esp-idf/components/freertos/FreeRTOS-Kernel/portable/xtensa/port.c
Sudeep Mohanty e22b4007d3 esp_hw_support: Removed deprecated CPU util functions
The following files were deleted:
- components/esp_hw_support/include/soc/cpu.h
- components/soc/esp32s3/include/soc/cpu.h

The following functions are deprecated:
- get_sp()

The following functions declared in soc/cpu.h are now moved to esp_cpu.h:
- esp_cpu_configure_region_protection()

The following functions declared in soc/cpu.h are now moved to components/xtensa/include/esp_cpu_utils.h:
- esp_cpu_process_stack_pc()

All files with soc/cpu.h inclusion are updated to include esp_cpu.h instead.

Signed-off-by: Sudeep Mohanty <sudeep.mohanty@espressif.com>
2021-12-28 16:58:37 +05:30

504 lines
19 KiB
C

/*
* FreeRTOS Kernel V10.4.3
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software. If you wish to use our Amazon
* FreeRTOS name, please do so in a fair use way that does not cause confusion.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
* 1 tab == 4 spaces!
*/
/*
* Copyright (c) 2015-2019 Cadence Design Systems, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "sdkconfig.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <xtensa/config/core.h>
#include <xtensa/xtensa_context.h>
#include "soc/soc_caps.h"
#include "esp_private/crosscore_int.h"
#include "esp_system.h"
#include "esp_log.h"
#include "esp_int_wdt.h"
#ifdef CONFIG_APPTRACE_ENABLE
#include "esp_app_trace.h" /* Required for esp_apptrace_init. [refactor-todo] */
#endif
#include "FreeRTOS.h" /* This pulls in portmacro.h */
#include "task.h" /* Required for TaskHandle_t, tskNO_AFFINITY, and vTaskStartScheduler */
#include "port_systick.h"
#include "esp_cpu.h"
_Static_assert(tskNO_AFFINITY == CONFIG_FREERTOS_NO_AFFINITY, "incorrect tskNO_AFFINITY value");
/* ---------------------------------------------------- Variables ------------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
static const char *TAG = "cpu_start"; /* [refactor-todo]: might be appropriate to change in the future, but for now maintain the same log output */
extern volatile int port_xSchedulerRunning[portNUM_PROCESSORS];
unsigned port_interruptNesting[portNUM_PROCESSORS] = {0}; // Interrupt nesting level. Increased/decreased in portasm.c, _frxt_int_enter/_frxt_int_exit
BaseType_t port_uxCriticalNesting[portNUM_PROCESSORS] = {0};
BaseType_t port_uxOldInterruptState[portNUM_PROCESSORS] = {0};
/* ------------------------------------------------ FreeRTOS Portable --------------------------------------------------
* - Provides implementation for functions required by FreeRTOS
* - Declared in portable.h
* ------------------------------------------------------------------------------------------------------------------ */
// ----------------- Scheduler Start/End -------------------
/* Defined in xtensa_context.S */
extern void _xt_coproc_init(void);
BaseType_t xPortStartScheduler( void )
{
portDISABLE_INTERRUPTS();
// Interrupts are disabled at this point and stack contains PS with enabled interrupts when task context is restored
#if XCHAL_CP_NUM > 0
/* Initialize co-processor management for tasks. Leave CPENABLE alone. */
_xt_coproc_init();
#endif
/* Setup the hardware to generate the tick. */
vPortSetupTimer();
port_xSchedulerRunning[xPortGetCoreID()] = 1;
// Cannot be directly called from C; never returns
__asm__ volatile ("call0 _frxt_dispatch\n");
/* Should not get here. */
return pdTRUE;
}
void vPortEndScheduler( void )
{
/* It is unlikely that the Xtensa port will get stopped. If required simply
disable the tick interrupt here. */
abort();
}
// ------------------------ Stack --------------------------
// User exception dispatcher when exiting
void _xt_user_exit(void);
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
// Wrapper to allow task functions to return (increases stack overhead by 16 bytes)
static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters)
{
pxCode(pvParameters);
//FreeRTOS tasks should not return. Log the task name and abort.
