The vTaskPlaceOnEventListRestricted() did not use the correct macro when
exiting a kernel cirtical section. This does not affect the HW targets
but on the Linux port, this caused an issue as the critical nesting
count became negative, leading to deadlocks. This commit fixes the bug
and updates the linux port to prevent the nesting count from going
negative.
This commit fixes an issue where in the FreeRTOS port layer would cause
the portASSERT_IF_IN_ISR() assert check to fail even when the system is
not in an interrupt context.
This commit deprecates the "freertos/xtensa_context.h" and "xtensa/xtensa_context.h"
include paths. Users should use "xtensa_context.h" instead.
- Replace legacy include paths
- Removed some unnecessary includes of "xtensa_api.h"
- Add warning to compatibility header
This commit does the following:
- removes the xCoreID member from the TCB when building for single-core
- xCoreID is no longer hard set to 0 when calling "PinnedToCore" task creation
functions in single-core
- Tidy up or add missing xCoreID asserts for functions that take xCoreID as an
argument:
- Functions that set/query a variable of a particular core will call
taskVALID_CORE_ID() to ensure ) 0 <= xCoreID < configNUMBER_OF_CORES
- Task creation functions that accept xCoreID also call taskVALID_CORE_ID()
but also allow tskNO_AFFINITY.
- Fix TaskStatus_t
- Remove xCoreID from TaskStatus_t if configTASKLIST_INCLUDE_COREID is not
defined.
- Set xCoreID to 0 when calling vTaskGetInfo() in single-core builds
This commit adds a taskVALID_CORE_ID() macro, similar to the one offered in
Amazon SMP FreeRTOS.
- Various functions have been updated to use that macro
- Removed some unecessary static asserts of CONFIG_FREERTOS_NO_AFFINITY and
added casting.
- Uncrustify changes
Following the upgrade to FreeRTOS kernel v10.5.1, this commit updates the
version numbers, licenses, and SBOM files of FreeRTOS files to reflect v10.5.1.
Note:
- Updated licenses as v10.5.1 now uses SPDX format
- Removed CVE-2021-43997 as it was fixed post v10.4.5
Previously, TLSP deletion callbacks were...
- Stored in a seprate TCB member "pvThreadLocalStoragePointersDelCallback"
- Called separately via multipole prvDeleteTLS() insertions in tasks.c
This commit refactors how TLSP deletion callbacks are stored and called:
- TLSP deletion callbacks are now stored in "pvThreadLocalStoragePointers"
directly. configNUM_THREAD_LOCAL_STORAGE_POINTERS is doubled in size so that
the deletion callbacks are stored in the latter half of the array
- The callbacks are now called via "portCLEAN_UP_TCB()". As such, the
prvDeleteTLS() additions are no longer needed and the function can be removed
- Removed some legacy TLSP tests using the old method of storing the callback
pointers.
This commit reduces the source code diff between IDF FreeRTOS and upstream
vanilla FreeRTOS, in preparation for v10.5.1 upgrade.
portCLEAN_UP_COPROC() was an IDF specific addition to FreeRTOS, where the
macro was called from prvDeleteTCB() to clean up the coprocessor context of a
deleted task.
This commit removes portCLEAN_UP_COPROC(). The coprocessor cleanup routine
(i.e., vPortCleanUpCoprocArea()) is now called via portCLEAN_UP_TCB()->
vPortTCBPreDeleteHook().
This removes a minor code difference between IDF FreeRTOS and upstream.
Previously, if CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP was enabled, users
would provide a definition for a vPortCleanUpTCB() hook function that is called
right before a task's memory is freed in prvDeleteTCB(). However,
vPortCleanUpTCB() will be reclaimed by ESP-IDF for internal use in v6.0.
This commit introduces the following changes...
Introduced a new CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK option:
- Provides the same pre-deletion hook functionality. But users now define
vTaskPreDeletionHook() instead.
- CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP still exists, but is marked as
deprecated. This is to maintain compatibility with existing applications
that already define vPortCleanUpTCB().
- Removed redundant --wl --wrap workaround with vPortCleanUpTCB()
- Added todo notes to remove support for user defined vPortCleanUpTCB()
completely in v6.0.
- Updated test cases to use new CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK option
Freed up portCLEAN_UP_TCB() to call a new internal vPortTCBPreDeleteHook():
- vPortTCBPreDeleteHook() now replaces the previous "wrapped" implementation
of vPortCleanUpTCB().
- vPortTCBPreDeleteHook() is an internal task pre-delete hook for IDF FreeRTOS
ports to inject some pre-deletion operations.
- Internal pre-delete hook now invokes user provided vTaskPreDeletionHook()
if enabled.
- Relocated vPortTCBPreDeleteHook() to correct section in port.c
Previously, IDF FreeRTOS would restrict the clean up of task memory (done by
vTaskDelete() or the Idle task) to only tasks pinned to the current core or
unpinned tasks. This was due to the need to clear the task's coprocessor
ownership on the other core (i.e., "_xt_coproc_owner_sa"). But this restriction
can be lifted by simply protecting access of "_xt_coproc_owner_sa" with a
spinlock.
This commit implements a "_xt_coproc_owner_sa_lock" to protect the access of
"_xt_coproc_owner_sa", thus vTaskDelete() and prvDeleteTCB() can now delete
tasks pinned to the other core so long as that task is not currently running.
Note: This fix was copied from the Xtensa port of Amazon SMP FreeRTOS
This commit removes the dependency on portUSING_MPU_WRAPPERS on the Xtensa port
of IDF FreeRTOS. This dependency was added due to a hack implemented in the
upstream port that required the usage of the "xMPUSettings" member of the TCB.
