esp-idf/components/sdmmc/test/test_sd.c
Vamshi Gajjela 0e366db603 sdmmc: Bugfix sdmmc_erase_sectors cmd38 argument validation
Unit test cases added to verify -ve test, for sdmmc_erase_sectors to
return ESP_ERR_NOT_SUPPORTED

Closes https://github.com/espressif/esp-idf/issues/8704
2022-04-11 15:36:45 +00:00

1224 lines
45 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include "sdkconfig.h"
#include "unity.h"
#include "driver/gpio.h"
#include "soc/soc_caps.h"
#if SOC_SDMMC_HOST_SUPPORTED
#include "driver/sdmmc_host.h"
#endif
#include "driver/sdspi_host.h"
#include "driver/sdmmc_defs.h"
#include "sdmmc_cmd.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "esp_rom_gpio.h"
#include "test_utils.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "soc/gpio_sig_map.h"
#include "soc/gpio_reg.h"
// Currently no runners for S3
#define WITH_SD_TEST (SOC_SDMMC_HOST_SUPPORTED && !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3))
// Currently, no runners for S3
#define WITH_SDSPI_TEST (!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3))
// Can't test eMMC (slot 0) and PSRAM together
#define WITH_EMMC_TEST (SOC_SDMMC_HOST_SUPPORTED && !CONFIG_SPIRAM && !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3))
/* power supply enable pin */
#define SD_TEST_BOARD_VSEL_EN_GPIO 27
/* power supply voltage select pin */
#define SD_TEST_BOARD_VSEL_GPIO 26
#define SD_TEST_BOARD_VSEL_3V3 1
#define SD_TEST_BOARD_VSEL_1V8 0
/* time to wait for reset / power-on */
#define SD_TEST_BOARD_PWR_RST_DELAY_MS 5
#define SD_TEST_BOARD_PWR_ON_DELAY_MS 50
/* gpio which is not connected to actual CD pin, used to simulate CD behavior */
#define CD_WP_TEST_GPIO 18
/* default GPIO selection */
#ifdef CONFIG_IDF_TARGET_ESP32S2
#define SDSPI_TEST_MOSI_PIN GPIO_NUM_35
#define SDSPI_TEST_MISO_PIN GPIO_NUM_37
#define SDSPI_TEST_SCLK_PIN GPIO_NUM_36
#define SDSPI_TEST_CS_PIN GPIO_NUM_34
#elif defined(CONFIG_IDF_TARGET_ESP32C3)
#define SDSPI_TEST_MOSI_PIN GPIO_NUM_4
#define SDSPI_TEST_MISO_PIN GPIO_NUM_6
#define SDSPI_TEST_SCLK_PIN GPIO_NUM_5
#define SDSPI_TEST_CS_PIN GPIO_NUM_1
#else
#define SDSPI_TEST_MOSI_PIN GPIO_NUM_15
#define SDSPI_TEST_MISO_PIN GPIO_NUM_2
#define SDSPI_TEST_SCLK_PIN GPIO_NUM_14
#define SDSPI_TEST_CS_PIN GPIO_NUM_13
#endif
TEST_CASE("MMC_RSP_BITS", "[sd]")
{
uint32_t data[2] = { 0x01234567, 0x89abcdef };
TEST_ASSERT_EQUAL_HEX32(0x7, MMC_RSP_BITS(data, 0, 4));
TEST_ASSERT_EQUAL_HEX32(0x567, MMC_RSP_BITS(data, 0, 12));
TEST_ASSERT_EQUAL_HEX32(0xf0, MMC_RSP_BITS(data, 28, 8));
TEST_ASSERT_EQUAL_HEX32(0x3, MMC_RSP_BITS(data, 1, 3));
TEST_ASSERT_EQUAL_HEX32(0x11, MMC_RSP_BITS(data, 59, 5));
}
#if WITH_SD_TEST || WITH_EMMC_TEST
static void sd_test_board_power_on(void)
{
gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_OUTPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, SD_TEST_BOARD_VSEL_3V3);
gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_OUTPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0);
usleep(SD_TEST_BOARD_PWR_RST_DELAY_MS * 1000);
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 1);
usleep(SD_TEST_BOARD_PWR_ON_DELAY_MS * 1000);
}
static void sd_test_board_power_off(void)
{
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0);
gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_INPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, 0);
gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_INPUT);
}
static void probe_sd(int slot, int width, int freq_khz, int ddr)
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
config.slot = slot;
config.max_freq_khz = freq_khz;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
if (width == 1) {
config.flags = SDMMC_HOST_FLAG_1BIT;
slot_config.width = 1;
} else if (width == 4) {
config.flags &= ~SDMMC_HOST_FLAG_8BIT;
slot_config.width = 4;
} else {
assert(!ddr && "host driver does not support 8-line DDR mode yet");
}
if (!ddr) {
config.flags &= ~SDMMC_HOST_FLAG_DDR;
}
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(slot, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
sdmmc_card_print_info(stdout, card);
uint8_t* buffer = heap_caps_malloc(512, MALLOC_CAP_DMA);
TEST_ESP_OK(sdmmc_read_sectors(card, buffer, 0, 1));
free(buffer);
TEST_ESP_OK(sdmmc_host_deinit());
free(card);
sd_test_board_power_off();
}
#endif //WITH_SD_TEST || WITH_EMMC_TEST
#if WITH_SD_TEST
TEST_CASE("probe SD, slot 1, 4-bit", "[sd][test_env=UT_T1_SDMODE]")
