/** * \brief AES block cipher, ESP DMA hardware accelerated version * Based on mbedTLS FIPS-197 compliant version. * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ /* * The AES block cipher was designed by Vincent Rijmen and Joan Daemen. * * http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf */ #include #include "mbedtls/aes.h" #include "esp_private/periph_ctrl.h" #include "esp_log.h" #include "esp_crypto_lock.h" #include "hal/aes_hal.h" #include "esp_aes_internal.h" #if SOC_AES_GDMA #define AES_LOCK() esp_crypto_sha_aes_lock_acquire() #define AES_RELEASE() esp_crypto_sha_aes_lock_release() #elif SOC_AES_CRYPTO_DMA #define AES_LOCK() esp_crypto_dma_lock_acquire() #define AES_RELEASE() esp_crypto_dma_lock_release() #endif static const char *TAG = "esp-aes"; void esp_aes_acquire_hardware( void ) { /* Released by esp_aes_release_hardware()*/ AES_LOCK(); /* Enable AES and DMA hardware */ #if SOC_AES_CRYPTO_DMA periph_module_enable(PERIPH_AES_DMA_MODULE); #elif SOC_AES_GDMA periph_module_enable(PERIPH_AES_MODULE); #endif } /* Function to disable AES and Crypto DMA clocks and release locks */ void esp_aes_release_hardware( void ) { /* Disable AES and DMA hardware */ #if SOC_AES_CRYPTO_DMA periph_module_disable(PERIPH_AES_DMA_MODULE); #elif SOC_AES_GDMA periph_module_disable(PERIPH_AES_MODULE); #endif AES_RELEASE(); } static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input, unsigned char *output ) { if (!ctx) { ESP_LOGE(TAG, "No AES context supplied"); return -1; } if (!input) { ESP_LOGE(TAG, "No input supplied"); return -1; } if (!output) { ESP_LOGE(TAG, "No output supplied"); return -1; } return 0; } /* * AES-ECB single block encryption */ int esp_internal_aes_encrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int r = -1; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB); r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL); esp_aes_release_hardware(); return r; } void esp_aes_encrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { esp_internal_aes_encrypt(ctx, input, output); } /* * AES-ECB single block decryption */ int esp_internal_aes_decrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int r = -1; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB); r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL); esp_aes_release_hardware(); return r; } void esp_aes_decrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { esp_internal_aes_decrypt(ctx, input, output); } /* * AES-ECB block encryption/decryption */ int esp_aes_crypt_ecb(esp_aes_context *ctx, int mode, const unsigned char input[16], unsigned char output[16] ) { int r = -1; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB); r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL); esp_aes_release_hardware(); return r; } /* * AES-CBC buffer encryption/decryption */ int esp_aes_crypt_cbc(esp_aes_context *ctx, int mode, size_t length, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { int r = -1; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } /* For CBC input length should be multiple of * AES BLOCK BYTES * */ if ( (length % AES_BLOCK_BYTES) || (length == 0) ) { return ERR_ESP_AES_INVALID_INPUT_LENGTH; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC); aes_hal_set_iv(iv); r = esp_aes_process_dma(ctx, input, output, length, NULL); if (r != 0) { goto cleanup; } aes_hal_read_iv(iv); cleanup: esp_aes_release_hardware(); return r; } /* * AES-CFB8 buffer encryption/decryption */ int esp_aes_crypt_cfb8(esp_aes_context *ctx, int mode, size_t length, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { int r = -1; unsigned char c; unsigned char ov[17]; size_t block_bytes = length - (length % AES_BLOCK_BYTES); if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } /* The DMA engine will only output correct IV if it runs full blocks of input in CFB8 mode */ esp_aes_acquire_hardware(); if (block_bytes > 0) { ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8); aes_hal_set_iv(iv); r = esp_aes_process_dma(ctx, input, output, block_bytes, NULL); if (r != 0) { goto cleanup; } aes_hal_read_iv(iv); length -= block_bytes; input += block_bytes; output += block_bytes; } // Process remaining bytes