Sometimes the flash size read from bootloader is not correct. This may
forbid SPI Flash driver from reading the the area larger than the size
in bootloader header.
When the new config option is enabled, the latest configured
ESPTOOLPY_FLAHSIZE in the app header will be used to override the value
read from bootloader header.
Goal is that multiple faults would be required to bypass a boot-time signature check.
- Also strengthens some address range checks for safe app memory addresses
- Change pre-enable logic to also check the bootloader signature before enabling SBV2 on ESP32
Add some additional checks for invalid sections:
- Sections only partially in DRAM or IRAM are invalid
- If a section is in D/IRAM, allow the possibility only some is in D/IRAM
- Only pass sections that are entirely in the same type of RTC memory region
This saves time when waking up from deep sleep, but potentially decreases
the security of the system. If the application able to modify itself
(especially areas that are loaded into RAM) in flash while running
without crashing or is modifies the cached bits of information about
what was last booted from the bootloader, this could cause security
issues if the user does a "deep sleep reset" since the full validation
is skipped.
Signed-off-by: Tim Nordell <tim.nordell@nimbelink.com>
We fixed some flash bugs in bootloader, but for the users used the old
vrsion bootloader, they can not fix these bugs via OTA, the solution is
add these updates in app startup.
These updates include:
1. SPI flash gpio matrix and drive strength configuration
2. SPI flash clock configuration
3. SPI flash read dummy configuration
4. SPI flash cs timing configuration
5. Update flash id of g_rom_flashchip
This MR improves existing flash encryption document to provide simplified steps
Adds two new modes for user: Development & Release
Adds a simple example
Supports encrypted write through make command
Using xxx_periph.h in whole IDF instead of xxx_reg.h, xxx_struct.h, xxx_channel.h ... .
Cleaned up header files from unnecessary headers (releated to soc/... headers).
This prevents a device from being bricked in case when both secure boot & flash encryption are enabled and encryption gets interrupted during first boot. After interruption, all partitions on the device need to be reflashed (including the bootloader).
List of changes:
* Secure boot key generation and bootloader digest generation logic, implemented inside function esp_secure_boot_permanently_enable(), has been pulled out into new API esp_secure_boot_generate_digest(). The enabling of R/W protection of secure boot key on EFUSE still happens inside esp_secure_boot_permanently_enable()
* Now esp_secure_boot_permanently_enable() is called only after flash encryption process completes
* esp_secure_boot_generate_digest() is called before flash encryption process starts
Added:
* set a secure version in app/bootloader.
* description anti-rollback to ota part
* emulate the secure_version write and read operations
* efuse_em partition.
* a description about a rollback for native_ota_example.
Closes: TW26335
Added a new structure esp_app_desc_t. It has info about firmware:
version, secure_version, project_name, time/date build and IDF version.
Added the ability to add a custom structure with a description of the firmware.
The esp_app_desc_t is located in fixed place in start of ROM secotor. It is located after structures esp_image_header_t and esp_image_segment_header_t.
app_version is filed from PROJECT_VER variable (if set in custom make file) or PROJECT_PATH/version.txt or git repo (git describe).
Add API to get app_desc from partition.
Allows OTA updates to be secured via signature checks, without requiring the overhead or complexity
of a full secure boot implementation.
Uses same signing mechanisms (build system and/or espsecure.py as Secure Boot).
Requires:
* [ ] More testing
* [ ] Documentation