esp-idf/components/hal/esp32h2/include/hal/rmt_ll.h

880 lines
26 KiB
C

/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @note TX and RX channels are index from 0 in the LL driver, i.e. tx_channel = [0,1], rx_channel = [0,1]
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/rmt_types.h"
#include "soc/rmt_struct.h"
#include "soc/pcr_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
#define RMT_LL_EVENT_TX_DONE(channel) (1 << (channel))
#define RMT_LL_EVENT_TX_THRES(channel) (1 << ((channel) + 8))
#define RMT_LL_EVENT_TX_LOOP_END(channel) (1 << ((channel) + 12))
#define RMT_LL_EVENT_TX_ERROR(channel) (1 << ((channel) + 4))
#define RMT_LL_EVENT_RX_DONE(channel) (1 << ((channel) + 2))
#define RMT_LL_EVENT_RX_THRES(channel) (1 << ((channel) + 10))
#define RMT_LL_EVENT_RX_ERROR(channel) (1 << ((channel) + 6))
#define RMT_LL_EVENT_TX_MASK(channel) (RMT_LL_EVENT_TX_DONE(channel) | RMT_LL_EVENT_TX_THRES(channel) | RMT_LL_EVENT_TX_LOOP_END(channel))
#define RMT_LL_EVENT_RX_MASK(channel) (RMT_LL_EVENT_RX_DONE(channel) | RMT_LL_EVENT_RX_THRES(channel))
#define RMT_LL_MAX_LOOP_COUNT_PER_BATCH 1023
#define RMT_LL_MAX_FILTER_VALUE 255
#define RMT_LL_MAX_IDLE_VALUE 32767
typedef enum {
RMT_LL_MEM_OWNER_SW = 0,
RMT_LL_MEM_OWNER_HW = 1,
} rmt_ll_mem_owner_t;
/**
* @brief Enable the bus clock for RMT module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void rmt_ll_enable_bus_clock(int group_id, bool enable)
{
(void)group_id;
PCR.rmt_conf.rmt_clk_en = enable;
}
/**
* @brief Reset the RMT module
*
* @param group_id Group ID
*/
static inline void rmt_ll_reset_register(int group_id)
{
(void)group_id;
PCR.rmt_conf.rmt_rst_en = 1;
PCR.rmt_conf.rmt_rst_en = 0;
}
/**
* @brief Enable clock gate for register and memory
*
* @param dev Peripheral instance address
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_enable_periph_clock(rmt_dev_t *dev, bool enable)
{
dev->sys_conf.clk_en = enable; // register clock gating
dev->sys_conf.mem_clk_force_on = enable; // memory clock gating
}
/**
* @brief Power down memory
*
* @param dev Peripheral instance address
* @param enable True to power down, False to power up
*/
static inline void rmt_ll_power_down_mem(rmt_dev_t *dev, bool enable)
{
dev->sys_conf.mem_force_pu = !enable;
dev->sys_conf.mem_force_pd = enable;
}
/**
* @brief Enable APB accessing RMT memory in nonfifo mode
*
* @param dev Peripheral instance address
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_enable_mem_access_nonfifo(rmt_dev_t *dev, bool enable)
{
dev->sys_conf.apb_fifo_mask = enable;
}
/**
* @brief Set clock source and divider for RMT channel group
*
* @param dev Peripheral instance address
* @param channel not used as clock source is set for all channels
* @param src Clock source
* @param divider_integral Integral part of the divider
* @param divider_denominator Denominator part of the divider
* @param divider_numerator Numerator part of the divider
*/
static inline void rmt_ll_set_group_clock_src(rmt_dev_t *dev, uint32_t channel, rmt_clock_source_t src,
uint32_t divider_integral, uint32_t divider_denominator, uint32_t divider_numerator)
{
// Formula: rmt_sclk = module_clock_src / (1 + div_num + div_a / div_b)
(void)channel; // the source clock is set for all channels
HAL_ASSERT(divider_integral >= 1);
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.rmt_sclk_conf, rmt_sclk_div_num, divider_integral - 1);
PCR.rmt_sclk_conf.rmt_sclk_div_a = divider_numerator;
PCR.rmt_sclk_conf.rmt_sclk_div_b = divider_denominator;
switch (src) {
case RMT_CLK_SRC_XTAL:
PCR.rmt_sclk_conf.rmt_sclk_sel = 0;
break;
case RMT_CLK_SRC_RC_FAST:
PCR.rmt_sclk_conf.rmt_sclk_sel = 1;
break;
default:
HAL_ASSERT(false);
break;
}
}
/**
* @brief Enable RMT peripheral source clock
*
* @param dev Peripheral instance address
* @param en True to enable, False to disable
*/
static inline void rmt_ll_enable_group_clock(rmt_dev_t *dev, bool en)
{
(void)dev;
PCR.rmt_sclk_conf.rmt_sclk_en = en;
}
////////////////////////////////////////TX Channel Specific/////////////////////////////////////////////////////////////
/**
* @brief Reset clock divider for TX channels by mask
*
* @param dev Peripheral instance address
* @param channel_mask Mask of TX channels
*/
static inline void rmt_ll_tx_reset_channels_clock_div(rmt_dev_t *dev, uint32_t channel_mask)
{
// write 1 to reset
dev->ref_cnt_rst.val |= channel_mask & 0x03;
}
/**
* @brief Set TX channel clock divider