The "xMPUSettings" would be used as a pointer to the task's coprocessor save
area on the stack, even though FreeRTOS MPU support was not available.
The hack has now been removed, and the CPSA pointer is now calculated using
a combination of constant offsets values and the pxEndOfStack member of the
TCB.
Note: This impelemtation was copied from the Xtensa port of Amazon SMP FreeRTOS.
This commit refactors the OS startup functions as follows:
- Moved the OS/app startup functions listed below to "app_startup.c". Their
implementations are now common to all ports (RISC-V and Xtensa) of all
FreeRTOS implementations (IDF and Amazon SMP).
- esp_startup_start_app()
- esp_startup_start_app_other_cores()
- Removed esp_startup_start_app_common() as app startup functions are now
already common to all ports.
- Added extra logs to "main_task" to help with user debugging
Note: Increased startup delay on "unity_task". The "unity_run_menu()" is non
blocking, thus if the main task or other startup tasks have not been freed
by the time "unity_run_menu()" is run, those tasks will be freed the next time
"unity_task" blocks. This could cause some tests to have a memory leak, thus
the "unity_task" startup delay has increased.
This commit refactors the pxPortInitialiseStack() function of the xtensa
FreeRTOS ports (both IDF and SMP FreeRTOS).
- Each stack area is now separated into their own functions
- Each function will individually
- Push the stack pointer to allocate the stack area
- Initiaze the allocated stack area
- Each stack area's size and usage is now clearly documented in code
This function removes the following legacy atomic CAS functions:
From compare_set.h (file removed):
- compare_and_set_native()
- compare_and_set_extram()
From portmacro.h
- uxPortCompareSet()
- uxPortCompareSetExtram()
Users should call esp_cpu_compare_and_set() instead as this function hides the details
of atomic CAS on internal and external RAM addresses.
Due to the removal of compare_set.h, some missing header includes are also fixed in this commit.
This commit removes the usage of all legacy FreeRTOS data types that
are exposed via configENABLE_BACKWARD_COMPATIBILITY. Legacy types can
still be used by enabling CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY.
This commit adds a CHOOSE_MACRO_VA_ARG() selector to allow selection between two
versions of a macro based on the number of arguments. This replaces the previous
portGET_ARGUMENT_COUNT() selector.
- portYIELD_FROM_ISR() now uses CHOOSE_MACRO_VA_ARG()
- portYIELD_FROM_ISR(arg) version added to risc-v port
- Old vPortEvaluateYieldFromISR() and portGET_ARGUMENT_COUNT removed
The following files were deleted:
- components/esp_hw_support/include/soc/cpu.h
- components/soc/esp32s3/include/soc/cpu.h
The following functions are deprecated:
- get_sp()
The following functions declared in soc/cpu.h are now moved to esp_cpu.h:
- esp_cpu_configure_region_protection()
The following functions declared in soc/cpu.h are now moved to components/xtensa/include/esp_cpu_utils.h:
- esp_cpu_process_stack_pc()
All files with soc/cpu.h inclusion are updated to include esp_cpu.h instead.
Signed-off-by: Sudeep Mohanty <sudeep.mohanty@espressif.com>
xPortStartScheduler calls vPortSetupTimer -> _frxt_tick_timer_init,
which enables tick timer interrupt and sets up the first timeout.
From that point on, the interrupt can fire. If the interrupt happens
while _frxt_dispatch is running, the scheduler will enter an infinite
loop. This is because _frxt_dispatch isn't supposed to be preemptable,
and the tick interrupt will overwrite some of the registers used by
_frxt_dispatch.
Note that this situation doesn't practically occur on the real
hardware, where the execution of vPortSetupTimer and _frxt_dispatch
happens quickly enough. However it can be reproduced on an emulator
if the tick period is set to 1ms.
Add an explicit call to portDISABLE_INTERRUPTS in xPortStartScheduler
to guarantee that _frxt_dispatch doesn't run with interrupts enabled.
This is similar to the esprv_intc_int_set_threshold(1); call in
RISC-V version of port.c.
Add TRY_ENTRY_CRITICAL() API to all for timeouts when entering critical sections.
The following port API were added:
- portTRY_ENTER_CRITICAL()
- portTRY_ENTER_CRITICAL_ISR()
- portTRY_ENTER_CRITICAL_SAFE()
Deprecated legacy spinlock API in favor of spinlock.h. The following API were deprecated:
- vPortCPUInitializeMutex()
- vPortCPUAcquireMutex()
- vPortCPUAcquireMutexTimeout()
- vPortCPUReleaseMutex()
Other Changes:
- Added portMUX_INITIALIZE() to replace vPortCPUInitializeMutex()
- The assembly of the critical section functions ends up being about 50 instructions longer,
thus the spinlock test pass threshold had to be increased to account for the extra runtime.
Closes https://github.com/espressif/esp-idf/issues/5301
The following changes have been made:
1. All FreeRTOS kernel source files are now placed in the
freertos/FreeRTOS-Kernel folder to match with the upstream folder structure.
2. All kernel include files are now placed in freertos/FreeRTOS-Kernel/include.
3. All port files are now placed in freertos/FreeRTOS-Kernel/portable.
4. All additions/customizations are placed in freertos/esp_additions.
5. All other miscellaneous files (README, License files etc.) are moved to
freertos/FreeRTOS-Kernel folder to match with the upstream.
6. Updated esp-cryptoauthlib to latest commit to resolve FreeRTOS
include dependencies.
Signed-off-by: Sudeep Mohanty <sudeep.mohanty@espressif.com>