Merge branch 'bugfix/bootloader_random_in_app' into 'master'

esp32: Allow bootloader_random.h use in app, add esp_fill_random() function

See merge request idf/esp-idf!3124
This commit is contained in:
Angus Gratton 2018-09-04 10:39:12 +08:00
commit e54f3d9616
13 changed files with 124 additions and 71 deletions

View File

@ -23,19 +23,23 @@
#ifndef BOOTLOADER_BUILD
#include "esp_system.h"
#endif
void bootloader_fill_random(void *buffer, size_t length)
{
return esp_fill_random(buffer, length);
}
#else
void bootloader_fill_random(void *buffer, size_t length)
{
uint8_t *buffer_bytes = (uint8_t *)buffer;
uint32_t random;
#ifdef BOOTLOADER_BUILD
uint32_t start, now;
#endif
assert(buffer != NULL);
for (int i = 0; i < length; i++) {
if (i == 0 || i % 4 == 0) { /* redundant check is for a compiler warning */
#ifdef BOOTLOADER_BUILD
/* in bootloader with ADC feeding HWRNG, we accumulate 1
bit of entropy per 40 APB cycles (==80 CPU cycles.)
@ -49,14 +53,12 @@ void bootloader_fill_random(void *buffer, size_t length)
random ^= REG_READ(WDEV_RND_REG);
RSR(CCOUNT, now);
} while(now - start < 80*32*2); /* extra factor of 2 is precautionary */
#else
random = esp_random();
#endif
}
buffer_bytes[i] = random >> ((i % 4) * 8);
}
}
#endif // BOOTLOADER_BUILD
void bootloader_random_enable(void)
{

View File

@ -16,6 +16,7 @@
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_clk.h"
#include "soc/wdev_reg.h"
@ -54,3 +55,16 @@ uint32_t IRAM_ATTR esp_random(void)
last_ccount = ccount;
return result ^ REG_READ(WDEV_RND_REG);
}
void esp_fill_random(void *buf, size_t len)
{
assert(buf != NULL);
uint8_t *buf_bytes = (uint8_t *)buf;
while (len > 0) {
uint32_t word = esp_random();
uint32_t to_copy = MIN(sizeof(word), len);
memcpy(buf_bytes, &word, to_copy);
buf_bytes += to_copy;
len -= to_copy;
}
}

View File

@ -151,18 +151,31 @@ uint32_t esp_get_minimum_free_heap_size( void );
/**
* @brief Get one random 32-bit word from hardware RNG
*
* The hardware RNG is fully functional whenever an RF subsystem is running (ie Bluetooth or WiFi is enabled). For secure
* The hardware RNG is fully functional whenever an RF subsystem is running (ie Bluetooth or WiFi is enabled). For
* random values, call this function after WiFi or Bluetooth are started.
*
* When the app is running without an RF subsystem enabled, it should be considered a PRNG. To help improve this
* situation, the RNG is pre-seeded with entropy while the IDF bootloader is running. However no new entropy is
* available during the window of time between when the bootloader exits and an RF subsystem starts. It may be possible
* to discern a non-random pattern in a very large amount of output captured during this window of time.
* If the RF subsystem is not used by the program, the function bootloader_random_enable() can be called to enable an
* entropy source. bootloader_random_disable() must be called before RF subsystem or I2S peripheral are used. See these functions'
* documentation for more details.
*
* Any time the app is running without an RF subsystem (or bootloader_random) enabled, RNG hardware should be
* considered a PRNG. A very small amount of entropy is available due to pre-seeding while the IDF
* bootloader is running, but this should not be relied upon for any use.
*
* @return Random value between 0 and UINT32_MAX
*/
uint32_t esp_random(void);
/**
* @brief Fill a buffer with random bytes from hardware RNG
*
* @note This function has the same restrictions regarding available entropy as esp_random()
*
* @param buf Pointer to buffer to fill with random numbers.
* @param len Length of buffer in bytes
*/
void esp_fill_random(void *buf, size_t len);
/**
* @brief Set base MAC address with the MAC address which is stored in BLK3 of EFUSE or
* external storage e.g. flash and EEPROM.

View File

@ -0,0 +1,67 @@
#include <stdio.h>
#include <string.h>
#include "unity.h"
#include "esp_system.h"
/* Note: these are just sanity tests, not the same as
entropy tests
*/
TEST_CASE("call esp_random()", "[random]")
{
const size_t NUM_RANDOM = 128; /* in most cases this is massive overkill */
uint32_t zeroes = UINT32_MAX;
uint32_t ones = 0;
for (int i = 0; i < NUM_RANDOM - 1; i++) {
uint32_t r = esp_random();
ones |= r;
zeroes &= ~r;
}
/* assuming a 'white' random distribution, we can expect
usually at least one time each bit will be zero and at
least one time each will be one. Statistically this
can still fail, just *very* unlikely to. */
TEST_ASSERT_EQUAL_HEX32(0, zeroes);
TEST_ASSERT_EQUAL_HEX32(UINT32_MAX, ones);
}
TEST_CASE("call esp_fill_random()", "[random]")
{
const size_t NUM_BUF = 200;
const size_t BUF_SZ = 16;
uint8_t buf[NUM_BUF][BUF_SZ];
uint8_t zero_buf[BUF_SZ];
uint8_t one_buf[BUF_SZ];
bzero(buf, sizeof(buf));
bzero(one_buf, sizeof(zero_buf));
memset(zero_buf, 0xFF, sizeof(one_buf));
for (int i = 0; i < NUM_BUF; i++) {
esp_fill_random(buf[i], BUF_SZ);
}
/* No two 128-bit buffers should be the same
(again, statistically this could happen but it's very unlikely) */
for (int i = 0; i < NUM_BUF; i++) {
for (int j = 0; j < NUM_BUF; j++) {
if (i != j) {
TEST_ASSERT_NOT_EQUAL(0, memcmp(buf[i], buf[j], BUF_SZ));
}
}
}
/* Do the same all bits are zero and one at least once test across the buffers */
for (int i = 0; i < NUM_BUF; i++) {
for (int x = 0; x < BUF_SZ; x++) {
zero_buf[x] &= ~buf[i][x];
one_buf[x] |= buf[i][x];
}
}
for (int x = 0; x < BUF_SZ; x++) {
TEST_ASSERT_EQUAL_HEX8(0, zero_buf[x]);
TEST_ASSERT_EQUAL_HEX8(0xFF, one_buf[x]);
}
}