{
probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_HIGHSPEED, 0);
}
TEST_CASE("probe SD, slot 1, 1-bit", "[sd][test_env=UT_T1_SDMODE]")
{
probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_HIGHSPEED, 0);
}
//No runners for slot 0
TEST_CASE("probe SD, slot 0, 4-bit", "[sd][ignore]")
{
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 0);
}
TEST_CASE("probe SD, slot 0, 1-bit", "[sd][ignore]")
{
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_HIGHSPEED, 0);
}
#endif //WITH_SD_TEST
#if WITH_EMMC_TEST
TEST_CASE("probe eMMC, slot 0, 4-bit", "[sd][test_env=EMMC]")
{
//Test with SDR
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 0);
//Test with DDR
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 1);
}
TEST_CASE("probe eMMC, slot 0, 8-bit", "[sd][test_env=EMMC]")
{
//8-bit DDR not supported yet, test with SDR only
probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_HIGHSPEED, 0);
}
#endif // WITH_EMMC_TEST
#if WITH_SDSPI_TEST
#if !WITH_SD_TEST && !WITH_EMMC_TEST
static void sd_test_board_power_on(void)
{
// do nothing
}
static void sd_test_board_power_off(void)
{
// do nothing
}
#endif
static void test_sdspi_init_bus(spi_host_device_t host, int mosi_pin, int miso_pin, int clk_pin, int dma_chan)
{
spi_bus_config_t bus_config = {
.mosi_io_num = mosi_pin,
.miso_io_num = miso_pin,
.sclk_io_num = clk_pin,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
};
esp_err_t err = spi_bus_initialize(host, &bus_config, dma_chan);
TEST_ESP_OK(err);
}
static void test_sdspi_deinit_bus(spi_host_device_t host)
{
esp_err_t err = spi_bus_free(host);
TEST_ESP_OK(err);
}
static void probe_core(int slot)
{
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
config.slot = slot;
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
sdmmc_card_print_info(stdout, card);
free(card);
}
static void probe_spi(int freq_khz, int pin_miso, int pin_mosi, int pin_sck, int pin_cs)
{
sd_test_board_power_on();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.gpio_cs = pin_cs;
test_sdspi_init_bus(dev_config.host_id, pin_mosi, pin_miso, pin_sck, SPI_DMA_CH_AUTO);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
probe_core(handle);
TEST_ESP_OK(sdspi_host_deinit());
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
static void probe_spi_legacy(int freq_khz, int pin_miso, int pin_mosi, int pin_sck, int pin_cs)
{
sd_test_board_power_on();
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT();
slot_config.gpio_miso = pin_miso;
slot_config.gpio_mosi = pin_mosi;
slot_config.gpio_sck = pin_sck;
slot_config.gpio_cs = pin_cs;
slot_config.dma_channel = SPI_DMA_CH_AUTO;
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config));
probe_core(config.slot);
TEST_ESP_OK(sdspi_host_deinit());
TEST_ESP_OK(spi_bus_free(config.slot));
sd_test_board_power_off();
}
TEST_CASE("probe SD in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
probe_spi(SDMMC_FREQ_DEFAULT, SDSPI_TEST_MISO_PIN, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_SCLK_PIN, SDSPI_TEST_CS_PIN);
probe_spi_legacy(SDMMC_FREQ_DEFAULT, SDSPI_TEST_MISO_PIN, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_SCLK_PIN, SDSPI_TEST_CS_PIN);
}
// No runner for this
TEST_CASE("probe SD in SPI mode, slot 0", "[sd][ignore]")
{
probe_spi(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10);
probe_spi_legacy(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10);
}
#endif //WITH_SDSPI_TEST
#if WITH_SD_TEST || WITH_SDSPI_TEST || WITH_EMMC_TEST
// Fill buffer pointed to by 'dst' with 'count' 32-bit ints generated
// from 'rand' with the starting value of 'seed'
static void fill_buffer(uint32_t seed, uint8_t* dst, size_t count) {
srand(seed);
for (size_t i = 0; i < count; ++i) {
uint32_t val = rand();
memcpy(dst + i * sizeof(uint32_t), &val, sizeof(val));
}
}
// Check if the buffer pointed to by 'dst' contains 'count' 32-bit
// ints generated from 'rand' with the starting value of 'seed'
static void check_buffer(uint32_t seed, const uint8_t* src, size_t count) {
srand(seed);
for (size_t i = 0; i < count; ++i) {
uint32_t val;
memcpy(&val, src + i * sizeof(uint32_t), sizeof(val));
TEST_ASSERT_EQUAL_HEX32(rand(), val);
}
}
static void do_single_write_read_test(sdmmc_card_t* card, size_t start_block,
size_t block_count, size_t alignment, bool performance_log)
{
size_t block_size = card->csd.sector_size;
size_t total_size = block_size * block_count;