char *pcTaskName = pcTaskGetTaskName(NULL);
ESP_LOGE("FreeRTOS", "FreeRTOS Task \"%s\" should not return, Aborting now!", pcTaskName);
abort();
}
#endif
#if portUSING_MPU_WRAPPERS
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged )
#else
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
#endif
{
StackType_t *sp, *tp;
XtExcFrame *frame;
#if XCHAL_CP_NUM > 0
uint32_t *p;
#endif
uint32_t *threadptr;
void *task_thread_local_start;
extern int _thread_local_start, _thread_local_end, _flash_rodata_start, _flash_rodata_align;
// TODO: check that TLS area fits the stack
uint32_t thread_local_sz = (uint8_t *)&_thread_local_end - (uint8_t *)&_thread_local_start;
thread_local_sz = ALIGNUP(0x10, thread_local_sz);
/* Initialize task's stack so that we have the following structure at the top:
----LOW ADDRESSES ----------------------------------------HIGH ADDRESSES----------
task stack | interrupt stack frame | thread local vars | co-processor save area |
----------------------------------------------------------------------------------
| |
SP pxTopOfStack
All parts are aligned to 16 byte boundary. */
sp = (StackType_t *) (((UBaseType_t)pxTopOfStack - XT_CP_SIZE - thread_local_sz - XT_STK_FRMSZ) & ~0xf);
/* Clear the entire frame (do not use memset() because we don't depend on C library) */
for (tp = sp; tp <= pxTopOfStack; ++tp) {
*tp = 0;
}
frame = (XtExcFrame *) sp;
/* Explicitly initialize certain saved registers */
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
frame->pc = (UBaseType_t) vPortTaskWrapper; /* task wrapper */
#else
frame->pc = (UBaseType_t) pxCode; /* task entrypoint */
#endif
frame->a0 = 0; /* to terminate GDB backtrace */
frame->a1 = (UBaseType_t) sp + XT_STK_FRMSZ; /* physical top of stack frame */
frame->exit = (UBaseType_t) _xt_user_exit; /* user exception exit dispatcher */
/* Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode. */
/* Also set entry point argument parameter. */
#ifdef __XTENSA_CALL0_ABI__
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
frame->a2 = (UBaseType_t) pxCode;
frame->a3 = (UBaseType_t) pvParameters;
#else
frame->a2 = (UBaseType_t) pvParameters;
#endif
frame->ps = PS_UM | PS_EXCM;
#else /* __XTENSA_CALL0_ABI__ */
/* + for windowed ABI also set WOE and CALLINC (pretend task was 'call4'd). */
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
frame->a6 = (UBaseType_t) pxCode;
frame->a7 = (UBaseType_t) pvParameters;
#else
frame->a6 = (UBaseType_t) pvParameters;
#endif
frame->ps = PS_UM | PS_EXCM | PS_WOE | PS_CALLINC(1);
#endif /* __XTENSA_CALL0_ABI__ */
#ifdef XT_USE_SWPRI
/* Set the initial virtual priority mask value to all 1's. */
frame->vpri = 0xFFFFFFFF;
#endif
/* Init threadptr register and set up TLS run-time area.
* The diagram in port/riscv/port.c illustrates the calculations below.
*/
task_thread_local_start = (void *)(((uint32_t)pxTopOfStack - XT_CP_SIZE - thread_local_sz) & ~0xf);
memcpy(task_thread_local_start, &_thread_local_start, thread_local_sz);
threadptr = (uint32_t *)(sp + XT_STK_EXTRA);
/* Calculate THREADPTR value.
* The generated code will add THREADPTR value to a constant value determined at link time,
* to get the address of the TLS variable.
* The constant value is calculated by the linker as follows
* (search for 'tpoff' in elf32-xtensa.c in BFD):
* offset = address - tls_section_vma + align_up(TCB_SIZE, tls_section_alignment)
* where TCB_SIZE is hardcoded to 8.
* Note this is slightly different compared to the RISC-V port, where offset = address - tls_section_vma.
*/
const uint32_t tls_section_alignment = (uint32_t) &_flash_rodata_align; /* ALIGN value of .flash.rodata section */
const uint32_t tcb_size = 8; /* Unrelated to FreeRTOS, this is the constant from BFD */
const uint32_t base = (tcb_size + tls_section_alignment - 1) & (~(tls_section_alignment - 1));
*threadptr = (uint32_t)task_thread_local_start - ((uint32_t)&_thread_local_start - (uint32_t)&_flash_rodata_start) - base;
#if XCHAL_CP_NUM > 0
/* Init the coprocessor save area (see xtensa_context.h) */
