esp-idf/components/mbedtls/port/aes/dma/esp_aes.c
harshal.patil 2abb656ba2
feat(mbedtls/aes): Support AES-DMA operations by satisfying L1 cache alignment requirements
- Use DMA RX done interrupt status bit while waiting for DMA rx transfer
2024-03-13 15:22:07 +05:30

543 lines
14 KiB
C

/**
* \brief AES block cipher, ESP DMA hardware accelerated version
* Based on mbedTLS FIPS-197 compliant version.
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
*
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/
#include <string.h>
#include "mbedtls/aes.h"
#include "esp_private/periph_ctrl.h"
#include "esp_log.h"
#include "esp_crypto_lock.h"
#include "hal/aes_hal.h"
#include "esp_aes_internal.h"
#if SOC_AES_GDMA
#define AES_LOCK() esp_crypto_sha_aes_lock_acquire()
#define AES_RELEASE() esp_crypto_sha_aes_lock_release()
#elif SOC_AES_CRYPTO_DMA
#define AES_LOCK() esp_crypto_dma_lock_acquire()
#define AES_RELEASE() esp_crypto_dma_lock_release()
#endif
static const char *TAG = "esp-aes";
void esp_aes_acquire_hardware( void )
{
/* Released by esp_aes_release_hardware()*/
AES_LOCK();
/* Enable AES and DMA hardware */
#if SOC_AES_CRYPTO_DMA
periph_module_enable(PERIPH_AES_DMA_MODULE);
#elif SOC_AES_GDMA
periph_module_enable(PERIPH_AES_MODULE);
#endif
}
/* Function to disable AES and Crypto DMA clocks and release locks */
void esp_aes_release_hardware( void )
{
/* Disable AES and DMA hardware */
#if SOC_AES_CRYPTO_DMA
periph_module_disable(PERIPH_AES_DMA_MODULE);
#elif SOC_AES_GDMA
periph_module_disable(PERIPH_AES_MODULE);
#endif
AES_RELEASE();
}
static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
unsigned char *output )
{
if (!ctx) {
ESP_LOGE(TAG, "No AES context supplied");
return -1;
}
if (!input) {
ESP_LOGE(TAG, "No input supplied");
return -1;
}
if (!output) {
ESP_LOGE(TAG, "No output supplied");
return -1;
}
return 0;
}
/*
* AES-ECB single block encryption
*/
int esp_internal_aes_encrypt(esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int r = -1;
if (esp_aes_validate_input(ctx, input, output)) {
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
esp_aes_release_hardware();
return r;
}
void esp_aes_encrypt(esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
esp_internal_aes_encrypt(ctx, input, output);
}
/*
* AES-ECB single block decryption
*/
int esp_internal_aes_decrypt(esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int r = -1;
if (esp_aes_validate_input(ctx, input, output)) {
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
esp_aes_release_hardware();
return r;
}
void esp_aes_decrypt(esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
esp_internal_aes_decrypt(ctx, input, output);
}
/*
* AES-ECB block encryption/decryption
*/
int esp_aes_crypt_ecb(esp_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16] )
{
int r = -1;
if (esp_aes_validate_input(ctx, input, output)) {
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
esp_aes_release_hardware();
return r;
}
/*
* AES-CBC buffer encryption/decryption
*/
int esp_aes_crypt_cbc(esp_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
int r = -1;
if (esp_aes_validate_input(ctx, input, output)) {
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
/* For CBC input length should be multiple of
* AES BLOCK BYTES
* */
if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
return ERR_ESP_AES_INVALID_INPUT_LENGTH;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC);
aes_hal_set_iv(iv);
r = esp_aes_process_dma(ctx, input, output, length, NULL);
if (r != 0) {
goto cleanup;
}
aes_hal_read_iv(iv);
cleanup:
esp_aes_release_hardware();
return r;
}
/*
* AES-CFB8 buffer encryption/decryption
*/
int esp_aes_crypt_cfb8(esp_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
int r = -1;
unsigned char c;
unsigned char ov[17];
size_t block_bytes = length - (length % AES_BLOCK_BYTES);
if (esp_aes_validate_input(ctx, input, output)) {
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
/* The DMA engine will only output correct IV if it runs
full blocks of input in CFB8 mode
*/
esp_aes_acquire_hardware();
if (block_bytes > 0) {
ctx->key_in_hardware = 0;
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8);
aes_hal_set_iv(iv);
r = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
if (r != 0) {
goto cleanup;
}
aes_hal_read_iv(iv);
length -= block_bytes;
input += block_bytes;