printf(" %8d | %3d | %d | %4.1f ", start_block, block_count, alignment, total_size / 1024.0f);
uint32_t* buffer = heap_caps_malloc(total_size + 4, MALLOC_CAP_DMA);
size_t offset = alignment % 4;
uint8_t* c_buffer = (uint8_t*) buffer + offset;
fill_buffer(start_block, c_buffer, total_size / sizeof(buffer[0]));
struct timeval t_start_wr;
gettimeofday(&t_start_wr, NULL);
TEST_ESP_OK(sdmmc_write_sectors(card, c_buffer, start_block, block_count));
struct timeval t_stop_wr;
gettimeofday(&t_stop_wr, NULL);
float time_wr = 1e3f * (t_stop_wr.tv_sec - t_start_wr.tv_sec) + 1e-3f * (t_stop_wr.tv_usec - t_start_wr.tv_usec);
memset(buffer, 0xbb, total_size + 4);
struct timeval t_start_rd;
gettimeofday(&t_start_rd, NULL);
TEST_ESP_OK(sdmmc_read_sectors(card, c_buffer, start_block, block_count));
struct timeval t_stop_rd;
gettimeofday(&t_stop_rd, NULL);
float time_rd = 1e3f * (t_stop_rd.tv_sec - t_start_rd.tv_sec) + 1e-3f * (t_stop_rd.tv_usec - t_start_rd.tv_usec);
printf(" | %6.2f | %5.2f | %6.2f | %5.2f\n",
time_wr, total_size / (time_wr / 1000) / (1024 * 1024),
time_rd, total_size / (time_rd / 1000) / (1024 * 1024));
check_buffer(start_block, c_buffer, total_size / sizeof(buffer[0]));
free(buffer);
if (performance_log) {
static const char wr_speed_str[] = "SDMMC_WR_SPEED";
static const char rd_speed_str[] = "SDMMC_RD_SPEED";
int aligned = ((alignment % 4) == 0)? 1: 0;
IDF_LOG_PERFORMANCE(wr_speed_str, "%d, blk_n: %d, aligned: %d",
(int)(total_size * 1000 / time_wr), block_count, aligned);
IDF_LOG_PERFORMANCE(rd_speed_str, "%d, blk_n: %d, aligned: %d",
(int)(total_size * 1000 / time_rd), block_count, aligned);
}
}
typedef void (*sd_test_func_t)(sdmmc_card_t* card);
static void test_read_write_performance(sdmmc_card_t* card)
{
sdmmc_card_print_info(stdout, card);
printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n");
const int offset = 0;
const bool do_log = true;
//aligned
do_single_write_read_test(card, offset, 1, 4, do_log);
do_single_write_read_test(card, offset, 4, 4, do_log);
do_single_write_read_test(card, offset, 8, 4, do_log);
do_single_write_read_test(card, offset, 16, 4, do_log);
do_single_write_read_test(card, offset, 32, 4, do_log);
do_single_write_read_test(card, offset, 64, 4, do_log);
do_single_write_read_test(card, offset, 128, 4, do_log);
//unaligned
do_single_write_read_test(card, offset, 1, 1, do_log);
do_single_write_read_test(card, offset, 8, 1, do_log);
do_single_write_read_test(card, offset, 128, 1, do_log);
}
static void test_read_write_with_offset(sdmmc_card_t* card)
{
sdmmc_card_print_info(stdout, card);
printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n");
const bool no_log = false;;
//aligned
do_single_write_read_test(card, 1, 16, 4, no_log);
do_single_write_read_test(card, 16, 32, 4, no_log);
do_single_write_read_test(card, 48, 64, 4, no_log);
do_single_write_read_test(card, 128, 128, 4, no_log);
do_single_write_read_test(card, card->csd.capacity - 64, 32, 4, no_log);
do_single_write_read_test(card, card->csd.capacity - 64, 64, 4, no_log);
do_single_write_read_test(card, card->csd.capacity - 8, 1, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 1, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 4, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 8, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 16, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 32, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 64, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 128, 4, no_log);
//unaligned
do_single_write_read_test(card, card->csd.capacity/2, 1, 1, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 8, 1, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 128, 1, no_log);
}
#endif //WITH_SD_TEST || WITH_SDSPI_TEST || WITH_EMMC_TEST
#if WITH_SD_TEST || WITH_EMMC_TEST
void sd_test_rw_blocks(int slot, int width, sd_test_func_t test_func)
{
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
config.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
config.slot = slot;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
if (width != 0) {
slot_config.width = width;
}
if (slot_config.width == 8) {
config.flags &= ~SDMMC_HOST_FLAG_DDR;
}
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(slot, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
test_func(card);
free(card);
TEST_ESP_OK(sdmmc_host_deinit());
}
#endif //WITH_SD_TEST || WITH_EMMC_TEST
