
dev->in[channel].conf.in_conf0.mem_trans_en_chn = false;
}
/**
* @brief Whether to enable the ETM subsystem for RX channel
*
* @note When ETM_EN is 1, only ETM tasks can be used to configure the transfer direction and enable the channel.
*/
static inline void axi_dma_ll_rx_enable_etm_task(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
dev->in[channel].conf.in_conf0.in_etm_en_chn = enable;
}
///////////////////////////////////// TX /////////////////////////////////////////
/**
* @brief Get DMA TX channel interrupt status word
*/
__attribute__((always_inline))
static inline uint32_t axi_dma_ll_tx_get_interrupt_status(axi_dma_dev_t *dev, uint32_t channel)
{
return dev->out[channel].intr.st.val;
}
/**
* @brief Enable DMA TX channel interrupt
*/
static inline void axi_dma_ll_tx_enable_interrupt(axi_dma_dev_t *dev, uint32_t channel, uint32_t mask, bool enable)
{
if (enable) {
dev->out[channel].intr.ena.val |= mask;
} else {
dev->out[channel].intr.ena.val &= ~mask;
}
}
/**
* @brief Clear DMA TX channel interrupt
*/
__attribute__((always_inline))
static inline void axi_dma_ll_tx_clear_interrupt_status(axi_dma_dev_t *dev, uint32_t channel, uint32_t mask)
{
dev->out[channel].intr.clr.val = mask;
}
/**
* @brief Get DMA TX channel interrupt status register address
*/
static inline volatile void *axi_dma_ll_tx_get_interrupt_status_reg(axi_dma_dev_t *dev, uint32_t channel)
{
return (volatile void *)(&dev->out[channel].intr.st);
}
/**
* @brief Enable DMA TX channel to check the owner bit in the descriptor, disabled by default
*/
static inline void axi_dma_ll_tx_enable_owner_check(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
dev->out[channel].conf.out_conf1.out_check_owner_chn = enable;
}
/**
* @brief Enable DMA TX channel burst sending data, disabled by default
*/
static inline void axi_dma_ll_tx_enable_data_burst(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
// TODO: IDF-6504
}
/**
* @brief Enable DMA TX channel burst reading descriptor link, disabled by default
*/
static inline void axi_dma_ll_tx_enable_descriptor_burst(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
dev->out[channel].conf.out_conf0.outdscr_burst_en_chn = enable;
}
/**
* @brief Set TX channel EOF mode
*/
static inline void axi_dma_ll_tx_set_eof_mode(axi_dma_dev_t *dev, uint32_t channel, uint32_t mode)
{
dev->out[channel].conf.out_conf0.out_eof_mode_chn = mode;
}
/**
* @brief Enable DMA TX channel automatic write results back to descriptor after all data has been sent out, disabled by default
*/
static inline void axi_dma_ll_tx_enable_auto_write_back(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
dev->out[channel].conf.out_conf0.out_auto_wrback_chn = enable;
}
/**
* @brief Reset DMA TX channel FSM and FIFO pointer
*/
__attribute__((always_inline))
static inline void axi_dma_ll_tx_reset_channel(axi_dma_dev_t *dev, uint32_t channel)
{
dev->out[channel].conf.out_conf0.out_rst_chn = 1;
dev->out[channel].conf.out_conf0.out_rst_chn = 0;
}
/**
* @brief Push data into DMA TX FIFO
*/
static inline void axi_dma_ll_tx_push_data(axi_dma_dev_t *dev, uint32_t channel, uint32_t data)
{
dev->out[channel].conf.out_push.outfifo_wdata_chn = data;
dev->out[channel].conf.out_push.outfifo_push_chn = 1;
}
/**
* @brief Set the descriptor link base address for TX channel
*/
__attribute__((always_inline))
static inline void axi_dma_ll_tx_set_desc_addr(axi_dma_dev_t *dev, uint32_t channel, uint32_t addr)
{
dev->out[channel].conf.out_link2.outlink_addr_chn = addr;
}
/**
* @brief Start dealing with TX descriptors
*/
__attribute__((always_inline))
static inline void axi_dma_ll_tx_start(axi_dma_dev_t *dev, uint32_t channel)
{
dev->out[channel].conf.out_link1.outlink_start_chn = 1;
}
/**
* @brief Stop dealing with TX descriptors
*/
__attribute__((always_inline))
static inline void axi_dma_ll_tx_stop(axi_dma_dev_t *dev, uint32_t channel)
{
dev->out[channel].conf.out_link1.outlink_stop_chn = 1;
}
/**
* @brief Restart a new outlink right after the last descriptor
*/
__attribute__((always_inline))
static inline void axi_dma_ll_tx_restart(axi_dma_dev_t *dev, uint32_t channel)
{
dev->out[channel].conf.out_link1.outlink_restart_chn = 1;
}
/**
* @brief Check if DMA TX FSM is in IDLE state
*/
static inline bool axi_dma_ll_tx_is_fsm_idle(axi_dma_dev_t *dev, uint32_t channel)
{
return dev->out[channel].conf.out_link1.outlink_park_chn;
}
/**
* @brief Get TX EOF descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t axi_dma_ll_tx_get_eof_desc_addr(axi_dma_dev_t *dev, uint32_t channel)
{
return dev->out[channel].conf.out_eof_des_addr.val;
}
/**
* @brief Get the pre-fetched TX descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t axi_dma_ll_tx_get_prefetched_desc_addr(axi_dma_dev_t *dev, uint32_t channel)
{
return dev->out[channel].conf.out_dscr.val;
}
/**
* @brief Set priority for DMA TX channel
*/
static inline void axi_dma_ll_tx_set_priority(axi_dma_dev_t *dev, uint32_t channel, uint32_t prio)
{
dev->out[channel].conf.out_pri.tx_pri_chn = prio;
}
/**
* @brief Connect DMA TX channel to a given peripheral
*/
static inline void axi_dma_ll_tx_connect_to_periph(axi_dma_dev_t *dev, uint32_t channel, gdma_trigger_peripheral_t periph, int periph_id)
{
(void)periph;
dev->out[channel].conf.out_peri_sel.peri_out_sel_chn = periph_id;
}
/**
* @brief Disconnect DMA TX channel from peripheral
*/
static inline void axi_dma_ll_tx_disconnect_from_periph(axi_dma_dev_t *dev, uint32_t channel)
{
dev->out[channel].conf.out_peri_sel.peri_out_sel_chn = GDMA_LL_INVALID_PERIPH_ID;
}
/**
* @brief Whether to enable the ETM subsystem for TX channel
*
* @note When ETM_EN is 1, only ETM tasks can be used to configure the transfer direction and enable the channel.
*/
static inline void axi_dma_ll_tx_enable_etm_task(axi_dma_dev_t *dev, uint32_t channel, bool enable)
{
dev->out[channel].conf.out_conf0.out_etm_en_chn = enable;
}
#ifdef __cplusplus
}
#endif