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param div Division value
*/
static inline void rmt_ll_tx_set_channel_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div)
{
HAL_ASSERT(div >= 1 && div <= 256 && "divider out of range");
// limit the maximum divider to 256
if (div >= 256) {
div = 0; // 0 means 256 division
}
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chnconf0[channel], div_cnt_chn, div);
}
/**
* @brief Reset RMT reading pointer for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_reset_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->chnconf0[channel].mem_rd_rst_chn = 1;
dev->chnconf0[channel].mem_rd_rst_chn = 0;
dev->chnconf0[channel].apb_mem_rst_chn = 1;
dev->chnconf0[channel].apb_mem_rst_chn = 0;
}
/**
* @brief Start transmitting for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_start(rmt_dev_t *dev, uint32_t channel)
{
// update other configuration registers before start transmitting
dev->chnconf0[channel].conf_update_chn = 1;
dev->chnconf0[channel].tx_start_chn = 1;
}
/**
* @brief Stop transmitting for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_stop(rmt_dev_t *dev, uint32_t channel)
{
dev->chnconf0[channel].tx_stop_chn = 1;
// stop won't take place until configurations updated
dev->chnconf0[channel].conf_update_chn = 1;
}
/**
* @brief Set memory block number for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param block_num memory block number
*/
static inline void rmt_ll_tx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num)
{
dev->chnconf0[channel].mem_size_chn = block_num;
}
/**
* @brief Enable TX wrap
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_tx_enable_wrap(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chnconf0[channel].mem_tx_wrap_en_chn = enable;
}
/**
* @brief Enable transmitting in a loop
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_enable_loop(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chnconf0[channel].tx_conti_mode_chn = enable;
}
/**
* @brief Set loop count for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param count TX loop count
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_set_loop_count(rmt_dev_t *dev, uint32_t channel, uint32_t count)
{
HAL_ASSERT(count <= RMT_LL_MAX_LOOP_COUNT_PER_BATCH && "loop count out of range");
dev->chn_tx_lim[channel].tx_loop_num_chn = count;
}
/**
* @brief Reset loop count for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_reset_loop_count(rmt_dev_t *dev, uint32_t channel)
{
dev->chn_tx_lim[channel].loop_count_reset_chn = 1;
dev->chn_tx_lim[channel].loop_count_reset_chn = 0;
}
/**
* @brief Enable loop count for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_enable_loop_count(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chn_tx_lim[channel].tx_loop_cnt_en_chn = enable;
}
/**
* @brief Enable loop stop at count value automatically
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_enable_loop_autostop(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chn_tx_lim[channel].loop_stop_en_chn = enable;
}
/**
* @brief Enable transmit multiple channels synchronously
*
* @param dev Peripheral instance address
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_tx_enable_sync(rmt_dev_t *dev, bool enable)
{
dev->tx_sim.tx_sim_en = enable;
}
/**
* @brief Clear the TX channels synchronous group
*
* @param dev Peripheral instance address
*/
static inline void rmt_ll_tx_clear_sync_group(rmt_dev_t *dev)
{
dev->tx_sim.val &= ~(0x03);
}
/**
* @brief Add TX channels to the synchronous group
*
* @param dev Peripheral instance address
* @param channel_mask Mask of TX channels to be added to the synchronous group
*/
static inline void rmt_ll_tx_sync_group_add_channels(rmt_dev_t *dev, uint32_t channel_mask)
{
dev->tx_sim.val |= (channel_mask & 0x03);
}
/**
* @brief Remove TX channels from the synchronous group
*
* @param dev Peripheral instance address
* @param channel_mask Mask of TX channels to be removed from the synchronous group
*/
static inline void rmt_ll_tx_sync_group_remove_channels(rmt_dev_t *dev, uint32_t channel_mask)
{
dev->tx_sim.val &= ~channel_mask;
}
/**
* @brief Fix the output level when TX channel is in IDLE state
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param level IDLE level (1 => high, 0 => low)
* @param enable True to fix the IDLE level, otherwise the IDLE level is determined by EOF encoder
