peripheral enable/disable usually should be managed by driver itself,
so make it as espressif private APIs, not recommended for user to use it
in application code.
However, if user want to re-write the driver or ports to other platform,
this is still possible by including the header in this way:
"esp_private/peripheral_ctrl.h"
In I2C slave mode, clock source can now be changed, according to
the flags specified in `i2c_config_t` structure. Thus, ESP32-S2
can now act as an I2C slave, even with a 400KHz master clock.
It is now possible to call `i2c_master_cmd_begin()` on the same
`i2c_cmd_handle_t` parameter. Thus, no extra allocation will be performed.
Moreover, as commands contains pointers to data, these can be modified
between two calls to `i2c_master_cmd_begin()`. This becomes very handy
for framebuffers.
Only a single command will be allocated now when a read or write is
prepared in the command list. The size of a command's buffer is not
limited to 255 bytes anymore.
Application can now provide a buffer in order to allocate commands link.
Fixed few unclear details in the documentation.
Added wrappers to simplify I2C transfers.
Closes https://github.com/espressif/esp-idf/issues/5108
When `DIS_USB_JTAG` eFuse is NOT burned (`False`), it is not possible
to set pins 18 and 19 as GPIOs. This commit solves this by manually
disabling USB JTAG when using pins 18 or 19.
The functions shall use `gpio_hal_iomux_func_sel` instead of
`PIN_FUNC_SELELECT`.
During HAL layer refactoring and new chip bringup, we have several
caps.h for each part, to reduce the conflicts to minimum. But this is
The capabilities headers will be relataive stable once completely
written (maybe after the featues are supported by drivers).
Now ESP32 and ESP32-S2 drivers are relative stable, making it a good
time to combine all these caps.h into one soc_caps.h
This cleanup also move HAL config and pin config into separated files,
to make the responsibilities of these headers more clear. This is
helpful for the stabilities of soc_caps.h because we want to make it
public some day.
Using xxx_periph.h in whole IDF instead of xxx_reg.h, xxx_struct.h, xxx_channel.h ... .
Cleaned up header files from unnecessary headers (releated to soc/... headers).
This MR removes the common dependency from every IDF components to the SOC component.
Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components.
But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components.
In CMAKE, we have two kinds of header visibilities (set by include path visibility):
(Assume component A --(depends on)--> B, B is the current component)
1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B)
2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only)
and we have two kinds of depending ways:
(Assume component A --(depends on)--> B --(depends on)--> C, B is the current component)
1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B)
2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B)
1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default.
2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it.
3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers
4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link)
This is a breaking change. Previous code may depends on the long include chain.
You may need to include the following headers for some files after this commit:
- soc/soc.h
- soc/soc_memory_layout.h
- driver/gpio.h
- esp_sleep.h
The major broken include chain includes:
1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h.
2. ets_sys.h no longer includes soc/soc.h
3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h
some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h
BREAKING CHANGE
GCC compiler can generate 8-bit stores when modifying bitfields of
volatile structs (https://github.com/espressif/esp-idf/issues/597).
In the specific case of I2C driver, this resulted in byte_num field
to be written using s8i. However the peripheral requires 32-bit
writes, and ignores 8-bit writes. This change modifies the code to
compose the 32-bit command register value first, and then write the
complete value to the hardware.
Acquires PM_APB_FREQ_MAX lock when carrying any transaction on I2C if
Power Management Framework is enabled.
Signed-off-by: Sachin Parekh <sachin.parekh@espressif.com>
closes https://github.com/espressif/esp-idf/issues/2494
closes https://github.com/espressif/esp-idf/pull/2493
closes https://github.com/espressif/esp-idf/pull/2496
1. Change bus reset to handle interrupted READ sequences.
2. Slow down I2C to 100khz during reset
3. If a SLAVE device was in a read operation when the bus was interrupted, the SLAVE device is controlling SDA.The only bit during the 9 clock cycles of a byte READ the MASTER(ESP32) is guaranteed control over, is during the ACK bit period.
If the SLAVE is sending a stream of ZERO bytes, it will only release SDA during the ACK bit period. The master(ESP32) cannot generate a STOP unless SDA is HIGH. So, this reset code synchronizes the bit stream with, Either, the ACK bit, Or a 1 bit.
I am stealing this delay coding from @jeremyherbert #2493 pr.
2. Change Bus Reset to handle interrupted READ sequences.
The current code does not handle interrupted READ cycles.
If a SLAVE device was in a read operation when the bus was interrupted, the SLAVE device is controlling SDA.
The only bit during the 9 clock cycles of a byte READ the MASTER(ESP32) is guaranteed control over, is during the ACK bit period.
If the SLAVE is sending a stream of ZERO bytes, it will only release SDA during the ACK bit period. The master(ESP32) cannot generate a STOP unless SDA is HIGH.
So, this reset code synchronizes the bit stream with, Either, the ACK bit, Or a 1 bit.
3. fix typo
correct `sda_id` to `sda_io` in `i2c_master_clear_bus()` @ryan-ma found it. This typo was generated when I manually edited this patch on GitHub, I should have done a Copy/Paste operation!