#if WITH_SD_TEST
TEST_CASE("SDMMC performance test (SD slot 1, 4 line)", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sd_test_rw_blocks(1, 4, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC performance test (SD slot 1, 1 line)", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sd_test_rw_blocks(1, 1, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC test read/write with offset (SD slot 1)", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sd_test_rw_blocks(1, 4, test_read_write_with_offset);
sd_test_board_power_off();
}
#endif //WITH_SD_TEST
#if WITH_EMMC_TEST
TEST_CASE("SDMMC performance test (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 4, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC test read/write with offset (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 4, test_read_write_with_offset);
sd_test_board_power_off();
}
TEST_CASE("SDMMC performance test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 8, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC test read/write with offset (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 8, test_read_write_with_offset);
sd_test_board_power_off();
}
#endif // WITH_EMMC_TEST
#if WITH_SDSPI_TEST
void sdspi_test_rw_blocks(sd_test_func_t test_func)
{
sd_test_board_power_on();
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.host_id = config.slot;
dev_config.gpio_cs = SDSPI_TEST_CS_PIN;
test_sdspi_init_bus(dev_config.host_id, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_MISO_PIN, SDSPI_TEST_SCLK_PIN, SPI_DMA_CH_AUTO);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
// This test can only run under 20MHz on ESP32, because the runner connects the card to
// non-IOMUX pins of HSPI.
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
test_func(card);
TEST_ESP_OK(sdspi_host_deinit());
free(card);
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
TEST_CASE("SDMMC performance (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]")
{
sdspi_test_rw_blocks(test_read_write_performance);
}
TEST_CASE("SDMMC test read/write with offset (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]")
{
sdspi_test_rw_blocks(test_read_write_with_offset);
}
#endif //WITH_SDSPI_TEST
#if WITH_SD_TEST
TEST_CASE("reads and writes with an unaligned buffer", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
const size_t buffer_size = 4096;
const size_t block_count = buffer_size / 512;
const size_t extra = 4;
uint8_t* buffer = heap_caps_malloc(buffer_size + extra, MALLOC_CAP_DMA);
// Check read behavior: do aligned write, then unaligned read
const uint32_t seed = 0x89abcdef;
fill_buffer(seed, buffer, buffer_size / sizeof(uint32_t));
TEST_ESP_OK(sdmmc_write_sectors(card, buffer, 0, block_count));
memset(buffer, 0xcc, buffer_size + extra);
TEST_ESP_OK(sdmmc_read_sectors(card, buffer + 1, 0, block_count));
check_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t));
// Check write behavior: do unaligned write, then aligned read
fill_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t));
TEST_ESP_OK(sdmmc_write_sectors(card, buffer + 1, 8, block_count));
memset(buffer, 0xcc, buffer_size + extra);
TEST_ESP_OK(sdmmc_read_sectors(card, buffer, 8, block_count));
check_buffer(seed, buffer, buffer_size / sizeof(uint32_t));
free(buffer);
free(card);
TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off();
}
#endif //WITH_SD_TEST
#if WITH_SD_TEST || WITH_SDSPI_TEST
static void test_cd_input(int gpio_cd_num, const sdmmc_host_t* config)
{
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
// SDMMC host should have configured CD as input.
// Enable output as well (not using the driver, to avoid touching input
// enable bits).
esp_rom_gpio_connect_out_signal(gpio_cd_num, SIG_GPIO_OUT_IDX, false, false);
REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_cd_num));
// Check that card initialization fails if CD is high
REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_cd_num));
usleep(1000);
TEST_ESP_ERR(ESP_ERR_NOT_FOUND, sdmmc_card_init(config, card));
// Check that card initialization succeeds if CD is low
REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_cd_num));
usleep(1000);
TEST_ESP_OK(sdmmc_card_init(config, card));
free(card);
}
static void test_wp_input(int gpio_wp_num, const sdmmc_host_t* config)
{
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
// SDMMC host should have configured WP as input.
