Originally, pthread_internal_local_storage_destructor_callback was only called from pthread_exit
on the thread whose TLS is being destroyed.
In b3755b751ed42d98c933a919c744dc6455f5ee68, pthread_internal_local_storage_destructor_callback
started being called from pthread_join and pthread_detach on a different thread (whichever one
called one of those functions).
But pthread_internal_local_storage_destructor_callback is still calling
vTaskSetThreadLocalStoragePointer and vTaskSetThreadLocalStoragePointerAndDelCallback with a NULL
xTaskToSet argument, which causes those functions to set the TLS pointer and deletion callback
for the current thread, not the thread whose TLS is being destroyed.
This commit makes pthread_internal_local_storage_destructor_callback call
vTaskSetThreadLocalStoragePointer and vTaskSetThreadLocalStoragePointerAndDelCallback
with the handle of the thread whose TLS is being destroyed.
Unlike COMPILE_OPTIONS, COMPILE_DEFINITIONS CMake property assumes
values without the -D prefix, such as NAME or NAME=VAL.
Previously, IDF build system was passing COMPILE_DEFINITIONS build
property to CMake COMPILE_OPTIONS property, so -D prefix was not
a problem.
Now that COMPILE_DEFINITIONS CMake property is used, -D prefix has
to be removed.
(Note that this doesn't affect 'target_compile_definitions' function,
which strips -D prefix before adding the definition to the property.)
This function removes the following legacy atomic CAS functions:
From compare_set.h (file removed):
- compare_and_set_native()
- compare_and_set_extram()
From portmacro.h
- uxPortCompareSet()
- uxPortCompareSetExtram()
Users should call esp_cpu_compare_and_set() instead as this function hides the details
of atomic CAS on internal and external RAM addresses.
Due to the removal of compare_set.h, some missing header includes are also fixed in this commit.
The TLSP deletion callback feature is not compatible with the CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP
option. However, the "freertos_options" unit test configuration will enable that option.
This commit disables all CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP related features when compiling with
SMP FreeRTOS.
Some components were including esp_timer.h without declaring a
dependency on esp_timer component. This used to work due to a
transitive public dependency on esp_timer from freertos component.
Add explicit dependencies where needed.
Also some source files were using esp_timer functions without
including the header file. This used to work because esp_timer.h was
included from freertos port header file. This commit adds esp_timer.h
includes where needed.
This commit updates the visibility of various header files and cleans up
some unnecessary inclusions. Also, this commit removes certain header
include paths which were maintained for backward compatibility.
This commit removes the usage of all legacy FreeRTOS data types that
are exposed via configENABLE_BACKWARD_COMPATIBILITY. Legacy types can
still be used by enabling CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY.
The reason timeouts would sometimes happen before the abstime deadline was due
to rounding errors converting the timeout to milliseconds, and also because
vTaskDelay(1) only delays until the next tick which is less than one full tick
period.
Closes https://github.com/espressif/esp-idf/issues/6901
Possible for a joined task to be deleted at the moment it is logging,
meaning it might hold the stdout lock. In that case the lock isn't
released and the next task to try and take it (i.e. call printf)
will block indefinitely.
When `pthread_mutex_destroy` is used to release mutex, `pthread_mutex_lock_internal` is used,
which results in the increase of `uxmutexehold` and no recovery base priority
freertos/port: update the port files and split into xtensa and riscv ports
freertos: separated cpu files from rest of the kernel sources
freertos/port_xtensa: separated private include files into a folder
freertos/tasks: added task create pinned to core function do not break current IDF API
freertos/tasks: mimiced task create pinned function into tasks.c to do not break the IDF API.
freertos: freertos component now compiling
freertos: freertos component now building
freertos: moved critical sections outside from FR kernel section to portable section
portmacro_xtensa: add void indentifier on functions that take no arguments
freertos: fix critical sections implementation to match with their function prototype
freertos: add cmake changes of freertos into make
freertos: remove portDONT_DISCARD attribute from switch context function, it was breaking the docs building.
freertos: fix conflicitng types of vApplicationSleep function
license: update the license of freertos
freertos: Doxygen comments refactored to render them correctly on docs
freertos: added new functions of freertos into the documentation
freertos: added message buffers and stream buffers to documentation
sysview: update freertos system view to the compatible with version 10
freertos: fixed event group documentation rendering
freertos: update static task structure to match the actual tcb size
freertos: removed backported test functions
freertos/smp: brought SMP code to FreeRTOS 10 port
freertos/portmacro: added missing crosscore interrupt for yielding tasks
freertos: replaced soft-critical sections with hard-critical sections used by SMP
freertos: placed muxes inside of kernel objects
freertos: replaced original FR critical sections with SMP enabled spinlocks critical sections
freertos: moved xtensa port files to a separated folder
freertos: added multiple instance of global variables required to SMP
freertos: added SMP modifications on specific tasks module functions
freertos: added TLS deletion function to task module
freertos/tls: initialize TLS deletion callback to avoid crashing when calling task delete
freertos: modified vTaskDelete to do not erase current task that runs on other core
freertos: reverted taskhandle and timerhandle as void* type
freertos: fixed de-referencing void pointer to get run time counter
freertos: fix system view trace enter macro arguments
freertos: Replaced soft critical sections with spinlocks on event_groups
freertos: fixed tick function to avoid calling tick hooks twice
freertos: Nofity give checking per CPU if schedule is suspended
freertos: added mpu release on TCB deletion
freertos: Added SMP changes when deleting a TCB on idle task
freertos/license: update freertos license in COPYRIGHT.rst
freertos: unicore configurations can use task create pinned to core, it will be always pinned to core 0
freertos/portmacro: added cpu_hal_get_core_id() function instead of inline assembly
freertos/xtensa: update xtensa specific files used in master branch
newlib/locks: revert the preemption checking in lock acquisition and release
ref_clock: fix initial state of ref_clock interrupt handler
freertos: added missing critical sections and yielding checkings
freertos: remove magic numbers in vTaskDelete
freertos: added missing critical section in prvIsQueueEmpty
* changing dependencies from unity->cmock
* added component.mk and Makefile.projbuild
* ignore test dir in gen_esp_err_to_name.py
* added some brief introduction of CMock in IDF
Changes the startup flow to the ff:
hardware -> core libraries init -> other libraries init -> os
init (optional) -> app_main
- hardware init resides in the port layer, and is the entry point
- core libraries init executes init functions of core components
- other libraries init executes init functions of other components (weak
references)
- after other lib is init, the app_main function is called, however,
an OS can wrap the real call to app_main to init its own stuff, and
*then* call the real app_main
Also use TEST_ASSERT_EQUAL to get better debugging
Debugging intermittent UT failures on S2 release config
In the old version, the 300ms delay in between the two kinds of test
was supposed to keep the tasks in lockstep so it didn't matter that
global_sp was protected by two muxes.
However it seems like sometimes they could get out of sync -
I think because of a race in the sleep_until test. If the
second counter ticks over at that exact moment sleeping starts,
then the task doesn't sleep and will immediately keep running
for the next iteration, possibly racing the other tasks.