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_fix_idle_level(rmt_dev_t *dev, uint32_t channel, uint8_t level, bool enable)
{
dev->chnconf0[channel].idle_out_en_chn = enable;
dev->chnconf0[channel].idle_out_lv_chn = level;
}
/**
* @brief Set the amount of RMT symbols that can trigger the limitation interrupt
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param limit Specify the number of symbols
*/
static inline void rmt_ll_tx_set_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit)
{
dev->chn_tx_lim[channel].tx_lim_chn = limit;
}
/**
* @brief Set high and low duration of carrier signal
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param high_ticks Duration of high level
* @param low_ticks Duration of low level
*/
static inline void rmt_ll_tx_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
{
HAL_ASSERT(high_ticks >= 1 && high_ticks <= 65536 && low_ticks >= 1 && low_ticks <= 65536 && "out of range high/low ticks");
// ticks=0 means 65536 in hardware
if (high_ticks >= 65536) {
high_ticks = 0;
}
if (low_ticks >= 65536) {
low_ticks = 0;
}
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chncarrier_duty[channel], carrier_high_chn, high_ticks);
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chncarrier_duty[channel], carrier_low_chn, low_ticks);
}
/**
* @brief Enable modulating carrier signal to TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_tx_enable_carrier_modulation(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chnconf0[channel].carrier_en_chn = enable;
}
/**
* @brief Set on high or low to modulate the carrier signal
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param level Which level to modulate on (0=>low level, 1=>high level)
*/
static inline void rmt_ll_tx_set_carrier_level(rmt_dev_t *dev, uint32_t channel, uint8_t level)
{
dev->chnconf0[channel].carrier_out_lv_chn = level;
}
/**
* @brief Enable to always output carrier signal, regardless of a valid data transmission
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to output carrier signal in all RMT state, False to only ouput carrier signal for effective data
*/
static inline void rmt_ll_tx_enable_carrier_always_on(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chnconf0[channel].carrier_eff_en_chn = !enable;
}
////////////////////////////////////////RX Channel Specific/////////////////////////////////////////////////////////////
/**
* @brief Reset clock divider for RX channels by mask
*
* @param dev Peripheral instance address
* @param channel_mask Mask of RX channels
*/
static inline void rmt_ll_rx_reset_channels_clock_div(rmt_dev_t *dev, uint32_t channel_mask)
{
// write 1 to reset
dev->ref_cnt_rst.val |= ((channel_mask & 0x03) << 2);
}
/**
* @brief Set RX channel clock divider
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param div Division value
*/
static inline void rmt_ll_rx_set_channel_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div)
{
HAL_ASSERT(div >= 1 && div <= 256 && "divider out of range");
// limit the maximum divider to 256
if (div >= 256) {
div = 0; // 0 means 256 division
}
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chmconf[channel].conf0, div_cnt_chm, div);
}
/**
* @brief Reset RMT writing pointer for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_reset_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->chmconf[channel].conf1.mem_wr_rst_chm = 1;
dev->chmconf[channel].conf1.mem_wr_rst_chm = 0;
dev->chmconf[channel].conf1.apb_mem_rst_chm = 1;
dev->chmconf[channel].conf1.apb_mem_rst_chm = 0;
}
/**
* @brief Enable receiving for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_enable(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chmconf[channel].conf1.rx_en_chm = enable;
// rx won't be enabled until configurations updated
dev->chmconf[channel].conf1.conf_update_chm = 1;
}
/**
* @brief Set memory block number for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param block_num memory block number
*/
static inline void rmt_ll_rx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num)
{
dev->chmconf[channel].conf0.mem_size_chm = block_num;
}
/**
* @brief Set the time length for RX channel before going into IDLE state
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param thres Time length threshold
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_set_idle_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
dev->chmconf[channel].conf0.idle_thres_chm = thres;
}
/**