// Enable output as well (not using the driver, to avoid touching input
// enable bits).
esp_rom_gpio_connect_out_signal(gpio_wp_num, SIG_GPIO_OUT_IDX, false, false);
REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_wp_num));
// Check that the card can be initialized with WP low
REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num));
TEST_ESP_OK(sdmmc_card_init(config, card));
uint32_t* data = heap_caps_calloc(1, 512, MALLOC_CAP_DMA);
// Check that card write succeeds if WP is high
REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_wp_num));
usleep(1000);
TEST_ESP_OK(sdmmc_write_sectors(card, &data, 0, 1));
// Check that write fails if WP is low
REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num));
usleep(1000);
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, sdmmc_write_sectors(card, &data, 0, 1));
// ...but reads still work
TEST_ESP_OK(sdmmc_read_sectors(card, &data, 0, 1));
free(data);
free(card);
}
#endif //WITH_SD_TEST || WITH_SDSPI_TEST
#if WITH_SD_TEST
TEST_CASE("CD input works in SD mode", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
slot_config.gpio_cd = CD_WP_TEST_GPIO;
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
test_cd_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off();
}
TEST_CASE("WP input works in SD mode", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
slot_config.gpio_wp = CD_WP_TEST_GPIO;
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
test_wp_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off();
}
#endif //WITH_SD_TEST
#if WITH_SDSPI_TEST
TEST_CASE("CD input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.host_id = config.slot;
dev_config.gpio_cs = SDSPI_TEST_CS_PIN;
dev_config.gpio_cd = CD_WP_TEST_GPIO;
test_sdspi_init_bus(dev_config.host_id, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_MISO_PIN, SDSPI_TEST_SCLK_PIN, SPI_DMA_CH_AUTO);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
config.slot = handle;
test_cd_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdspi_host_deinit());
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
TEST_CASE("WP input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.host_id = config.slot;
dev_config.gpio_cs = SDSPI_TEST_CS_PIN;
dev_config.gpio_wp = CD_WP_TEST_GPIO;
test_sdspi_init_bus(dev_config.host_id, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_MISO_PIN, SDSPI_TEST_SCLK_PIN, SPI_DMA_CH_AUTO);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
config.slot = handle;
test_wp_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdspi_host_deinit());
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
#endif //WITH_SDSPI_TEST
#if WITH_SD_TEST || WITH_EMMC_TEST
#define PATTERN_SEED 0x12345678
#define FLAG_ERASE_TEST_ADJACENT (1 << 0)
#define FLAG_VERIFY_ERASE_STATE (1 << 1)
bool do_sanitize_flag = false;
static void ensure_sector_written(sdmmc_card_t* card, size_t sector,
uint8_t *pattern_buf, uint8_t *temp_buf)
{
size_t block_size = card->csd.sector_size;
TEST_ESP_OK(sdmmc_write_sectors(card, pattern_buf, sector, 1));
memset((void *)temp_buf, 0x00, block_size);
TEST_ESP_OK(sdmmc_read_sectors(card, temp_buf, sector, 1));
check_buffer(PATTERN_SEED, temp_buf, block_size / sizeof(uint32_t));
}
static void ensure_sector_intact(sdmmc_card_t* card, size_t sector,
uint8_t *pattern_buf, uint8_t *temp_buf)
{
size_t block_size = card->csd.sector_size;
memset((void *)temp_buf, 0x00, block_size);
TEST_ESP_OK(sdmmc_read_sectors(card, temp_buf, sector, 1));
check_buffer(PATTERN_SEED, temp_buf, block_size / sizeof(uint32_t));
}
static int32_t ensure_sector_erase(sdmmc_card_t* card, size_t sector,
uint8_t *pattern_buf, uint8_t *temp_buf)
{
size_t block_size = card->csd.sector_size;
memset((void *)temp_buf, 0, block_size);
TEST_ESP_OK(sdmmc_read_sectors(card, temp_buf, sector, 1));
return memcmp(pattern_buf, temp_buf, block_size);
}
static void do_single_erase_test(sdmmc_card_t* card, size_t start_block,
size_t block_count, uint8_t flags, sdmmc_erase_arg_t arg)
{
size_t block_size = card->csd.sector_size;
uint8_t *temp_buf = NULL;
uint8_t *pattern_buf = NULL;
size_t end_block = (start_block + block_count - 1);
/*
* To ensure erase is successful/valid
* selected blocks after erase should have erase state data pattern
* data of blocks adjacent to selected region should remain intact
*/
TEST_ESP_OK((start_block + block_count) > card->csd.capacity);
pattern_buf = (uint8_t *)heap_caps_malloc(block_size, MALLOC_CAP_DMA);