/* No access to TCB here, so derive indirectly. Stack growth is top to bottom.
* //p = (uint32_t *) xMPUSettings->coproc_area;
*/
p = (uint32_t *)(((uint32_t) pxTopOfStack - XT_CP_SIZE) & ~0xf);
configASSERT( ( uint32_t ) p >= frame->a1 );
p[0] = 0;
p[1] = 0;
p[2] = (((uint32_t) p) + 12 + XCHAL_TOTAL_SA_ALIGN - 1) & -XCHAL_TOTAL_SA_ALIGN;
#endif /* XCHAL_CP_NUM */
return sp;
}
/* ---------------------------------------------- Port Implementations -------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
// --------------------- Interrupts ------------------------
BaseType_t xPortInIsrContext(void)
{
unsigned int irqStatus;
BaseType_t ret;
irqStatus = portSET_INTERRUPT_MASK_FROM_ISR();
ret = (port_interruptNesting[xPortGetCoreID()] != 0);
portCLEAR_INTERRUPT_MASK_FROM_ISR(irqStatus);
return ret;
}
void vPortAssertIfInISR(void)
{
configASSERT(xPortInIsrContext());
}
BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void)
{
return (port_interruptNesting[xPortGetCoreID()] != 0);
}
// ------------------ Critical Sections --------------------
BaseType_t __attribute__((optimize("-O3"))) xPortEnterCriticalTimeout(portMUX_TYPE *mux, BaseType_t timeout)
{
/* Interrupts may already be disabled (if this function is called in nested
* manner). However, there's no atomic operation that will allow us to check,
* thus we have to disable interrupts again anyways.
*
* However, if this is call is NOT nested (i.e., the first call to enter a
* critical section), we will save the previous interrupt level so that the
* saved level can be restored on the last call to exit the critical.
*/
BaseType_t xOldInterruptLevel = portSET_INTERRUPT_MASK_FROM_ISR();
if (!spinlock_acquire(mux, timeout)) {
//Timed out attempting to get spinlock. Restore previous interrupt level and return
portCLEAR_INTERRUPT_MASK_FROM_ISR(xOldInterruptLevel);
return pdFAIL;
}
//Spinlock acquired. Increment the critical nesting count.
BaseType_t coreID = xPortGetCoreID();
BaseType_t newNesting = port_uxCriticalNesting[coreID] + 1;
port_uxCriticalNesting[coreID] = newNesting;
//If this is the first entry to a critical section. Save the old interrupt level.
if ( newNesting == 1 ) {
port_uxOldInterruptState[coreID] = xOldInterruptLevel;
}
return pdPASS;
}
void __attribute__((optimize("-O3"))) vPortExitCritical(portMUX_TYPE *mux)
{
/* This function may be called in a nested manner. Therefore, we only need
* to reenable interrupts if this is the last call to exit the critical. We
* can use the nesting count to determine whether this is the last exit call.
*/
spinlock_release(mux);
BaseType_t coreID = xPortGetCoreID();
BaseType_t nesting = port_uxCriticalNesting[coreID];
if (nesting > 0) {
nesting--;
port_uxCriticalNesting[coreID] = nesting;
//This is the last exit call, restore the saved interrupt level
if ( nesting == 0 ) {
portCLEAR_INTERRUPT_MASK_FROM_ISR(port_uxOldInterruptState[coreID]);
}
}
}
BaseType_t xPortEnterCriticalTimeoutCompliance(portMUX_TYPE *mux, BaseType_t timeout)
{
BaseType_t ret;
if (!xPortInIsrContext()) {
ret = xPortEnterCriticalTimeout(mux, timeout);
} else {
esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n");
abort();
ret = pdFAIL;
}
return ret;
}
void vPortExitCriticalCompliance(portMUX_TYPE *mux)
{
if (!xPortInIsrContext()) {
vPortExitCritical(mux);
} else {
esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n");
abort();
}
}
// ---------------------- Yielding -------------------------
void vPortYieldOtherCore( BaseType_t coreid )
{
esp_crosscore_int_send_yield( coreid );
}
extern void _frxt_setup_switch( void ); //Defined in portasm.S
void IRAM_ATTR vPortEvaluateYieldFromISR(int argc, ...)
{
BaseType_t xYield;
va_list ap;
va_start(ap, argc);
if (argc) {
xYield = (BaseType_t)va_arg(ap, int);
va_end(ap);
} else {
//it is a empty parameter vPortYieldFromISR macro call:
va_end(ap);
traceISR_EXIT_TO_SCHEDULER();
_frxt_setup_switch();
return;
}
//Yield exists, so need evaluate it first then switch:
if (xYield == pdTRUE) {
traceISR_EXIT_TO_SCHEDULER();