* @brief Set RMT memory owner for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param owner Memory owner
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_set_mem_owner(rmt_dev_t *dev, uint32_t channel, rmt_ll_mem_owner_t owner)
{
dev->chmconf[channel].conf1.mem_owner_chm = owner;
}
/**
* @brief Enable filter for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX chanenl number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_enable_filter(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chmconf[channel].conf1.rx_filter_en_chm = enable;
}
/**
* @brief Set RX channel filter threshold (i.e. the maximum width of one pulse signal that would be treated as a noise)
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param thres Filter threshold
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_set_filter_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chmconf[channel].conf1, rx_filter_thres_chm, thres);
}
/**
* @brief Get RMT memory write cursor offset
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @return writer offset
*/
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_memory_writer_offset(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmstatus[channel].mem_waddr_ex_chm - (channel + 2) * 48;
}
/**
* @brief Set the amount of RMT symbols that can trigger the limitation interrupt
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param limit Specify the number of symbols
*/
static inline void rmt_ll_rx_set_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit)
{
dev->chm_rx_lim[channel].rmt_rx_lim_chm = limit;
}
/**
* @brief Set high and low duration of carrier signal
*
* @param dev dev Peripheral instance address
* @param channel RMT TX channel number
* @param high_ticks Duration of high level
* @param low_ticks Duration of low level
*/
static inline void rmt_ll_rx_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
{
HAL_ASSERT(high_ticks >= 1 && high_ticks <= 65536 && low_ticks >= 1 && low_ticks <= 65536 && "out of range high/low ticks");
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chm_rx_carrier_rm[channel], carrier_high_thres_chm, high_ticks - 1);
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chm_rx_carrier_rm[channel], carrier_low_thres_chm, low_ticks - 1);
}
/**
* @brief Enable demodulating the carrier on RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_rx_enable_carrier_demodulation(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chmconf[channel].conf0.carrier_en_chm = enable;
}
/**
* @brief Set on high or low to demodulate the carrier signal
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param level Which level to demodulate (0=>low level, 1=>high level)
*/
static inline void rmt_ll_rx_set_carrier_level(rmt_dev_t *dev, uint32_t channel, uint8_t level)
{
dev->chmconf[channel].conf0.carrier_out_lv_chm = level;
}
/**
* @brief Enable RX wrap
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_rx_enable_wrap(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chmconf[channel].conf1.mem_rx_wrap_en_chm = enable;
}
//////////////////////////////////////////Interrupt Specific////////////////////////////////////////////////////////////
/**
* @brief Enable RMT interrupt for specific event mask
*
* @param dev Peripheral instance address
* @param mask Event mask
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_enable_interrupt(rmt_dev_t *dev, uint32_t mask, bool enable)
{
if (enable) {
dev->int_ena.val |= mask;
} else {
dev->int_ena.val &= ~mask;
}
}
/**
* @brief Clear RMT interrupt status by mask
*
* @param dev Peripheral instance address
* @param mask Interupt status mask
*/
__attribute__((always_inline))
static inline void rmt_ll_clear_interrupt_status(rmt_dev_t *dev, uint32_t mask)
{
dev->int_clr.val = mask;
}
/**
* @brief Get interrupt status register address
*
* @param dev Peripheral instance address
* @return Register address
*/
static inline volatile void *rmt_ll_get_interrupt_status_reg(rmt_dev_t *dev)
{
return &dev->int_st;
}
/**
* @brief Get interrupt status for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @return Interrupt status
*/
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_interrupt_status(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_st.val & RMT_LL_EVENT_TX_MASK(channel);
}
/**
* @brief Get interrupt raw status for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @return Interrupt raw status
*/