output += block_bytes;
}
// Process remaining bytes block-at-a-time in ECB mode
if (length > 0) {
ctx->key_in_hardware = 0;
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, MBEDTLS_AES_ENCRYPT);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
while ( length-- ) {
memcpy( ov, iv, 16 );
r = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
if (r != 0) {
goto cleanup;
}
if ( mode == MBEDTLS_AES_DECRYPT ) {
ov[16] = *input;
}
c = *output++ = ( iv[0] ^ *input++ );
if ( mode == MBEDTLS_AES_ENCRYPT ) {
ov[16] = c;
}
memcpy( iv, ov + 1, 16 );
}
}
r = 0;
cleanup:
esp_aes_release_hardware();
return r;
}
/*
* AES-CFB128 buffer encryption/decryption
*/
int esp_aes_crypt_cfb128(esp_aes_context *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
uint8_t c;
size_t stream_bytes = 0;
size_t n;
if (esp_aes_validate_input(ctx, input, output)) {
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!iv_off) {
ESP_LOGE(TAG, "No IV offset supplied");
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
n = *iv_off;
/* First process the *iv_off bytes
* which are pending from the previous call to this API
*/
while (n > 0 && length > 0) {
if (mode == MBEDTLS_AES_ENCRYPT) {
iv[n] = *output++ = *input++ ^ iv[n];
} else {
c = *input++;
*output++ = c ^ iv[n];
iv[n] = c;
}
n = (n + 1) % AES_BLOCK_BYTES;
length--;
}
if (length > 0) {
stream_bytes = length % AES_BLOCK_BYTES;
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128);
aes_hal_set_iv(iv);
int r = esp_aes_process_dma(ctx, input, output, length, iv);
if (r != 0) {
esp_aes_release_hardware();
return r;
}
if (stream_bytes == 0) {
// if we didn't need the partial 'stream block' then the new IV is in the IV register
aes_hal_read_iv(iv);
} else {
// if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
// In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
// block uses ciphertext as its IV input)
//
// Note: It may be more efficient to not process the partial block via DMA in this case.
if (mode == MBEDTLS_AES_DECRYPT) {
memcpy(iv, input + length - stream_bytes, stream_bytes);
}
}
esp_aes_release_hardware();
}
*iv_off = n + stream_bytes;
return 0;
}
/*
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
*/
int esp_aes_crypt_ofb(esp_aes_context *ctx,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
size_t n;
size_t stream_bytes = 0;
if (esp_aes_validate_input(ctx, input, output)) {
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!iv_off) {
ESP_LOGE(TAG, "No IV offset supplied");
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
n = *iv_off;
/* If there is an offset then use the output of the previous AES block
(the updated IV) to calculate the new output */
while (n > 0 && length > 0) {
*output++ = (*input++ ^ iv[n]);
n = (n + 1) & 0xF;
length--;
}
if (length > 0) {
stream_bytes = (length % AES_BLOCK_BYTES);
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB);
aes_hal_set_iv(iv);
int r = esp_aes_process_dma(ctx, input, output, length, iv);
if (r != 0) {
esp_aes_release_hardware();
return r;
}
aes_hal_read_iv(iv);
esp_aes_release_hardware();
}
*iv_off = n + stream_bytes;
return 0;
}
/*
* AES-CTR buffer encryption/decryption
*/
int esp_aes_crypt_ctr(esp_aes_context *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[16],
unsigned char stream_block[16],
const unsigned char *input,
unsigned char *output )
{
size_t n;
if (esp_aes_validate_input(ctx, input, output)) {
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!stream_block) {
ESP_LOGE(TAG, "No stream supplied");
return -1;
}
if (!nonce_counter) {
ESP_LOGE(TAG, "No nonce supplied");
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
if (!nc_off) {
ESP_LOGE(TAG, "No nonce offset supplied");
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
n = *nc_off;
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
/* Process any unprocessed bytes left in stream block from
last operation */
while (n > 0 && length > 0) {
*output++ = (unsigned char)(*input++ ^ stream_block[n]);
n = (n + 1) & 0xF;
length--;
}
if (length > 0) {
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR);
aes_hal_set_iv(nonce_counter);
int r = esp_aes_process_dma(ctx, input, output, length, stream_block);
if (r != 0) {
esp_aes_release_hardware();
return r;
}
aes_hal_read_iv(nonce_counter);
esp_aes_release_hardware();
}
*nc_off = n + (length % AES_BLOCK_BYTES);
return 0;
}