View File

@ -167,9 +167,7 @@ TEST_CASE("(SD) write/read speed test", "[fatfs][sd][test_env=UT_T1_SDMODE][time
const size_t buf_size = 16 * 1024;
uint32_t* buf = (uint32_t*) calloc(1, buf_size);
for (size_t i = 0; i < buf_size / 4; ++i) {
buf[i] = esp_random();
}
esp_fill_random(buf, buf_size);
const size_t file_size = 1 * 1024 * 1024;
speed_test(buf, 4 * 1024, file_size, true);

View File

@ -162,9 +162,7 @@ TEST_CASE("(WL) write/read speed test", "[fatfs][wear_levelling][timeout=60]")
const size_t buf_size = 16 * 1024;
uint32_t* buf = (uint32_t*) calloc(1, buf_size);
for (size_t i = 0; i < buf_size / 4; ++i) {
buf[i] = esp_random();
}
esp_fill_random(buf, buf_size);
const size_t file_size = 256 * 1024;
const char* file = "/spiflash/256k.bin";

View File

@ -14,14 +14,6 @@
#include "randombytes_default.h"
#include "esp_system.h"
static void randombytes_esp32_random_buf(void * const buf, const size_t size)
{
uint8_t *p = (uint8_t *)buf;
for (size_t i = 0; i < size; i++) {
p[i] = esp_random();
}
}
static const char *randombytes_esp32_implementation_name(void)
{
return "esp32";
@ -39,7 +31,7 @@ const struct randombytes_implementation randombytes_esp32_implementation = {
.random = esp_random,
.stir = NULL,
.uniform = NULL,
.buf = randombytes_esp32_random_buf,
.buf = esp_fill_random,
.close = NULL,
};

View File

@ -7,17 +7,18 @@
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <esp_system.h>
#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
#ifndef MBEDTLS_ENTROPY_HARDWARE_ALT
#error "MBEDTLS_ENTROPY_HARDWARE_ALT should always be set in ESP-IDF"
#endif
extern int os_get_random(unsigned char *buf, size_t len);
int mbedtls_hardware_poll( void *data,
unsigned char *output, size_t len, size_t *olen )
{
os_get_random(output, len);
esp_fill_random(output, len);
*olen = len;
return 0;
}
#endif

View File

@ -36,17 +36,8 @@ ssize_t getrandom(void *buf, size_t buflen, unsigned int flags)
return -1;
}
uint8_t *dst = (uint8_t *) buf;
ssize_t ret = 0;
esp_fill_random(buf, buflen);
while (ret < buflen) {
const uint32_t random = esp_random();
const int needed = buflen - ret;
const int copy_len = MIN(sizeof(random), needed);
memcpy(dst + ret, &random, copy_len);
ret += copy_len;
}
ESP_LOGD(TAG, "getrandom returns %d", ret);
return ret;
ESP_LOGD(TAG, "getrandom returns %d", buflen);
return buflen;
}

View File

@ -39,26 +39,9 @@ unsigned long os_random(void)
return esp_random();
}
unsigned long r_rand(void) __attribute__((alias("os_random")));
int os_get_random(unsigned char *buf, size_t len)
{
int i, j;
unsigned long tmp;
for (i = 0; i < ((len + 3) & ~3) / 4; i++) {
tmp = r_rand();
for (j = 0; j < 4; j++) {
if ((i * 4 + j) < len) {
buf[i * 4 + j] = (uint8_t)(tmp >> (j * 8));
} else {
break;
}
}
}
esp_fill_random(buf, len);
return 0;
}

View File

@ -61,11 +61,7 @@ static struct blufi_security *blufi_sec;
static int myrand( void *rng_state, unsigned char *output, size_t len )
{
size_t i;
for( i = 0; i < len; ++i )
output[i] = esp_random();
esp_fill_random(output, len);
return( 0 );
}

View File

@ -144,7 +144,6 @@ int example_espnow_data_parse(uint8_t *data, uint16_t data_len, uint8_t *state,
void example_espnow_data_prepare(example_espnow_send_param_t *send_param)
{
example_espnow_data_t *buf = (example_espnow_data_t *)send_param->buffer;
int i = 0;
assert(send_param->len >= sizeof(example_espnow_data_t));
@ -153,9 +152,8 @@ void example_espnow_data_prepare(example_espnow_send_param_t *send_param)
buf->seq_num = s_example_espnow_seq[buf->type]++;
buf->crc = 0;
buf->magic = send_param->magic;
for (i = 0; i < send_param->len - sizeof(example_espnow_data_t); i++) {
buf->payload[i] = (uint8_t)esp_random();
}
/* Fill all remaining bytes after the data with random values */
esp_fill_random(buf->payload, send_param->len - sizeof(example_espnow_data_t));
buf->crc = crc16_le(UINT16_MAX, (uint8_t const *)buf, send_param->len);
}