static inline uint32_t rmt_ll_tx_get_interrupt_status_raw(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_raw.val & (RMT_LL_EVENT_TX_MASK(channel) | RMT_LL_EVENT_TX_ERROR(channel));
}
/**
* @brief Get interrupt raw status for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @return Interrupt raw status
*/
static inline uint32_t rmt_ll_rx_get_interrupt_status_raw(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_raw.val & (RMT_LL_EVENT_RX_MASK(channel) | RMT_LL_EVENT_RX_ERROR(channel));
}
/**
* @brief Get interrupt status for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @return Interrupt status
*/
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_interrupt_status(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_st.val & RMT_LL_EVENT_RX_MASK(channel);
}
//////////////////////////////////////////Deprecated Functions//////////////////////////////////////////////////////////
/////////////////////////////The following functions are only used by the legacy driver/////////////////////////////////
/////////////////////////////They might be removed in the next major release (ESP-IDF 6.0)//////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_status_word(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnstatus[channel].val;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_status_word(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmstatus[channel].val;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_channel_clock_div(rmt_dev_t *dev, uint32_t channel)
{
uint32_t div = HAL_FORCE_READ_U32_REG_FIELD(dev->chnconf0[channel], div_cnt_chn);
return div == 0 ? 256 : div;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_channel_clock_div(rmt_dev_t *dev, uint32_t channel)
{
uint32_t div = HAL_FORCE_READ_U32_REG_FIELD(dev->chmconf[channel].conf0, div_cnt_chm);
return div == 0 ? 256 : div;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_idle_thres(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmconf[channel].conf0.idle_thres_chm;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnconf0[channel].mem_size_chn;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmconf[channel].conf0.mem_size_chm;
}
__attribute__((always_inline))
static inline bool rmt_ll_tx_is_loop_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnconf0[channel].tx_conti_mode_chn;
}
__attribute__((always_inline))
static inline rmt_clock_source_t rmt_ll_get_group_clock_src(rmt_dev_t *dev, uint32_t channel)
{
rmt_clock_source_t clk_src = RMT_CLK_SRC_XTAL;
switch (PCR.rmt_sclk_conf.rmt_sclk_sel) {
case 1:
clk_src = RMT_CLK_SRC_RC_FAST;
break;
case 0:
clk_src = RMT_CLK_SRC_XTAL;
break;
}
return clk_src;
}
__attribute__((always_inline))
static inline bool rmt_ll_tx_is_idle_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnconf0[channel].idle_out_en_chn;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_idle_level(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnconf0[channel].idle_out_lv_chn;
}
static inline bool rmt_ll_is_mem_powered_down(rmt_dev_t *dev)
{
// the RTC domain can also power down RMT memory
// so it's probably not enough to detect whether it's powered down or not
// mem_force_pd has higher priority than mem_force_pu
return (dev->sys_conf.mem_force_pd) || !(dev->sys_conf.mem_force_pu);
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_mem_owner(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmconf[channel].conf1.mem_owner_chm;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_limit(rmt_dev_t *dev, uint32_t channel)
{
return dev->chm_rx_lim[channel].rmt_rx_lim_chm;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_tx_end_interrupt_status(rmt_dev_t *dev)
{
return dev->int_st.val & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_rx_end_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 2) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_tx_err_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 4) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_rx_err_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 6) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_tx_thres_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 8) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_rx_thres_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 10) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_tx_loop_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 12) & 0x03;
}
#ifdef __cplusplus
}
#endif