block-at-a-time in ECB mode if (length > 0) { ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, MBEDTLS_AES_ENCRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB); while ( length-- ) { memcpy( ov, iv, 16 ); r = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL); if (r != 0) { goto cleanup; } if ( mode == MBEDTLS_AES_DECRYPT ) { ov[16] = *input; } c = *output++ = ( iv[0] ^ *input++ ); if ( mode == MBEDTLS_AES_ENCRYPT ) { ov[16] = c; } memcpy( iv, ov + 1, 16 ); } } r = 0; cleanup: esp_aes_release_hardware(); return r; } /* * AES-CFB128 buffer encryption/decryption */ int esp_aes_crypt_cfb128(esp_aes_context *ctx, int mode, size_t length, size_t *iv_off, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { uint8_t c; size_t stream_bytes = 0; size_t n; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv_off) { ESP_LOGE(TAG, "No IV offset supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } n = *iv_off; /* First process the *iv_off bytes * which are pending from the previous call to this API */ while (n > 0 && length > 0) { if (mode == MBEDTLS_AES_ENCRYPT) { iv[n] = *output++ = *input++ ^ iv[n]; } else { c = *input++; *output++ = c ^ iv[n]; iv[n] = c; } n = (n + 1) % AES_BLOCK_BYTES; length--; } if (length > 0) { stream_bytes = length % AES_BLOCK_BYTES; esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128); aes_hal_set_iv(iv); int r = esp_aes_process_dma(ctx, input, output, length, iv); if (r != 0) { esp_aes_release_hardware(); return r; } if (stream_bytes == 0) { // if we didn't need the partial 'stream block' then the new IV is in the IV register aes_hal_read_iv(iv); } else { // if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it), // In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next // block uses ciphertext as its IV input) // // Note: It may be more efficient to not process the partial block via DMA in this case. if (mode == MBEDTLS_AES_DECRYPT) { memcpy(iv, input + length - stream_bytes, stream_bytes); } } esp_aes_release_hardware(); } *iv_off = n + stream_bytes; return 0; } /* * AES-OFB (Output Feedback Mode) buffer encryption/decryption */ int esp_aes_crypt_ofb(esp_aes_context *ctx, size_t length, size_t *iv_off, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { size_t n; size_t stream_bytes = 0; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv_off) { ESP_LOGE(TAG, "No IV offset supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } n = *iv_off; /* If there is an offset then use the output of the previous AES block (the updated IV) to calculate the new output */ while (n > 0 && length > 0) { *output++ = (*input++ ^ iv[n]); n = (n + 1) & 0xF; length--; } if (length > 0) { stream_bytes = (length % AES_BLOCK_BYTES); esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB); aes_hal_set_iv(iv); int r = esp_aes_process_dma(ctx, input, output, length, iv); if (r != 0) { esp_aes_release_hardware(); return r; } aes_hal_read_iv(iv); esp_aes_release_hardware(); } *iv_off = n + stream_bytes; return 0; } /* * AES-CTR buffer encryption/decryption */ int esp_aes_crypt_ctr(esp_aes_context *ctx, size_t length, size_t *nc_off, unsigned char nonce_counter[16], unsigned char stream_block[16], const unsigned char *input, unsigned char *output ) { size_t n; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!stream_block) { ESP_LOGE(TAG, "No stream supplied"); return -1; } if (!nonce_counter) { ESP_LOGE(TAG, "No nonce supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!nc_off) { ESP_LOGE(TAG, "No nonce offset supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } n = *nc_off; if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } /* Process any unprocessed bytes left in stream block from last operation */ while (n > 0 && length > 0) { *output++ = (unsigned char)(*input++ ^ stream_block[n]); n = (n + 1) & 0xF; length--; } if (length > 0) { esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR); aes_hal_set_iv(nonce_counter); int r = esp_aes_process_dma(ctx, input, output, length, stream_block); if (r != 0) { esp_aes_release_hardware(); return r; } aes_hal_read_iv(nonce_counter); esp_aes_release_hardware(); } *nc_off = n + (length % AES_BLOCK_BYTES); return 0; }