_frxt_setup_switch();
}
}
// ------------------- Hook Functions ----------------------
void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName )
{
#define ERR_STR1 "***ERROR*** A stack overflow in task "
#define ERR_STR2 " has been detected."
const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2};
char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = { 0 };
char *dest = buf;
for (size_t i = 0 ; i < sizeof(str) / sizeof(str[0]); i++) {
dest = strcat(dest, str[i]);
}
esp_system_abort(buf);
}
// ----------------------- System --------------------------
uint32_t xPortGetTickRateHz(void)
{
return (uint32_t)configTICK_RATE_HZ;
}
#define STACK_WATCH_AREA_SIZE 32
#define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1)
void vPortSetStackWatchpoint( void *pxStackStart )
{
//Set watchpoint 1 to watch the last 32 bytes of the stack.
//Unfortunately, the Xtensa watchpoints can't set a watchpoint on a random [base - base+n] region because
//the size works by masking off the lowest address bits. For that reason, we futz a bit and watch the lowest 32
//bytes of the stack we can actually watch. In general, this can cause the watchpoint to be triggered at most
//28 bytes early. The value 32 is chosen because it's larger than the stack canary, which in FreeRTOS is 20 bytes.
//This way, we make sure we trigger before/when the stack canary is corrupted, not after.
int addr = (int)pxStackStart;
addr = (addr + 31) & (~31);
esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, 32, ESP_CPU_WATCHPOINT_STORE);
}
/* ---------------------------------------------- Misc Implementations -------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
// -------------------- Co-Processor -----------------------
/*
* Used to set coprocessor area in stack. Current hack is to reuse MPU pointer for coprocessor area.
*/
#if portUSING_MPU_WRAPPERS
void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION *const xRegions, StackType_t *pxBottomOfStack, uint32_t usStackDepth )
{
#if XCHAL_CP_NUM > 0
xMPUSettings->coproc_area = ( StackType_t * ) ( ( uint32_t ) ( pxBottomOfStack + usStackDepth - 1 ));
xMPUSettings->coproc_area = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) xMPUSettings->coproc_area ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
xMPUSettings->coproc_area = ( StackType_t * ) ( ( ( uint32_t ) xMPUSettings->coproc_area - XT_CP_SIZE ) & ~0xf );
/* NOTE: we cannot initialize the coprocessor save area here because FreeRTOS is going to
* clear the stack area after we return. This is done in pxPortInitialiseStack().
*/
#endif
}
void vPortReleaseTaskMPUSettings( xMPU_SETTINGS *xMPUSettings )
{
/* If task has live floating point registers somewhere, release them */
_xt_coproc_release( xMPUSettings->coproc_area );
}
#endif /* portUSING_MPU_WRAPPERS */
// --------------------- App Start-up ----------------------
#if !CONFIG_FREERTOS_UNICORE
void esp_startup_start_app_other_cores(void)
{
// For now, we only support up to two core: 0 and 1.
if (xPortGetCoreID() >= 2) {
abort();
}
// Wait for FreeRTOS initialization to finish on PRO CPU
while (port_xSchedulerRunning[0] == 0) {
;
}
#if CONFIG_APPTRACE_ENABLE
// [refactor-todo] move to esp_system initialization
esp_err_t err = esp_apptrace_init();
assert(err == ESP_OK && "Failed to init apptrace module on APP CPU!");
#endif
#if CONFIG_ESP_INT_WDT
//Initialize the interrupt watch dog for CPU1.
esp_int_wdt_cpu_init();
#endif
esp_crosscore_int_init();
ESP_EARLY_LOGI(TAG, "Starting scheduler on APP CPU.");
xPortStartScheduler();
abort(); /* Only get to here if FreeRTOS somehow very broken */
}
#endif // !CONFIG_FREERTOS_UNICORE
extern void esp_startup_start_app_common(void);
void esp_startup_start_app(void)
{
#if !CONFIG_ESP_INT_WDT
#if CONFIG_ESP32_ECO3_CACHE_LOCK_FIX
assert(!soc_has_cache_lock_bug() && "ESP32 Rev 3 + Dual Core + PSRAM requires INT WDT enabled in project config!");
#endif
#endif
esp_startup_start_app_common();
ESP_LOGI(TAG, "Starting scheduler on PRO CPU.");
vTaskStartScheduler();
}