TEST_ASSERT_NOT_NULL(pattern_buf);
temp_buf = (uint8_t *)heap_caps_malloc(block_size, MALLOC_CAP_DMA);
TEST_ASSERT_NOT_NULL(temp_buf);
// create pattern buffer
fill_buffer(PATTERN_SEED, pattern_buf, block_size / sizeof(uint32_t));
// check if it's not the first block of device & write/read/verify pattern
if ((flags & FLAG_ERASE_TEST_ADJACENT) && start_block) {
ensure_sector_written(card, (start_block - 1), pattern_buf, temp_buf);
}
ensure_sector_written(card, start_block, pattern_buf, temp_buf);
// check if it's not the last block of device & write/read/verify pattern
if ((flags & FLAG_ERASE_TEST_ADJACENT) && (end_block < (card->csd.capacity - 1))) {
ensure_sector_written(card, (end_block + 1), pattern_buf, temp_buf);
}
// when block count is 1, start and end block is same, hence skip
if (block_count != 1) {
ensure_sector_written(card, end_block, pattern_buf, temp_buf);
}
// fill pattern to (start_block + end_block)/2 in the erase range
if(block_count > 2) {
ensure_sector_written(card, (start_block + end_block)/2, pattern_buf, temp_buf);
}
float total_size = (block_count/1024.0f) * block_size;
printf(" %10d | %10d | %8.1f ", start_block, block_count, total_size);
fflush(stdout);
// erase the blocks
struct timeval t_start_er;
gettimeofday(&t_start_er, NULL);
TEST_ESP_OK(sdmmc_erase_sectors(card, start_block, block_count, arg));
if (do_sanitize_flag) {
TEST_ESP_OK(sdmmc_mmc_sanitize(card, block_count * 500));
}
struct timeval t_stop_wr;
gettimeofday(&t_stop_wr, NULL);
float time_er = 1e3f * (t_stop_wr.tv_sec - t_start_er.tv_sec) + 1e-3f * (t_stop_wr.tv_usec - t_start_er.tv_usec);
printf(" | %8.2f\n", time_er);
// ensure adjacent blocks are not affected
// block before start_block
if ((flags & FLAG_ERASE_TEST_ADJACENT) && start_block) {
ensure_sector_intact(card, (start_block - 1), pattern_buf, temp_buf);
}
// block after end_block
if ((flags & FLAG_ERASE_TEST_ADJACENT) && (end_block < (card->csd.capacity - 1))) {
ensure_sector_intact(card, (end_block + 1), pattern_buf, temp_buf);
}
uint8_t erase_mem_byte = 0xFF;
// ensure all the blocks are erased and are up to after erase state.
if (!card->is_mmc) {
erase_mem_byte = card->scr.erase_mem_state ? 0xFF : 0x00;
} else {
erase_mem_byte = card->ext_csd.erase_mem_state ? 0xFF : 0x00;
}
memset((void *)pattern_buf, erase_mem_byte, block_size);
// as it is block by block comparison, a time taking process. Really long
// when you do erase and verify on complete device.
if (flags & FLAG_VERIFY_ERASE_STATE) {
for (size_t i = 0; i < block_count; i++) {
if (ensure_sector_erase(card, (start_block + i), pattern_buf, temp_buf)) {
printf("Error: Sector %d erase\n", (start_block + i));
break;
}
}
}
free(temp_buf);
free(pattern_buf);
}
#endif // WITH_SD_TEST || WITH_EMMC_TEST
#if WITH_SDSPI_TEST
static void test_sdspi_erase_blocks(size_t start_block, size_t block_count)
{
sd_test_board_power_on();
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.host_id = config.slot;
dev_config.gpio_cs = SDSPI_TEST_CS_PIN;
test_sdspi_init_bus(dev_config.host_id, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_MISO_PIN, SDSPI_TEST_SCLK_PIN, SPI_DMA_CH_AUTO);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
// This test can only run under 20MHz on ESP32, because the runner connects the card to
// non-IOMUX pins of HSPI.
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
sdmmc_card_print_info(stdout, card);
// Ensure discard operation is not supported in sdspi
TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, sdmmc_erase_sectors(card, start_block, block_count, SDMMC_DISCARD_ARG));
printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity);
printf("Erasing sectors %d-%d\n", start_block, (start_block + block_count -1));
size_t block_size = card->csd.sector_size;
uint8_t *pattern_buf = (uint8_t *)heap_caps_malloc(block_size, MALLOC_CAP_DMA);
TEST_ASSERT_NOT_NULL(pattern_buf);
uint8_t *temp_buf = (uint8_t *)heap_caps_malloc(block_size, MALLOC_CAP_DMA);
TEST_ASSERT_NOT_NULL(temp_buf);
struct timeval t_start_er;
gettimeofday(&t_start_er, NULL);
TEST_ESP_OK(sdmmc_erase_sectors(card, start_block, block_count, SDMMC_ERASE_ARG));
struct timeval t_stop_wr;
gettimeofday(&t_stop_wr, NULL);
float time_er = 1e3f * (t_stop_wr.tv_sec - t_start_er.tv_sec) + 1e-3f * (t_stop_wr.tv_usec - t_start_er.tv_usec);
printf("Erase duration: %.2fms\n", time_er);
// nominal delay before re-init card
vTaskDelay(pdMS_TO_TICKS(1000));
// has to re-init card, after erase operation.
TEST_ESP_OK(sdmmc_card_init(&config, card));
printf("Verifying erase state...\n");
uint8_t erase_mem_byte = 0xFF;
// ensure all the blocks are erased and are up to after erase state.
if (!card->is_mmc) {
erase_mem_byte = card->scr.erase_mem_state ? 0xFF : 0x00;
} else {
erase_mem_byte = card->ext_csd.erase_mem_state ? 0xFF : 0x00;
}
memset((void *)pattern_buf, erase_mem_byte, block_size);
size_t i;
for (i = 0; i < block_count; i++) {
memset((void *)temp_buf, 0, block_size);
TEST_ESP_OK(sdmmc_read_sectors(card, temp_buf, (start_block + i), 1));
if (memcmp(pattern_buf, temp_buf, block_size)) {
printf("Error: Sector %d erase\n", (start_block + i));
break;
}
}
if (i == block_count) {
printf("Sectors erase success\n");
}
TEST_ESP_OK(sdspi_host_deinit());
test_sdspi_deinit_bus(dev_config.host_id);
free(card);
free(temp_buf);
free(pattern_buf);
sd_test_board_power_off();
}
TEST_CASE("SDMMC erase (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]")
{
test_sdspi_erase_blocks(0, 16);
}
#endif // WITH_SDSPI_TEST
#if WITH_SD_TEST
static void test_sd_erase_blocks(sdmmc_card_t* card)
{
sdmmc_card_print_info(stdout, card);
printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity);
printf(" sector | count | size(kB) | er_time(ms) \n");
/*
* bit-0: verify adjacent blocks of given range
* bit-1: verify erase state of blocks in range
*/
uint8_t flags = 0;
sdmmc_erase_arg_t arg = SDMMC_ERASE_ARG;
//check for adjacent blocks and erase state of blocks
flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT | (uint8_t)FLAG_VERIFY_ERASE_STATE;
do_single_erase_test(card, 1, 16, flags, arg);
do_single_erase_test(card, 1, 13, flags, arg);
do_single_erase_test(card, 16, 32, flags, arg);
do_single_erase_test(card, 48, 64, flags, arg);
do_single_erase_test(card, 128, 128, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg);
// single sector erase is failing on different make cards
do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg);
#ifdef SDMMC_FULL_ERASE_TEST
/*
* check for adjacent blocks, do not check erase state of blocks as it is
* time taking process to verify all the blocks.
*/
flags &= ~(uint8_t)FLAG_VERIFY_ERASE_STATE; //comment this line to verify after-erase state
// erase complete card
do_single_erase_test(card, 0, card->csd.capacity, flags, arg);
#endif //SDMMC_FULL_ERASE_TEST
}
static void test_sd_discard_blocks(sdmmc_card_t* card)
{
/* MMC discard applies to write blocks */
sdmmc_card_print_info(stdout, card);
/*
* bit-0: verify adjacent blocks of given range
* bit-1: verify erase state of blocks in range
*/
uint8_t flags = 0;
sdmmc_erase_arg_t arg = SDMMC_DISCARD_ARG;
/*
* This test does run two tests
* test-1: check, sdmmc_erase_sectors to return ESP_ERR_NOT_SUPPORTED
* when arguments are condition not met. This test runs either the card
* supports discard or not.
*
* test-2: If card supports discard, perform the test accordingly and
* validate the behavior.
*
*/
uint32_t prev_discard_support = card->ssr.discard_support;
// overwrite discard_support as not-supported for -ve test
card->ssr.discard_support = 0;
TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, sdmmc_erase_sectors(card, 0, 32, arg));
// restore discard_support
card->ssr.discard_support = prev_discard_support;
if (sdmmc_can_discard(card) != ESP_OK ) {
printf("Card/device do not support discard\n");
return;
}
printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity);
printf(" sector | count | size(kB) | er_time(ms) \n");
/*
* Check for adjacent blocks only.
* After discard operation, the original data may be remained partially or
* fully accessible to the host dependent on device. Hence do not verify
* the erased state of the blocks.
*/
flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT;
do_single_erase_test(card, 1, 16, flags, arg);
do_single_erase_test(card, 1, 13, flags, arg);
do_single_erase_test(card, 16, 32, flags, arg);
do_single_erase_test(card, 48, 64, flags, arg);
do_single_erase_test(card, 128, 128, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg);
do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg);
}
TEST_CASE("SDMMC erase test (SD slot 1, 1 line)", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sd_test_rw_blocks(1, 1, test_sd_erase_blocks);
sd_test_board_power_off();
}
TEST_CASE("SDMMC erase test (SD slot 1, 4 line)", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sd_test_rw_blocks(1, 4, test_sd_erase_blocks);
sd_test_board_power_off();
}
TEST_CASE("SDMMC discard test (SD slot 1, 4 line)", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sd_test_rw_blocks(1, 4, test_sd_discard_blocks);
sd_test_board_power_off();
}
#endif //WITH_SD_TEST
#if WITH_EMMC_TEST
static void test_mmc_sanitize_blocks(sdmmc_card_t* card)
{
/* MMC discard applies to write blocks */
sdmmc_card_print_info(stdout, card);
printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity);
if (sdmmc_mmc_can_sanitize(card)) {
printf("Card/device do not support sanitize\n");
return;
}
printf(" sector | count | size(kB) | er_time(ms) \n");
/*
* bit-0: verify adjacent blocks of given range
* bit-1: verify erase state of blocks in range
*/
uint8_t flags = 0;
sdmmc_erase_arg_t arg = SDMMC_DISCARD_ARG;
do_sanitize_flag = true;
/*
* Check for adjacent blocks only.
* After discard operation, the original data may be remained partially or
* fully accessible to the host dependent on device. Hence do not verify
* the erased state of the blocks.
*
* Note: After sanitize blocks has to be in erased state
*/
flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT | (uint8_t)FLAG_VERIFY_ERASE_STATE;
do_single_erase_test(card, 1, 16, flags, arg);
do_single_erase_test(card, 1, 13, flags, arg);
do_single_erase_test(card, 16, 32, flags, arg);
do_single_erase_test(card, 48, 64, flags, arg);
do_single_erase_test(card, 128, 128, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg);
do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg);
do_sanitize_flag = false;
}
static void test_mmc_discard_blocks(sdmmc_card_t* card)
{
/* MMC discard applies to write blocks */
sdmmc_card_print_info(stdout, card);
printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity);
sdmmc_erase_arg_t arg = SDMMC_DISCARD_ARG;
uint32_t prev_ext_csd = card->ext_csd.rev;
// overwrite discard_support as not-supported for -ve test
card->ext_csd.rev = 0;
TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, sdmmc_erase_sectors(card, 0, 32, arg));
// restore discard_support
card->ext_csd.rev = prev_ext_csd;
if (sdmmc_can_discard(card) != ESP_OK) {
printf("Card/device do not support discard\n");
return;
}
printf(" sector | count | size(kB) | er_time(ms) \n");
/*
* bit-0: verify adjacent blocks of given range
* bit-1: verify erase state of blocks in range
*/
uint8_t flags = 0;
/*
* Check for adjacent blocks only.
* After discard operation, the original data may be remained partially or
* fully accessible to the host dependent on device. Hence do not verify
* the erased state of the blocks.
*/
flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT;
do_single_erase_test(card, 1, 16, flags, arg);
do_single_erase_test(card, 1, 13, flags, arg);
do_single_erase_test(card, 16, 32, flags, arg);
do_single_erase_test(card, 48, 64, flags, arg);
do_single_erase_test(card, 128, 128, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg);
do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg);
}
static void test_mmc_trim_blocks(sdmmc_card_t* card)
{
/* MMC trim applies to write blocks */
sdmmc_card_print_info(stdout, card);
printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity);
sdmmc_erase_arg_t arg = SDMMC_ERASE_ARG;
uint8_t prev_sec_feature = card->ext_csd.sec_feature;
// overwrite sec_feature
card->ext_csd.sec_feature &= ~(EXT_CSD_SEC_GB_CL_EN);
TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, sdmmc_erase_sectors(card, 0, 32, arg));
// restore sec_feature
card->ext_csd.sec_feature = prev_sec_feature;
if (sdmmc_can_trim(card) != ESP_OK) {
printf("Card/device do not support trim\n");
return;
}
printf(" sector | count | size(kB) | er_time(ms) \n");
/*
* bit-0: verify adjacent blocks of given range
* bit-1: verify erase state of blocks in range
*/
uint8_t flags = 0;
//check for adjacent blocks and erase state of blocks
flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT | (uint8_t)FLAG_VERIFY_ERASE_STATE;
do_single_erase_test(card, 1, 16, flags, arg);
do_single_erase_test(card, 1, 13, flags, arg);
do_single_erase_test(card, 16, 32, flags, arg);
do_single_erase_test(card, 48, 64, flags, arg);
do_single_erase_test(card, 128, 128, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg);
do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg);
do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg);
#ifdef SDMMC_FULL_ERASE_TEST
/*
* check for adjacent blocks, do not check erase state of blocks as it is
* time taking process to verify all the blocks.
*/
flags &= ~(uint8_t)FLAG_VERIFY_ERASE_STATE; //comment this line to verify after erase state
// erase complete card
do_single_erase_test(card, 0, card->csd.capacity, flags, arg);
#endif //SDMMC_FULL_ERASE_TEST
}
TEST_CASE("SDMMC trim test (eMMC slot 0, 4 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 4, test_mmc_trim_blocks);
sd_test_board_power_off();
}
TEST_CASE("SDMMC trim test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 8, test_mmc_trim_blocks);
sd_test_board_power_off();
}
TEST_CASE("SDMMC discard test (eMMC slot 0, 4 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 4, test_mmc_discard_blocks);
sd_test_board_power_off();
}
TEST_CASE("SDMMC discard test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 8, test_mmc_discard_blocks);
sd_test_board_power_off();
}
TEST_CASE("SDMMC sanitize test (eMMC slot 0, 4 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 4, test_mmc_sanitize_blocks);
sd_test_board_power_off();
}
TEST_CASE("SDMMC sanitize test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 8, test_mmc_sanitize_blocks);
sd_test_board_power_off();
}
#endif //WITH_EMMC_TEST